Models of Spontaneous Wave Function Collapse: an Update

115th Statistical Mechanics Conference Rutgers University, 8 - 10 May 2016

(Angelo Bassi – University of Trieste & INFN)

Quantum Mechanics

Linearity → Superposition Principle → Schrödinger's cat → Measurement Problem

Modify the Schrödinger equation

J.S.Bell

Speakable and Unspeakable in Quantum Mechanics

E.P. Wigner

in: Quantum Optics, Experimental gravity and Measurement theory, Plenum, NY (1983)

A.J. Leggett

Supplement Progr. Theor. Phys. 69, 80 (1980)

H.P. Stapp

In: Quantum Implications: Essay in Honor of David Bohm, Routledge & Kegan Paul, London (1987)

S. Weinberg

Phys. Rev. Lett. 62, 486 (1989).

R. Penrose

In: Quantum Concepts of Space and Time, Oxford U.P. (1985)

S.L. Adler

Quantum Theory as an emergent phenomenon CUP (2009)

G.C. Ghirardi, A. Rimini, T. Weber

G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986)

P. Pearle

Phys. Rev. A 39, 2277 (1989)

L. Diosi

L. Diosi, *Phys. Rev. A* <u>40</u>, 1165 (1989)

How to modify the Schrödinger equation?

The **no-faster-than-light condition** heavily constraints the possible ways to modify the Schrödinger equation.

In particular, it requires that **nonlinear terms** must always be accompanied by appropriate **stochastic terms**

```
N. Gisin, Hel. Phys. Acta 62, 363 (1989). Phys. Lett. A 143, 1 (1990)
```

N. Gisin and M. Rigo, *Journ. Phys. A* <u>28</u>, 7375 (1995)

J. Polcinski, *Phys. Rev. Lett.* 66, <u>397</u> (1991)

H.M. Wiseman and L. Diosi, *Chem. Phys.* <u>268</u>, 91 (2001)

S.L. Adler, "Quantum Theory as an Emergent Phenomenon", C.U.P. (2004)

A. Bassi, D. Dürr and G. Hinrichs, *Phys. Rev. Lett.* <u>111</u>, 210401 (2013).

L. Diosi, Phys. Rev. Lett. <u>112</u>, 108901 (2014)

M. Caiaffa, A. Smirne and A. Bassi, in preparation

The dynamics (simplified)

$$d|\psi\rangle_t \; = \; \left[-\frac{i}{\hbar} H dt \; + \; \sqrt{\lambda} (A - \langle A \rangle_t) dW_t - \frac{\lambda}{2} (A - \langle A \rangle_t)^2 dt \right] |\psi\rangle_t$$
 quantum collapse

$$\langle A \rangle_t = \langle \psi_t | A | \psi_t \rangle \longrightarrow$$
 nonlinear

The wave function is dynamically and stochastically driven by the noise W_t towards one of the eigenstates of the operator A

This can be seen as a phenomenological equation, eventually to be derived from an underlying theory

(S.L. Adler's book on "Trace Dynamics")

(Mass-proportional) CSL model

P. Pearle, *Phys. Rev. A* 39, 2277 (1989). G.C. Ghirardi, P. Pearle and A. Rimini, *Phys. Rev. A* 42, 78 (1990)

$$\frac{d}{dt}|\psi_t\rangle = \left[-\frac{i}{\hbar}H + \frac{\sqrt{\gamma}}{m_0} \int d^3x \left(M(\mathbf{x}) - \langle M(\mathbf{x}) \rangle_t \right) dW_t(\mathbf{x}) - \frac{\gamma}{2m_0^2} \int \int d^3x d^3y \ G(\mathbf{x} - \mathbf{y}) \left(M(\mathbf{x}) - \langle M(\mathbf{x}) \rangle_t \right) \left(M(\mathbf{y}) - \langle M(\mathbf{y}) \rangle_t \right) \right] |\psi_t\rangle$$

$$M(\mathbf{x}) = ma^{\dagger}(\mathbf{x})a(\mathbf{x})$$

$$G(\mathbf{x}) = \frac{1}{(4\pi r_C)^{3/2}} \exp[-(\mathbf{x})^2/4r_C^2]$$

$$w_t(\mathbf{x}) \equiv \frac{d}{dt} W_t(\mathbf{x}) = \text{noise} \quad \mathbb{E}[w_t(\mathbf{x})] = 0 \quad \mathbb{E}[w_t(\mathbf{x}) w_s(\mathbf{y})] = \delta(t - s) G(\mathbf{x} - \mathbf{y})$$

