Spatial networks with random connections

Carl P. Dettmann (University of Bristol)

with Justin P. Coon (Oxford) and Orestis Georgiou (Toshiba)

TOSHIBA
Leading Innovation >>

Outline

- Introduction to spatial networks
- Random geometric graphs
- Random connection models: Phys. Rev. E 93, 032313 (2016)
- K-connectivity: EPL 103, 28006 (2013)
- Anisotropy: Trans. Wireless Commun. 13, 4534 (2014)

Networks

A graph $G=(V, E)$ is a set of vertices V ("nodes") together with a subset of unordered pairs ("edges" or "links," E).

- Node degree k_{i} : Number of nodes linked to node i.
- Mean degree $\mathcal{K}=\frac{\sum_{i} k_{i}}{\sum_{i}{ }^{1}}$.
- Path: Sequence of nodes such that adjacent nodes are linked by an edge.
- (Fully) connected: A graph for which there is a path between any pair of nodes. Implies that all $k_{i}>0$.
- (Fully) connection probability $P_{f c}$: Probability of (full) connection in a random graph model.

Spatial networks

Nodes (and sometimes links) have a location in space.

Random geometric graphs

Introduced in 1961 by E. N. Gilbert:
Recently random graphs have been studied as models of communications networks. Points (vertices) of a graph represent stations; lines of a graph represent two-way channels. ... To construct a random plane network, first pick points from the infinite plane by a Poisson process with density D points per unit area. Next join each pair of points by a line if the pair is separated by distance less than R.

Then:
Communications networks Many authors, since 1980s
Connectivity threshold Penrose (1997), Gupta \& Kumar (1999)
Books/reviews:
Meester \& Roy (1996) Continuum percolation
Penrose (2003) Random geometric graphs
Franceschetti \& Meester (2008) Random networks for communication
Walters (2011) Random geometric graphs
Barthélemy (2011) Spatial networks
Haenggi (2012) Stochastic geometry for wireless networks

Wireless network considerations

Mesh architectures Multihop connections rather than direct to a base station: Reduces power requirements, interference, single points of failure.

Random node locations In many applications (sensor, vehicular, swarm robotics, disaster recovery, ...) device locations are unplanned and/or mobile.

Network characteristics Full connectivity, k-connectivity (resilience), algebraic connectivity (synchronisation), betweenness centrality (importance, overload).

Useful extensions:

Random connection models Extra randomness: Link with (iid) probability $H(r) \in[0,1]$, a function of mutual distance r.
Anisotropy Orientations as well as positions.
Line of sight condition Impenetrable and/or reflecting boundaries: Particular relevance to millimetre waves.

Example: A triangle

Isolated nodes occur mostly near the corners...

Dependence on density and geometry

We see two main transitions as density increases:

Percolation Formation of a cluster comparable to system size:
Largely independent of geometry. $\mathcal{K}=4.5122 \ldots$
Connectivity All nodes connected in multi-hop fashion:
Strongly dependent on geometry. $\mathcal{K} \approx \ln N$.

What is the full connection probability as a function of density and geometry?

Previous results

Mathematically rigorous results are for $N \rightarrow \infty$, with an appropriate scaling of at least two of r_{0}, ρ and the system size L.

For the random geometric graph in dimension $d \geq 2$, it was shown by Penrose, and by Gupta \& Kumar, that the r_{0} threshold for connectivity is almost always the same as for isolated nodes.

In turn, isolated nodes are local events, so described by a limiting Poisson process: The probability of a node having degree k is given by

$$
P(k)=\frac{\mathcal{K}^{k}}{k!} e^{-\mathcal{K}}
$$

where \mathcal{K} is the mean degree, equal to $\rho \pi r_{0}^{2}$ for the 2D RGG. This leads to

$$
P_{f c} \approx \exp \left[-\rho V e^{-\rho \pi r_{0}^{2}}\right]
$$

where V is the "volume" (ie area) of the domain.
At fixed probability and connection range, V increases exponentially with ρ

Random connection model

Penrose (2015) gives proofs for many $H(r)$ of compact support as $N \rightarrow \infty$; we assume true more generally

$$
P_{f c} \approx \exp \left[-\int \rho e^{-\rho \int H\left(r_{12}\right) d \mathbf{r}_{1}} d \mathbf{r}_{2}\right]
$$

where ρ is the density, $H(r)$ is the iid probability of connection between nodes with mutual distance r and the integrals are over the domain $\mathcal{V} \subset \mathbb{R}^{d}$.

We want to approximate $P_{f c}$ for finite ρ, taking into account boundaries.
Open problem: 1D, eg vehicular networks!

Specific random connection models

The connection function is the complement of the outage probability,

$$
H(r)=\mathbb{P}\left(\log _{2}\left(1+S N R|h|^{2}\right)>R_{0}\right)
$$

neglecting interference, with $S N R \propto r^{-\eta}$, path loss exponent $\eta \in[2,6]$, rate R_{0}. Simplest is Rayleigh fading (diffuse signal), for which the channel gain $|h|^{2}$ is exponentially distributed, giving

$$
H(r)=\exp \left[-\left(r / r_{0}\right)^{\eta}\right]
$$

Similar, though more involved: MIMO, Rician (specular plus diffuse), ...

