111th Statistical Mechanics Conference, Rutgers University, May 12, 2014

RANDOM FIELDS AND TOPOLOGY

Eugene Chudnovsky

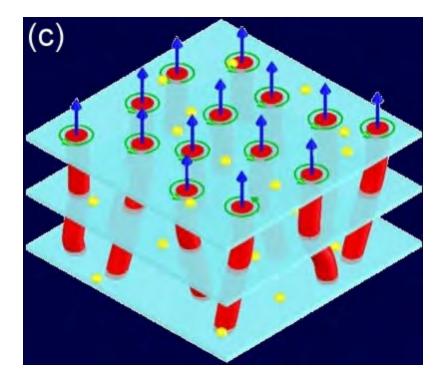
(with Dmitry Garanin and Tom Proctor)

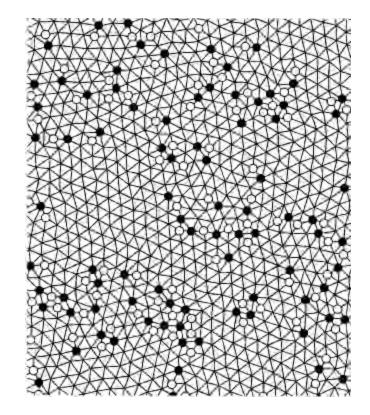
CUNY Graduate School & Lehman College

Research supported by U.S. Department of Energy

Random Pinning of Flux Lattices (Larkin 1970s)

$$H = \frac{1}{2} \int d^3 r \left[(C_{11} - C_{66}) (\partial_{\alpha} u_{\alpha})^2 + C_{66} (\partial_{\alpha} u_{\beta})^2 + C_{44} (\partial_z u_{\alpha})^2 \right] - \int d^3 r \, u_{\alpha} f_{\alpha}$$





Imry-Ma Argument (1975)

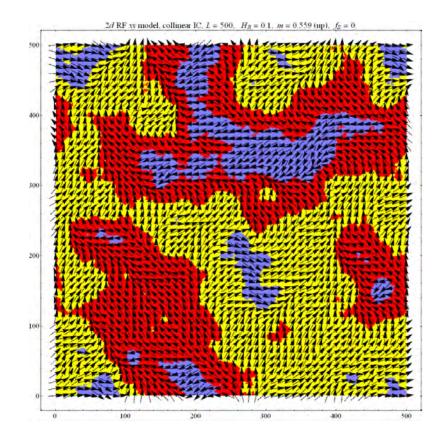
$$\mathbf{H} = \int d^d r \left[\frac{1}{2} \alpha \left(\frac{d\vec{S}}{dr_i} \right)^2 - \vec{h} \cdot \vec{S} \right]$$

If the order exists in volumes of size R, the average exchange energy per spin scales as α/R^2 .

The average Zeeman energy per spin scales as $-h/R^{d/2}$.

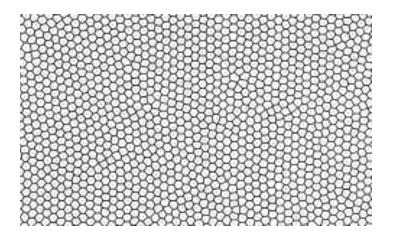
The total energy has minimum at

$$R = R_f \propto 1 / h^{2/(4-d)}$$

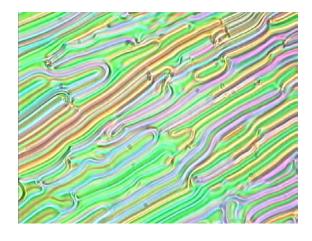


Destruction of the long-range order by however weak random field in less than four dimensions: Larkin-Imry-Ma domains. In superconductors the critical current goes down when Imry-Ma correlation length increases.

