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Statistical closure via dynamical optimization

(1) Coarse-grain the underlying deterministic dynamics using a

parametric statistical model,

(2) Quantify the lack-of-fit to the fully-resolved dynamics of any

feasible path in the model parameter space,

(3) Derive the closed equations governing the reduced model

from the optimality conditions for the best-fit path.

B.T., “An optimization principle for deriving nonequilibrium statistical models
of Hamiltonian dynamics.” J. Stat. Phys. 152:569–597 (2013).

• Optimal closure constructed for any Hamiltonian dynamics and any vector
of relevant observables.

• The reduced equations have the “GENERIC” or “metriplectic” structure
of nonequilibrium thermodynamics



An example: Two-dimensional fluid turbulence

B.T., Q.Y. Chen and S. Thalabard, “Coarse-graining two-dimensional

turbulence via dynamical optimization.” arXiv 1510.00341 (2015).

Microdynamics is the spectrally-truncated vorticity equation:

ζ(x, t) =
∑
k∈Λn

zk(t) eik·x , Λn is finite lattice of wavevectors

dzk
dt

+
∑

p+q=k

c(p, q)zpzq = 0 , c(p, q) =
1

2
p× q

(
1

|p|2
−

1

|q|2

)
.

Energy and enstrophy invariance determine Gibbs density,

ρeq(z) ∝ exp

− ∑
k∈Λn

βk|zk|2
 , for βk = α+

θ

|k|2
.

Parametric statistical model consists of Gaussian densities:

ρ̃(z; a, b) ∝ exp

− ∑
k∈Λn

bk|zk − ak|2
 .



General framework

Hamiltonian microscopic dynamics (canonical or noncanonical)

dF

dt
= {F,H} for every observable F on a phase space Γ

Generic point z = (z1, . . . , zn) ∈ Γ is microstate. n� 1.

An ensemble of microscopic trajectories, z(t), is described by a

probability density, ρ(z, t), which satisfies Liouville’s equation:

∂ρ

∂t
+ Lρ = 0 , with L · = { · , H}

Equivalently, for every observable F ,

d

dt
〈F | ρ(·, t)〉 = 〈LF | ρ(·, t)〉 , for 〈F | ρ〉 .=

∫
Γ
F (z)ρ(z) dz .

But, the complexity of the exact solution, ρ(·, t) = e−tLρ(·,0),

equals that of the underlying dynamics, making it too expensive

to compute in practice.



Statistical-dynamical model

Replace the exact density ρ(z, t) by an approximation ρ̃(z;λ(t)) ,

in which the parameter vector, λ = λ(t), evolves.

A classic choice is quasi-equilibrium densities associated to a

vector of relevant (slow) observables, A = (A1, . . . , Am) , m� n .

This statistical model uses the exponential trial densities

ρ̃(z, λ) = exp

 m∑
i=1

λiAi(z) − φ(λ)

 ρeq(z)

ρ̃(z, λ) maximizes entropy subject to the expectation of A:

s(a) = max
ρ
〈− log

ρ

ρeq
| ρ 〉 over 〈A | ρ 〉 = a , 〈1 | ρ 〉 = 1 .

The parameter vector λ = (λ1, . . . , λm) consists of the associated

Lagrange multipliers, λi = − ∂s
∂ai

.



Quantifying the lack-of-fit of the model

Evaluate the Liouville residual of the trial densities ρ̃(z;λ(t))

along any feasible parameter path λ(t):

R = R( · ; λ(t), λ̇(t) )
.

=
(
∂

∂t
+ L

)
log ρ̃(· ;λ(t))

The ensemble-averaged evolution of any observable F along such

a path satisfies

d

dt
〈F | ρ̃ 〉 = 〈LF | ρ̃ 〉 + 〈FR | ρ̃ 〉

For instance, in the quasi-equilibrium model,

R =
m∑
i=1

λ̇i(t)(Ai − ai(t)) + λi(t){Ai , H} .



Define the statistical lack-of-fit to be

L(λ, λ̇) =
1

2
〈R(· ;λ, λ̇ )2 | ρ̃(· ;λ) 〉

L(λ, λ̇) represents the information loss rate due to coarse-graining:

〈 log
e−∆t Lρ̃(λ(t))

ρ̃(λ(t+ ∆t) )
| e−∆t Lρ̃(λ(t)) 〉 = (∆t)2L(λ, λ̇) + O(∆t)3

Incremental Kullback-Leibler distance between exact and model densities.

Characterization of optimal paths:

min
λ(t)

∫ ∞
0
L(λ, λ̇) dt subject to λ(0) = λ0 .

