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Networks

A graph G = (V,E) is a set of vertices V (“nodes”) together with a subset
of unordered pairs (“edges” or “links,”E).

• Node degree ki: Number of nodes linked to node i.

• Mean degree K =

∑
i
ki∑
i
1

.

• Path: Sequence of nodes such that adjacent nodes are linked by an edge.

• (Fully) connected: A graph for which there is a path between any pair
of nodes. Implies that all ki > 0.

• (Fully) connection probability Pfc: Probability of (full) connection in a
random graph model.



Spatial networks
Nodes (and sometimes links) have a location in space.



Random geometric graphs

Introduced in 1961 by E. N. Gilbert:

Recently random graphs have been studied as models of communica-
tions networks. Points (vertices) of a graph represent stations; lines
of a graph represent two-way channels. . . . To construct a random
plane network, first pick points from the infinite plane by a Poisson
process with density D points per unit area. Next join each pair of
points by a line if the pair is separated by distance less than R.

Then:

Communications networks Many authors, since 1980s

Connectivity threshold Penrose (1997), Gupta & Kumar (1999)

Books/reviews:

Meester & Roy (1996) Continuum percolation

Penrose (2003) Random geometric graphs

Franceschetti & Meester (2008) Random networks for
communication

Walters (2011) Random geometric graphs

Barthélemy (2011) Spatial networks

Haenggi (2012) Stochastic geometry for wireless networks



Wireless network considerations

Mesh architectures Multihop connections rather than direct to a base sta-
tion: Reduces power requirements, interference, single points of failure.

Random node locations In many applications (sensor, vehicular, swarm robotics,
disaster recovery, . . .) device locations are unplanned and/or mobile.

Network characteristics Full connectivity, k-connectivity (resilience), alge-
braic connectivity (synchronisation), betweenness centrality (importance,
overload).

Useful extensions:

Random connection models Extra randomness: Link with (iid) probability
H(r) ∈ [0,1], a function of mutual distance r.

Anisotropy Orientations as well as positions.

Line of sight condition Impenetrable and/or reflecting boundaries: Partic-
ular relevance to millimetre waves.



Example: A triangle

Isolated nodes occur mostly near the corners...



Dependence on density and geometry

We see two main transitions as density increases:

Percolation Formation of a cluster comparable to system size:
Largely independent of geometry. K = 4.5122 . . .

Connectivity All nodes connected in multi-hop fashion:
Strongly dependent on geometry. K ≈ lnN .

What is the full connection probability as a function of density and geometry?



Previous results

Mathematically rigorous results are for N → ∞, with an appropriate scaling
of at least two of r0, ρ and the system size L.

For the random geometric graph in dimension d ≥ 2, it was shown by Penrose,
and by Gupta & Kumar, that the r0 threshold for connectivity is almost
always the same as for isolated nodes.

In turn, isolated nodes are local events, so described by a limiting Poisson
process: The probability of a node having degree k is given by

P (k) =
Kk

k!
e−K

where K is the mean degree, equal to ρπr2
0 for the 2D RGG. This leads to

Pfc ≈ exp
[
−ρV e−ρπr2

0

]
where V is the “volume” (ie area) of the domain.

At fixed probability and connection range, V increases exponentially with ρ



Random connection model

Penrose (2015) gives proofs for many H(r) of compact support as N → ∞;
we assume true more generally

Pfc ≈ exp

[
−
∫
ρe
−ρ
∫
H(r12)dr1dr2

]
where ρ is the density, H(r) is the iid probability of connection between nodes
with mutual distance r and the integrals are over the domain V ⊂ Rd.

We want to approximate Pfc for finite ρ, taking into account boundaries.

Open problem: 1D, eg vehicular networks!



Specific random connection models

The connection function is the complement of the outage probability,

H(r) = P(log2(1 + SNR |h|2) > R0)

neglecting interference, with SNR ∝ r−η, path loss exponent η ∈ [2,6], rate
R0. Simplest is Rayleigh fading (diffuse signal), for which the channel gain
|h|2 is exponentially distributed, giving

H(r) = exp[−(r/r0)η]

Similar, though more involved: MIMO, Rician (specular plus diffuse), . . .
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Connectivity and boundaries

For large ρ, dominated by the regions of small connectivity mass

M(r2) =

∫
H(r12)dr1

Exactly on the boundary, this is given by

MB = Hd−1ωB

where

Hm =

∫ ∞
0

H(r)rmdr

is the mth moment, and ωB is the (solid) angle associated with the boundary
component B, eg π/2 for a right angled corner, π for an edge.

Analysing the vicinity of boundaries more carefully. . .



General formula

Pfc = exp

[
−
∑
B

ρ1−iBGBVBe
−ρωBHd−1

]
where iB is the boundary codimension, VB is its d− i dimensional volume, and
GB is the geometrical factor

GB i = 0 i = 1 i = 2 i = 3
d = 2 1 1

2H0

1
H2

0 sinω

d = 3 1 1
2πH1

1
π2H2

1 sin(ω/2)
4

π2H3
1ω sinω

where the 3D corner has a right angle.

Curved boundaries? To leading order, modification of the exponential but
not the geometrical factor:

P2,1 = . . . e−ρ(πH1−κH2)

P3,1 = . . . e−πρ(2H2−κH3)

where κ is (mean) curvature.



Example: A square

The previous formula gives

1− Pfc ≈ L2ρe−πρ +
4L
√
π
e−

πρ

2 +
16

πρ
e−

πρ

4



Phase diagram

Testing convergence of
1− Pfc∑

B . . .



K-connectivity

A network is (vertex) k-connected if any k − 1 nodes can be removed and it
remains connected. It is a useful measure of network resilience.

1-connected 2-connected 3-connected

Vertex connectivity ≤ Edge connectivity ≤Minimum degree



Minimum degree

Assume independence . . .

• For each node, degree is Poisson:

Pi(k) ≈
Kki
k!
e−Ki

• Node degrees are independent:

Pmd(k) ≈

[
1−

k−1∑
m=0

ρm

m!

1

V

∫
V
Mm

H (ri)e
−ρMH(ri)dri

]N



Numerical results
Hard Soft

Random connections: Minimum degree is a better proxy for k-connectivity.

Why? Connections are less correlated in the random model.



Anisotropic connections

• Angle-dependent transmit and receive gains:

H(r, φ, θT , θR) = exp

(
−

βrη

GT(φ− θT)GR(φ+ π − θR)

)
• Fix total power per node∫ 2π

0
GT(φ)dφ =

∫ 2π

0
GR(φ)dφ = 2π

• Connectivity mass is now

M =
1

2π

∫
rH(r, φ, θT , θR)drdφdθR



Transition at η = d



Anisotropy and boundaries

• Homogeneous case:

– Path loss exponent η > d: Isotropic optimal

– Path loss exponent η < d: Delta spike(s) optimal

• With boundaries, for η < d, trade-off between system size/shape and
number/width of spikes. Examples:

– Square, best to have a multiple of 4 spikes.

– Cube . . .



Cube optimal pattern
14 spikes: Gyroelongated hexagonal bipyramid!



Outlook

Random connection models are more realistic and have smoother properties.

Other results/in progress: Non-convex domains, betweenness, interference,
nonuniform, mobility, spectrum . . .

Connection functions for other spatial networks?

Very long range connections?