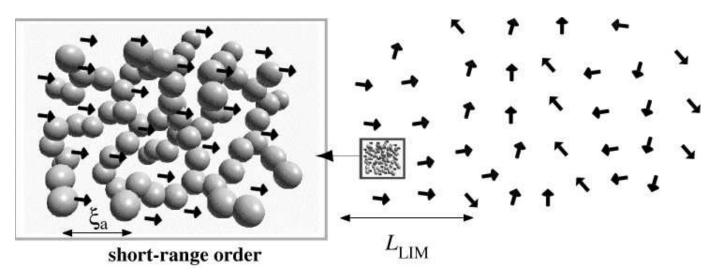
Imry-Ma domains in various systems



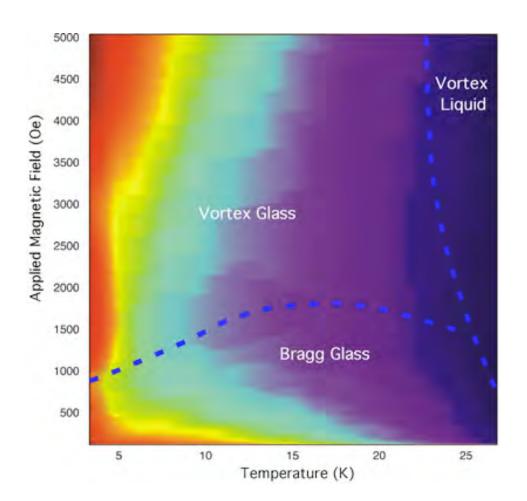
Magnetic bubbles (Seshadri & Westervelt 1990s)



Liquid crystals (Bellini et al. 1998)



Liquid ³He-A in aerogel (Volovik et al. 2008, Li et al. 2013)

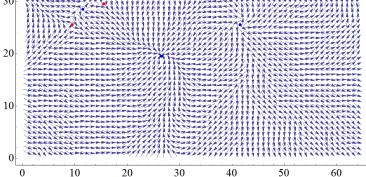


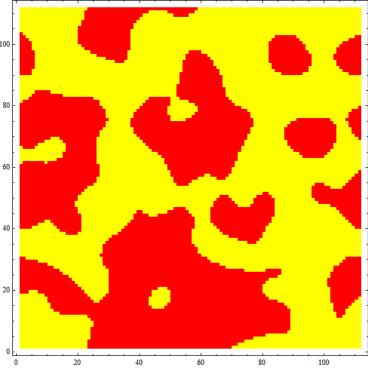
Vortex-free low-temperature phase with the power-law decay of correlations at distances greater than Rf:

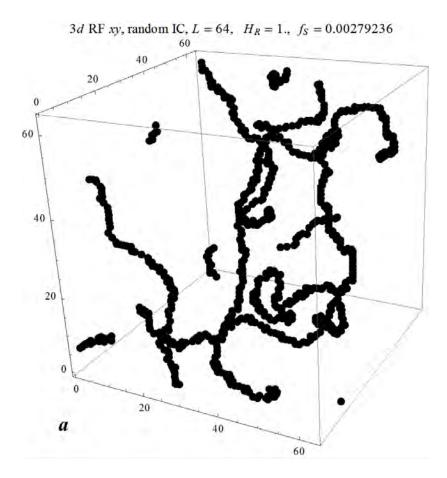
SCs:
$$\left\langle e^{i\vec{G}\cdot[\vec{u}(\vec{r_1}-\vec{r_2})]} \right\rangle_{3d} \propto \frac{1}{|\vec{r_1}-\vec{r_2}|}$$

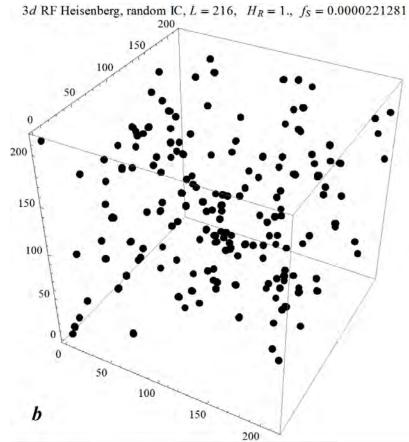
Spins: $\left\langle \vec{s}(\vec{r_1})\cdot\vec{s}(\vec{r_2}) \right\rangle_{3d} \propto \frac{1}{|\vec{r_1}-\vec{r_2}|}$

Random-Field Spin Model $\mathbf{H} = -\frac{1}{2} \sum_{ij} J_{ij} \vec{s}_i \cdot \vec{s}_j - \sum_i \vec{h}_i \cdot \vec{s}_i - \vec{H} \cdot \sum_i \vec{s}_i$ 3d xy RF model, random IC, L = 64, $H_R = 1$., $\Delta E = -0.052489$