Two parameters

$$\gamma = \text{collapse strength}$$
 $r_C = \text{localization resolution}$

$$\lambda = \gamma/(4\pi r_C^2)^{3/2} = \text{collapse rate}$$

The collapse rate

Small superpositions

Collapse NOT effective

Large superpositions

Collapse effective

 $\Gamma = \lambda n^2 N$

- \mathbf{n} = number of particles within \mathbf{r}_{C}
- **N** = number of such clusters

Amplification mechanics

Few particles
no collapse
quantum
behavior

Many particles
Fast collapse
classical
behavior

Experimental tests

The obvious way to test collapse models is with matterwave interferometry

Prediction of quantum mechanics (no environmental noise)

Prediction of collapse models (no environmental noise)

Interferometric Experiments

Lower bound: Collapse effective at the macroscopic level Graphene disk: $N = 10^{11}$ amu, $d = 10^{-5}$ m, $T = 10^{-2}$ s

Non interferometric tests

The collapse induces a **Brownian motion** on the system

Charged free particle

1. Quantum mechanics

2. Collapse models

Spontaneous photon emission

Extra shift and broadening

Non-Interferometric Experiments

Acknowledgments

The Group (www.qmts.it)

www.units.it

- Postdocs: M. Bahrami, S. Donadi, F. Fassioli, A. Grossardt
- Ph.D. students: G. Gasbarri, M. Toros, M. Bilardello, M. Carlesso, S. Bacchi, L. Curcuraci
- Graduate students: A. Rampichini

Collaborations with: S.L. Adler, M. Paternostro, A. Smirne, H. Ulbricht, A. Vinante, C. Curceanu.

CSL Parameters

Microscopic world (few particles)

$$\lambda \sim 10^{-8 \pm 2} \text{s}^{-1}$$

QUANTUM – CLASSICAL TRANSITION (Adler - 2007)

Mesoscopic world: Latent image formation + perception in the eye (~ 10⁴ - 10⁵ particles)

S.L. Adler, JPA <u>40</u>, 2935 (2007)

A. Bassi, D.A. Deckert & L. Ferialdi, EPL 92, 50006 (2010)

$$\lambda \sim 10^{-17} \text{s}^{-1}$$

QUANTUM – CLASSICAL TRANSITION (GRW - 1986) Macroscopic world (> 10¹³ particles)

G.C. Ghirardi, A. Rimini and T. Weber, PRD 34, 470 (1986)

$$r_C = 1/\sqrt{\alpha} \sim 10^{-5} \text{cm}$$

Collapse models in space

REVIEW: A. Bassi and G.C. Ghirardi, *Phys. Rept.* 379, 257 (2003)

REVIEW: A. Bassi, K. Lochan, S. Satin, T.P. Singh and H. Ulbricht, *Rev. Mod. Phys.* <u>85</u>, 471 (2013)

Infinite temperature models

No dissipative effects

Finite temperature models

Dissipation and thermalization

White noise models

All frequencies appear with the same weight

GRW / CSL

G.C. Ghirardi, A. Rimini, T. Weber , *Phys. Rev. D* 34, 470 (1986)
 G.C. Ghirardi, P. Pearle, A. Rimini, *Phis. Rev. A* 42, 78 (1990)

QMUPL

L. Diosi, *Phys. Rev. A* 40, 1165 (1989)

DP

L. Diosi, *Phys. Rev. A* <u>40</u>, 1165 (1989)

Dissipative QMUPL

A. Bassi, E. Ippoliti and B. Vacchini,J. Phys. A <u>38</u>, 8017 (2005).

Dissipative GRW & CSL

A. Smirne, B. Vacchini & A. Bassi *Phys. Rev. A* <u>90</u>, 062135 (2014) A. Smirne & A. Bassi *Nat. Sci. Rept.* <u>5</u>, 12518 (2015)

Colored noise models

The noise can have an arbitrary spectrum

Non-Markovian CSL

P. Pearle, in *Perspective in Quantum Reality* (1996)

S.L. Adler & A. Bassi, *Journ. Phys. A* <u>41</u>, 395308 (2008). arXiv: 0807.2846

Non-Markovian QMUPL

A. Bassi & L. Ferialdi, *Phys. Rev. Lett.* <u>103</u>, 050403 (2009)

Non-Markovian & dissipative QMUPL

L. Ferialdi, A. Bassi Phys. Rev. Lett. <u>108</u>, 170404 (2012)