Connectivity and boundaries

For large ρ, dominated by the regions of small connectivity mass

$$
M\left(\mathbf{r}_{2}\right)=\int H\left(r_{12}\right) d \mathbf{r}_{1}
$$

Exactly on the boundary, this is given by

$$
M_{B}=H_{d-1} \omega_{B}
$$

where

$$
H_{m}=\int_{0}^{\infty} H(r) r^{m} d r
$$

is the m th moment, and ω_{B} is the (solid) angle associated with the boundary component B, eg $\pi / 2$ for a right angled corner, π for an edge.

Analysing the vicinity of boundaries more carefully...

General formula

$$
P_{f c}=\exp \left[-\sum_{B} \rho^{1-i_{B}} G_{B} V_{B} e^{-\rho \omega_{B} H_{d-1}}\right]
$$

where i_{B} is the boundary codimension, V_{B} is its $d-i$ dimensional volume, and G_{B} is the geometrical factor

G_{B}	$i=0$	$i=1$	$i=2$	$i=3$
$d=2$	1	$\frac{1}{2 H_{0}}$	$\frac{1}{H_{0}^{2} \sin \omega}$	
$d=3$	1	$\frac{1}{2 \pi H_{1}}$	$\frac{1}{\pi^{2} H_{1}^{2} \sin (\omega / 2)}$	$\frac{4}{\pi^{2} H_{1}^{3} \omega \sin \omega}$

where the 3D corner has a right angle.
Curved boundaries? To leading order, modification of the exponential but not the geometrical factor:

$$
\begin{aligned}
P_{2,1} & =\ldots e^{-\rho\left(\pi H_{1}-\kappa H_{2}\right)} \\
P_{3,1} & =\ldots e^{-\pi \rho\left(2 H_{2}-\kappa H_{3}\right)}
\end{aligned}
$$

where κ is (mean) curvature.

Example: A square

The previous formula gives

$$
1-P_{f c} \approx L^{2} \rho e^{-\pi \rho}+\frac{4 L}{\sqrt{\pi}} e^{-\frac{\pi \rho}{2}}+\frac{16}{\pi \rho} e^{-\frac{\pi \rho}{4}}
$$

Phase diagram

Testing convergence of

$$
\frac{1-P_{f c}}{\sum_{B} \cdots}
$$

K-connectivity

A network is (vertex) k-connected if any $k-1$ nodes can be removed and it remains connected. It is a useful measure of network resilience.

1-connected

2-connected

3-connected

Vertex connectivity \leq Edge connectivity \leq Minimum degree

Minimum degree

Assume independence ...

- For each node, degree is Poisson:

$$
P_{i}(k) \approx \frac{\mathcal{K}_{i}^{k}}{k!} e^{-\mathcal{K}_{i}}
$$

- Node degrees are independent:

$$
P_{m d}(k) \approx\left[1-\sum_{m=0}^{k-1} \frac{\rho^{m}}{m!} \frac{1}{V} \int_{\mathcal{V}} M_{H}^{m}\left(\mathbf{r}_{i}\right) e^{-\rho M_{H}\left(\mathbf{r}_{i}\right)} d \mathbf{r}_{i}\right]^{N}
$$

Numerical results

Hard

Random connections: Minimum degree is a better proxy for k-connectivity.
Why? Connections are less correlated in the random model.

Anisotropic connections

- Angle-dependent transmit and receive gains:

$$
H\left(r, \phi, \theta_{T}, \theta_{R}\right)=\exp \left(-\frac{\beta r^{\eta}}{G_{T}\left(\phi-\theta_{T}\right) G_{R}\left(\phi+\pi-\theta_{R}\right)}\right)
$$

- Fix total power per node

$$
\int_{0}^{2 \pi} G_{T}(\phi) d \phi=\int_{0}^{2 \pi} G_{R}(\phi) d \phi=2 \pi
$$

- Connectivity mass is now

$$
M=\frac{1}{2 \pi} \int r H\left(r, \phi, \theta_{T}, \theta_{R}\right) d r d \phi d \theta_{R}
$$

Transition at $\eta=d$

Anisotropy and boundaries

- Homogeneous case:
- Path loss exponent $\eta>d$: Isotropic optimal
- Path loss exponent $\eta<d$: Delta spike(s) optimal
- With boundaries, for $\eta<d$, trade-off between system size/shape and number/width of spikes. Examples:
- Square, best to have a multiple of 4 spikes.
- Cube...

Cube optimal pattern

14 spikes: Gyroelongated hexagonal bipyramid!

Outlook

Random connection models are more realistic and have smoother properties.
Other results/in progress: Non-convex domains, betweenness, interference, nonuniform, mobility, spectrum ...

Connection functions for other spatial networks?
Very long range connections?

Spatially
 Embedded
 Networks

EPSRC
Engineering and Physical Sciences Research Council