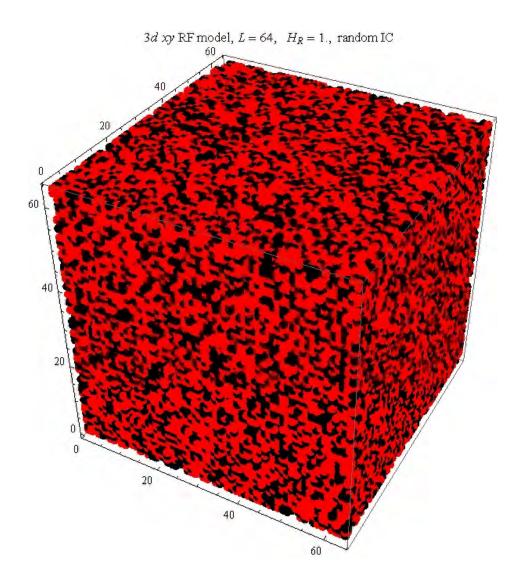


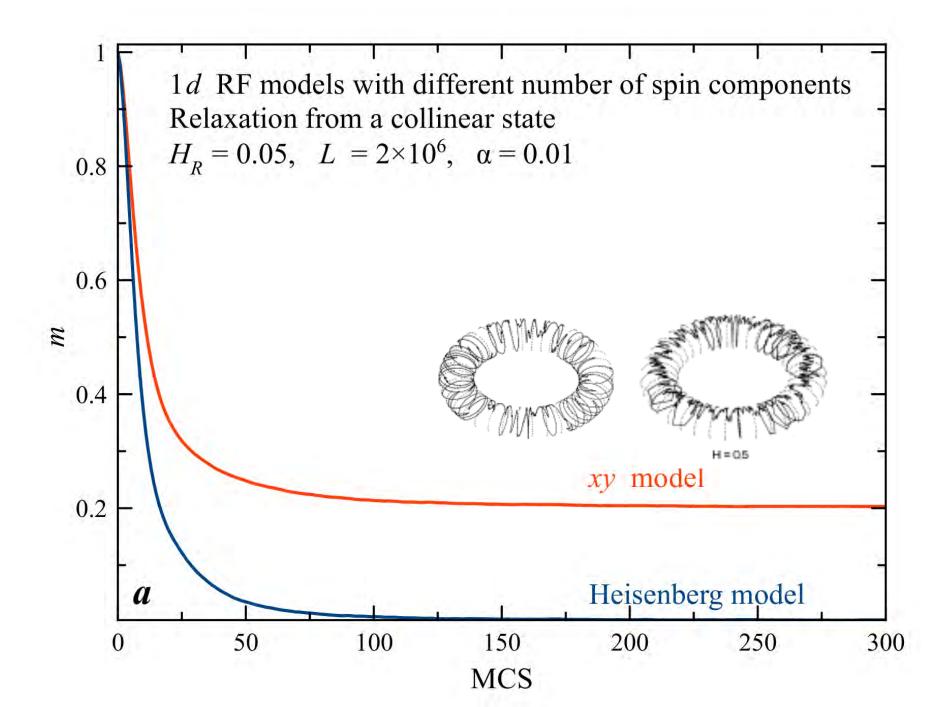


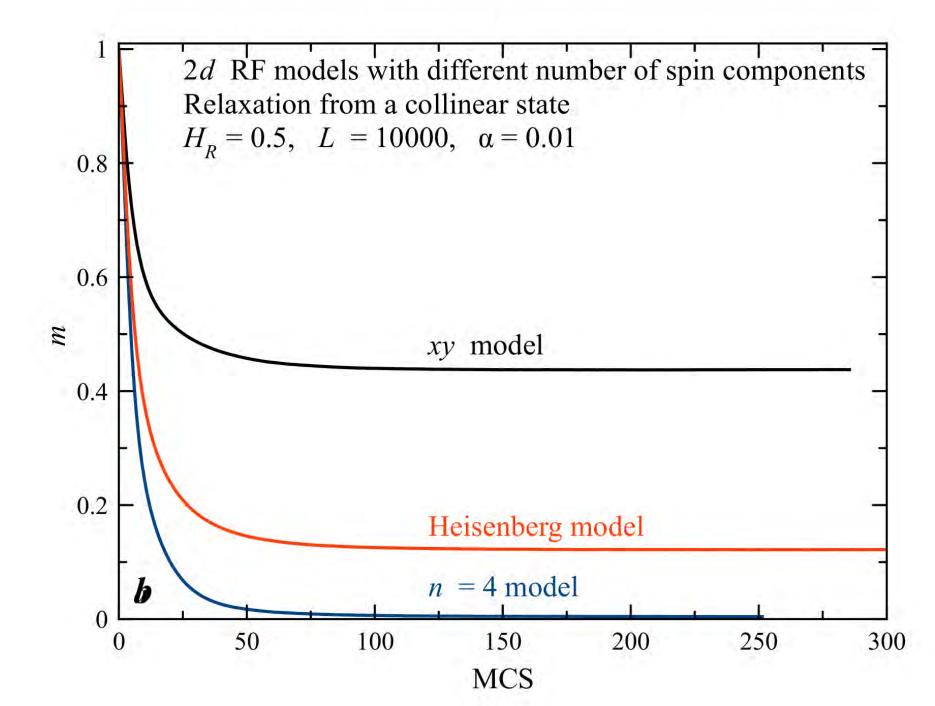


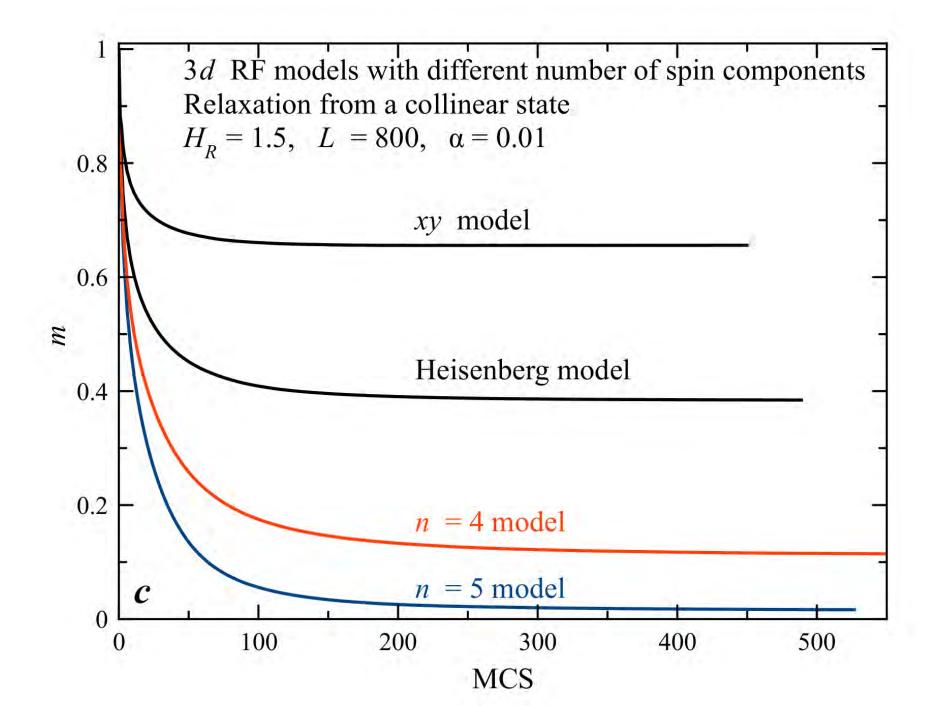


Numerical Results - Random Initial Conditions









Vortices in 2d

 $\vec{s} = (s \cos \varphi, s \sin \varphi)$ $\vec{r} = (x, y) = (r \cos \phi, r \sin \phi)$ $H = -\frac{1}{2}J \sum_{ij} \vec{s}_i \cdot \vec{s}_j \approx Js^2 \int dx \, dy (\vec{\nabla}\varphi)^2$ $\oint d\vec{l} \cdot \vec{\nabla}\varphi = 2\pi n_v, \quad n_v = 0, \pm 1, \pm 2, \dots$ $n_v = 1; \quad \varphi = \arctan(y/x)$

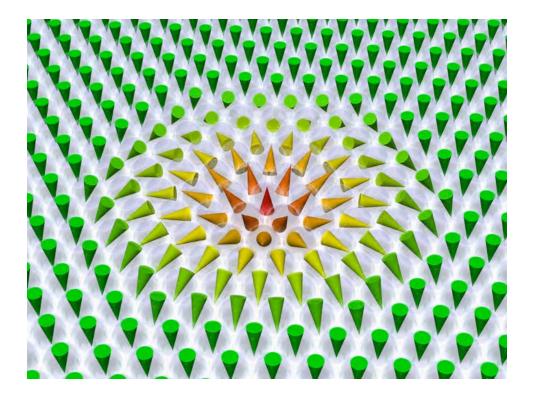
vortex-antivortex pair

Kosterlitz-Thouless transition:

