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Statistical closure via dynamical optimization

(1) Coarse-grain the underlying deterministic dynamics using a
parametric statistical model,

(2) Quantify the lack-of-fit to the fully-resolved dynamics of any
feasible path in the model parameter space,

(3) Derive the closed equations governing the reduced model
from the optimality conditions for the best-fit path.

B.T., “An optimization principle for deriving nonequilibrium statistical models
of Hamiltonian dynamics.” J. Stat. Phys. 152:569-597 (2013).

e Optimal closure constructed for any Hamiltonian dynamics and any vector
of relevant observables.

e [ he reduced equations have the “GENERIC" or "metriplectic’ structure
of nonequilibrium thermodynamics



An example: Two-dimensional fluid turbulence

B.T., Q.Y. Chen and S. Thalabard, “Coarse-graining two-dimensional
turbulence via dynamical optimization.” arXiv 1510.00341 (2015).

Microdynamics is the spectrally-truncated vorticity equation:

((z,t) = ) z(t) e A, is finite lattice of wavevectors

ke,
dz 1 1 1

k + Z C(p,Q)Zqu _O C(p7Q):_qu< 2— 2) .
at =k 2 p| q|

Energy and enstrophy invariance determine Gibbs density,

ke,
Parametric statistical model consists of Gaussian densities:

p(z;a,b) ox exp (— > bk|zk—ak|2) :
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General framework

Hamiltonian microscopic dynamics (canonical or noncanonical)

dF
- = {F,H} for every observable F on a phase space I
Generic point z = (z1,...,2n) € ' is microstate. n > 1.

An ensemble of microscopic trajectories, z(t), is described by a
probability density, p(z,t), which satisfies Liouville’s equation:

0
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Equivalently, for every observable F,

d

S{F | p(, ) = (LF|p(8),  for (Flp)= [ F(2)p()dz.

But, the complexity of the exact solution, p(-,t) = e tLp(-,0),
equals that of the underlying dynamics, making it too expensive
to compute in practice.



Statistical-dynamical model

Replace the exact density p(z,t) by an approximation p(z; A(t)),
in which the parameter vector, A = \(t), evolves.

A classic choice is quasi-equilibrium densities associated to a
vector of relevant (slow) observables, A = (Aq,...,An), mKn.
T his statistical model uses the exponential trial densities

p(z,A) = exp (Z AiAi(z) — ¢(>\)) peq(2)
i=1

p(z,A) maximizes entropy subject to the expectation of A:

s(a) = max(—log 2 |p) over (Al|p)=a, (1l]|p)=1.
P Peq

The parameter vector A = (A1, ..., A\m) consists of the associated

Lagrange multipliers, \; = —%.



Quantifying the lack-of-fit of the model

Evaluate the Liouville residual of the trial densities p(z; A(t))
along any feasible parameter path A(¢):

R=R(-; A1), A1) = (% + L) log 55 (1)

The ensemble-averaged evolution of any observable F' along such
a path satisfies

d

S{F|5) = (LF|) + (FR|7)

For instance, in the quasi-equilibrium model,

R=3 M —a®) + NO{A, H} .
1=1



Define the statistical lack-of-fit to be

LON) = (RCAA? |50

L(\, \) represents the information loss rate due to coarse-graining:
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Incremental Kullback-Leibler distance between exact and model densities.

| e 2 (A (E)) = (A2 LA A) + O(AL)?

Characterization of optimal paths:

o0 .
min/ L\ M) dt subject to A(0) = Ag.
A(t) /O

This optimization resembles a classical least action principle, BUT
(1) this “action” has units of entropy production,

(2) this “Lagrangian” L is a sum of positive-definite parts,

(3) these extremals relax to equilibrium as ¢ — +oo.



Hamilton-Jacobi theory

Introduce the optimal cost function, or value function,

A) = mi LN A dt
v(Ag) A(g;gAOAE(,),

v(A) solves the stationary Hamilton-Jacobi equation

#(n-2) = o,

O\
where H(\, ) is the Legendre transform of £(\,\):
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Along an extremal path A(t), the conjugate vector =« () is

ov
M),

Replacing 7« by its expression in terms of A and A then produces
the desired closed system of first-order DES in ).

mi(t) = —



Optimal closure equations for quasi-equilibrium models

The closed reduced equations expressed in terms of
the mean resolved vector a = (A | p(A)):

da = J(a )% _ v with x=_2%
dt O\ oa

Reversible part: Hamiltonian-Poisson structure with

<{AZ7A b = j’&? h(a) = (H | :5(>‘)>

Irreversible part: Generalized gradient structure with
“dissipation potential” v(\)

Optimal closure then has the structure of nonequilibrium thermodynamics:

e “"GENERIC" (General Equations of NonEquilibrium Reversible Irreversible
Coupling) due to Grmela and Ottinger, and Beris and Edwards

e ‘‘Metriplectic dynamics’ due to Morrison.



Statistical relaxation of truncated two-dimensional flow

Inviscid, unforced 2D Euler dynamics,

9
8—?:+u-Vu=—Vp, V.u=0,

is equivalent to the self-advection of vorticity, ((z,t) = Vxu(x,t).
Spectrally truncate this dynamics onto 2n(n—+ 1) Fourier modes,

C(z,t) = Y z,(t)e™* [doubly-periodic boundary conditions]
kel

using the lattice of wavevectors,

/\n:{k:(klakQ)#(oao) : k‘]_,k’QZ—TL,...,TL},

The microdynamics has a typical quadratic nonlinearity:
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Two Gaussian nonequilibrium models

(1) As resolved variables use the modes with low wavenumbers:
ap = (zp) for k € Am, m < n; {(|zp —ag|?) = 1/8; for all k € An.

Trial densities are quasi-equilibrium with perturbed means a; in the low modes,
but equilibrium variance in all modes.

(2) Resolve both the means and variances of the low modes:
ap = <Zk> and 1/bk = <|Zk — ak|2> for k € N\,

Trial densities are Gaussian, and all unresolved modes have equilibrium means
and variances:

0

Peq(z) o< €Xp (— > Bklsz) , Wwhere By =a+ W

ke,



Coarse-grained equations of motion

(1) Closure in terms of the low-mode means, a, = ( z ):

dak

dt + Z [C(p7 Q) + d(p7 Q)] apaq —O0kag,

pt+q=k

(2) Closure in terms of low-mode means, a;, together with
the (inverse) variances b,;l = (|2 — ap|?):

d
;k + DY [elp,q) + d(p, Q)] apaqg = —opag [1 4 &x(bg — Br)]
p+q=k
db
k= —oxlagl? = of (b — B [1 4 m (b — B)]
Properties:

(a) Subdiffusive, nonlocal dissipation: oy ~ |k|log |k
(b) Modified nonlinear interactions, d(p,q), between resolved modes.
(c) Variance relaxation coupled to mean, .



Validation of reduced model against ensemble DNS
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Conclusions

e Coarse-graining and closure may be achieved by dynamical
optimization using information-theoretic (relative entropy)
metrics of statistical model fit.

e [ he optimal closure has a nonequilibrium thermodynamic
structure and related properties.

e Practical implementation relies on perturbation analysis of
the Hamilton-Jacobi equation (near equilibrium), or optimal
control algorithms (beyond equilibrium).



