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A simple one-dimensional random model

The pieces (or Luttinger-Sy) model
On R, consider the points of a Poisson
process, say, (xk(ω))k∈Z.
For Λ = [−L/2,L/2], on L2(Λ), define

Hω(L) =
⊕
k∈Z
− d2

dx2

∣∣∣D
∆k∩Λ

where ∆k = [xk,xk+1]

Integrated density of states

N(E) =
exp(−`E)

1− exp(−`E)
1E≥0

where `E :=
π√
E

.
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The n particle system

On
∧n

j=1 L2([−L/2,L/2]), H0
ω(L,n) =

n

∑
i=1

1⊗ . . .⊗1︸ ︷︷ ︸
i−1 times

⊗Hω(L)⊗ 1⊗ . . .⊗1︸ ︷︷ ︸
n− i times

.

Pick U : R→ R+ even s.t. U ∈ Lp(R) (p > 1) and x3 ·
∫ +∞

x
U(t)dt −→

x→+∞
0.

Define HU
ω (L,n) = H0

ω(L,n)+Wn where Wn(x1, · · · ,xn) := ∑i<j U(xi− xj).

ΨU
ω(Λ,n) and EU

ω (Λ,n): ground state and ground state energy.

The non interacting ground state

1 Fermi energy: N(Eρ) = ρ;
2 Pick all the pieces

∆k = [xk(ω),xk+1(ω)] of length
larger than `ρ = π/

√
Eρ .

3 For each piece, take all the states
associated to levels below Eρ .

4 Form the Slater determinant to get the
non interacting ground state. −L/2 L/2

space

Fermi energy
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The reduced one-particle density matrix for the non interacting ground state

γ
(1)
Ψ0

ω (L,n)
= ∑

k≥1

 ∑
k`ρ≤|∆k|<(k+1)`ρ

(
k

∑
j=1

γ
(j)

ϕ
j
∆k

)
where ϕ

j
I is j-th normalized eigenvector of −∆D

|I .

The non interacting system: the ground state energy per particle

E 0(ρ) = lim
L→+∞

n/L→ρ

=
E0

ω(L,n)
n

1
ρ

∫ Eρ

−∞

E dN(E)∼ Eρ ∼ π
2 |logρ|−2 .

Another representation for the ground state:

k

2
1

2`ρ 3`ρ k`ρ`ρ (k + 1)`ρ
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Existence of the ground state energy per particle

Theorem
Under our assumptions on U, ω−almost surely, the following limit exists and is
independent of ω

E U(ρ) := lim
L→+∞

n/L→ρ

EU
ω (L,n)

n
.

Ground state energy asymptotic expansion

Theorem
Under our assumptions on U, one has

E U(ρ) = E 0(ρ)+
π2γ∗
| logρ|3 ρ +o

(
ρ

|logρ|3

)
,

where γ∗ = 1− exp
(
− γ

8π2

)
.
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Systems of two fermions: within the same piece:

Lemma
Assume that U ∈ Lp(R) for some p ∈ (1,+∞] and that

∫
R x2U(x)dx <+∞.

Consider two fermions in [0, `] interacting via the pair potential U, i.e., on
L2([0, `])∧L2([0, `]), consider the Hamiltonian

− d2

dx2
1
− d2

dx2
2
+U(x1− x2). (1)

Then, for large `, E2,U(`), its ground state energy admits the following expansion

E2,U(`) =
5π2

`2 +
γ

`3 +o
(
`−3
)

where γ :=
5π2

2

〈
u
√

U(u),
(

Id+
1
2

U1/2(−∆1)
−1U1/2

)−1

u
√

U(u)

〉
.

Uniqueness of the ground state:

Theorem
Assume U is analytic. Then, for any L and n, HU

ω (L,n) has a unique ground state
ω-almost surely.
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Interacting ground state: “optimal” approximation
Let ζ 1

I be the ground state of −∆
∣∣D
I2 +U acting on L2

−(I
2). Define

γ
(1)
Ψ

opt
L,n

= ∑
`ρ−ργ∗≤|∆k|≤2`ρ−log(1−γ∗)

γ
(1)
ϕ1

∆k

+ ∑
2`ρ−log(1−γ∗)≤|∆k|

γ
(1)
ζ 1

∆k

,

Theorem
We assume U compact support. There exists ρ0 > 0 s.t. for ρ ∈ (0,ρ0), ω-a.s., one has

limsup
L→+∞

n/L→ρ

1
n

∥∥∥∥γ
(1)
ΨU

ω (L,n)
− γ

(1)
Ψ

opt
L,n

∥∥∥∥
1
.

ρ

| logρ| ,

limsup
L→+∞

n/L→ρ

1
n2

∥∥∥∥γ
(2)
ΨU

ω (L,n)
− 1

2
(Id−Ex)

[
γ
(1)
Ψ

opt
L,n
⊗ γ

(1)
Ψ

opt
L,n

]∥∥∥∥
1
.

ρ

| logρ| .

2
1

`ρ − γ∗ρ 2`ρ`ρ 3`ρ
2`ρ − log(1− γ∗)
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When U is “long” range:

Assume Z(x) := x3 ·
∫ +∞

x
U(t)dt −→

x→+∞
0. For ` > 0, let 11

<` = ∑
|∆k(ω)|<`

1∆k(ω).

Theorem
There exist ρ0 > 0, C > 0 such that, for ρµ ∈ (0,ρ0), ω-a.s., one has

limsup
L→+∞

n/L→ρ

1
n

∥∥∥∥(γ
(1)
ΨU

ω (Λ,n)
− γ

(1)
Ψ

opt
Λ,n

)
11
<`ρ+C

∥∥∥∥
tr
≤ C
√

ρµ max
( √

ρµ

| logρµ |
,
√

Z(`ρµ
/C)

)
,

limsup
L→+∞

n/L→ρ

1
n

∥∥∥∥(γ
(1)
ΨU

ω (Λ,n)
− γ

(1)
Ψ

opt
Λ,n

)
11
≥`ρ+C

∥∥∥∥
tr
≤ Cρµ max

(
1

| logρµ |
,
√

Z(`ρµ
/C)

)
.

When U decays slowly,
larger interaction between far away pieces

=⇒ interaction between short pieces more important (because of their
larger number)

=⇒ optimal state in the short pieces quite different from ground state.
Does not change ground state energy to second order until Z(x) 6→ 0.
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Some open questions

1 When x3
∫ +∞

x
U(t)dt −→

x→+∞
0 not too fast, get a good control of the changes

induced by the “long” range interactions.
Get a good description of the ground state in the short pieces.

2 For U compactly supported, we actually have a better expansion for E U(ρ). And
we have a more precise description of the ground state.
Does γ

(1)
ΨU

ω (L,n)
converge as L→+∞?

3 What happens if x3
∫ +∞

x
U(t)dt −→

x→+∞
+∞? One may expect

I if
∫
R

U(t)dt <+∞: interactions at a distance become more important than local

interactions in the same piece.
I if

∫
R

U(t)dt =+∞, interactions become more important than non interacting energy
term.

In our model, no tunneling for a single particle
What happens for a more realistic model that includes tunneling?
In dimension 1, preliminary computations suggest same picture.
What happens in higher dimensions?
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