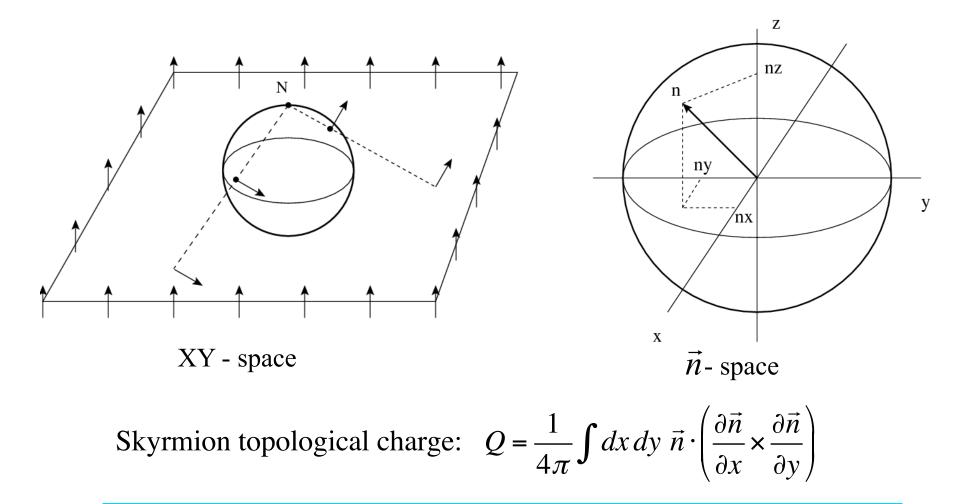
$$T_{KT} = \pi J s^2$$

Skyrmions in 2d

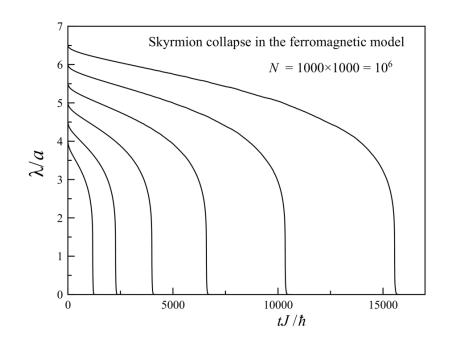
$$H = \frac{1}{2} \int dx \, dy \left(\frac{\partial \vec{n}}{\partial x} \cdot \frac{\partial \vec{n}}{\partial x} + \frac{\partial \vec{n}}{\partial y} \cdot \frac{\partial \vec{n}}{\partial y} \right), \quad \vec{n}^2 = n_x^2 + n_y^2 + n_z^2 = 1$$



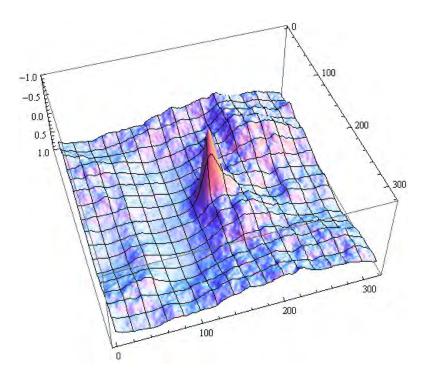
Mapping of the Order Parameter onto Geometrical Space



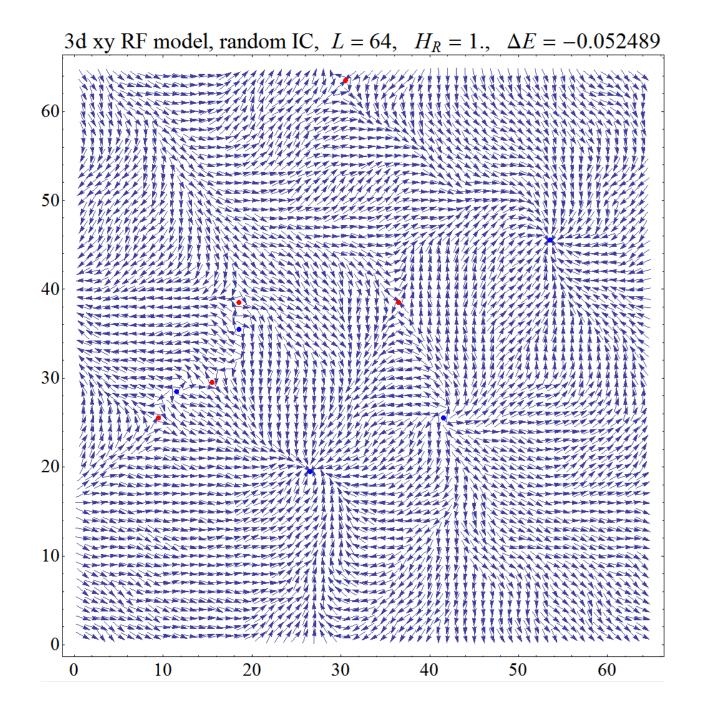
General: *n*-component fixed-length vector field in *d* dimensions Topological objects exist at $n \le d+1$