This optimization resembles a classical least action principle, BUT

(1) this “action” has units of entropy production,

(2) this “Lagrangian” L is a sum of positive-definite parts,

(3) these extremals relax to equilibrium as t→ +∞.



Hamilton-Jacobi theory

Introduce the optimal cost function, or value function,

v(λ0) = min
λ(0)=λ0

∫ ∞
0
L(λ, λ̇) dt ,

v(λ) solves the stationary Hamilton-Jacobi equation

H
(
λ,−

∂v

∂λ

)
= 0 ,

where H(λ, π) is the Legendre transform of L(λ, λ̇):

πi =
∂L
∂λ̇i

= · · · , H =
m∑
i=1

λ̇iπi − L = · · · .

Along an extremal path λ(t), the conjugate vector π(t) is

πi(t) = −
∂v

∂λi
(λ(t)) .

Replacing π by its expression in terms of λ̇ and λ then produces

the desired closed system of first-order DEs in λ.



Optimal closure equations for quasi-equilibrium models

The closed reduced equations expressed in terms of

the mean resolved vector a = 〈A | ρ̃(λ)〉:

da

dt
= J(a)

∂h

∂a
−

∂v

∂λ
with λ = −

∂s

∂a

Reversible part: Hamiltonian-Poisson structure with

Jij = 〈{Ai, Aj}〉 = −Jji , h(a) = 〈H | ρ̃(λ)〉

Irreversible part: Generalized gradient structure with

“dissipation potential” v(λ)

Optimal closure then has the structure of nonequilibrium thermodynamics:

• “GENERIC” (General Equations of NonEquilibrium Reversible Irreversible
Coupling) due to Grmela and Öttinger, and Beris and Edwards

• “Metriplectic dynamics” due to Morrison.



Statistical relaxation of truncated two-dimensional flow

Inviscid, unforced 2D Euler dynamics,

∂u

∂t
+ u · ∇u = −∇p , ∇ · u = 0 ,

is equivalent to the self-advection of vorticity, ζ(x, t) = ∇×u(x, t).

Spectrally truncate this dynamics onto 2n(n+1) Fourier modes,

ζ(x, t) =
∑
k∈Λn

zk(t) eik·x , [doubly-periodic boundary conditions]

using the lattice of wavevectors,

Λn = { k = (k1, k2) 6= (0,0) : k1, k2 = −n, . . . , n } ,

The microdynamics has a typical quadratic nonlinearity:

dzk
dt

+
∑

p+q=k

c(p, q)zpzq = 0 , c(p, q) =
1

2
p× q

(
1

|p|2
−

1

|q|2

)
.



Two Gaussian nonequilibrium models

(1) As resolved variables use the modes with low wavenumbers:

ak = 〈zk〉 for k ∈ Λm, m� n; 〈|zk − ak|2〉 = 1/βk for all k ∈ Λn.

Trial densities are quasi-equilibrium with perturbed means ak in the low modes,
but equilibrium variance in all modes.

(2) Resolve both the means and variances of the low modes:

ak = 〈zk〉 and 1/bk = 〈|zk − ak|2〉 for k ∈ Λm.

Trial densities are Gaussian, and all unresolved modes have equilibrium means
and variances:

ρeq(z) ∝ exp

(
−
∑
k∈Λn

βk|zk|2
)
, where βk

.
= α+

θ

|k|2
.



Coarse-grained equations of motion

(1) Closure in terms of the low-mode means, ak = 〈 zk 〉:

dak
dt

+
∑

p+q=k

[c(p, q) + d(p, q)] apaq = −σkak ,

(2) Closure in terms of low-mode means, ak, together with

the (inverse) variances b−1
k = 〈 |zk − ak|2 〉:

dak
dt

+
∑

p+q=k

[c(p, q) + d(p, q)] apaq = −σkak [1 + ξk(bk − βk)] ,

dbk
dt

= −σkχk|ak|2 − σ′k(bk − βk) [1 + ηk(bk − βk)]

Properties:
(a) Subdiffusive, nonlocal dissipation: σk ∼ |k| log |k|
(b) Modified nonlinear interactions, d(p, q), between resolved modes.
(c) Variance relaxation coupled to mean, χk.



Validation of reduced model against ensemble DNS
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Squared norm of fit ∆̄m(ρdns | ρ̃) versus initial disturbance ∆m(ρ0 | ρeq).

Left: Positive temperature; Right: Negative temperature.



Conclusions

• Coarse-graining and closure may be achieved by dynamical

optimization using information-theoretic (relative entropy)

metrics of statistical model fit.

• The optimal closure has a nonequilibrium thermodynamic

structure and related properties.

• Practical implementation relies on perturbation analysis of

the Hamilton-Jacobi equation (near equilibrium), or optimal

control algorithms (beyond equilibrium).