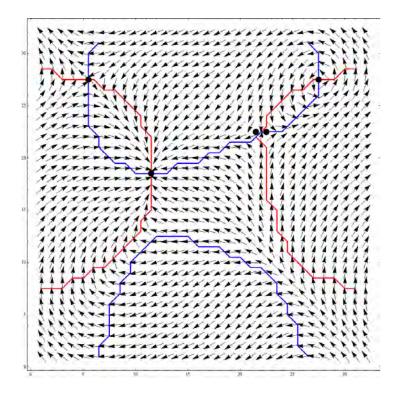
Skyrmion collapse in the lattice model (Liufei Cai, EC, and D. Garanin, PRB-2012)



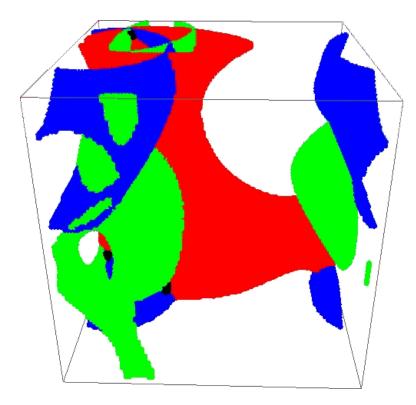
Skyrmion pinned by the random field



Numerical construction of Imry-Ma domains: $\vec{S}(\vec{r}) \propto \langle \vec{h}(\vec{r}) \rangle_{V_f}$ For n < d + 1 singularities appear where $\langle h_i \rangle = 0$ for all i = 1, 2, ..., n

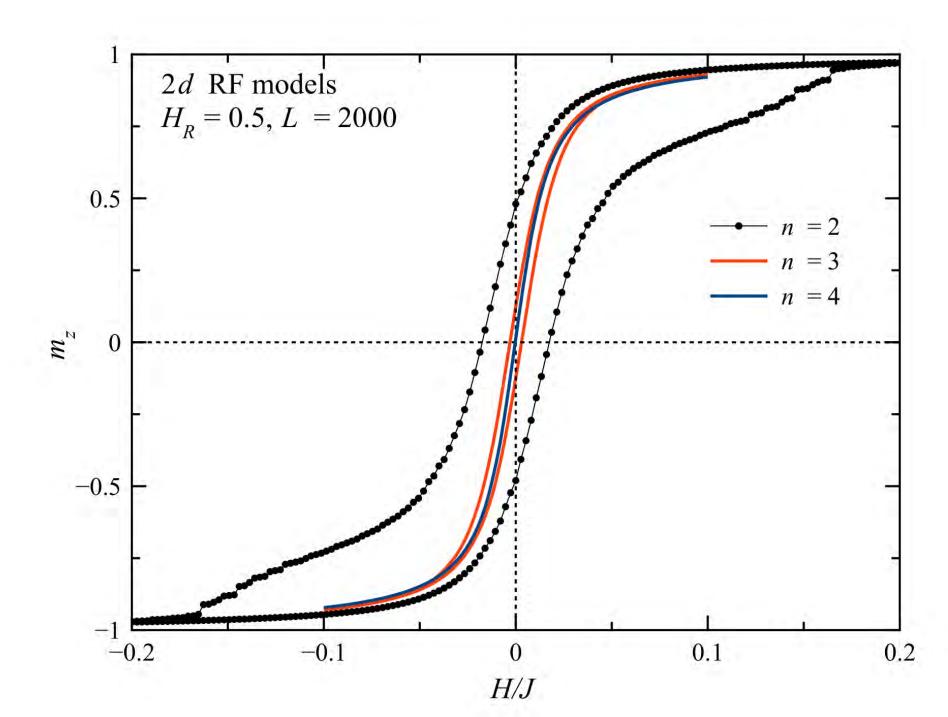


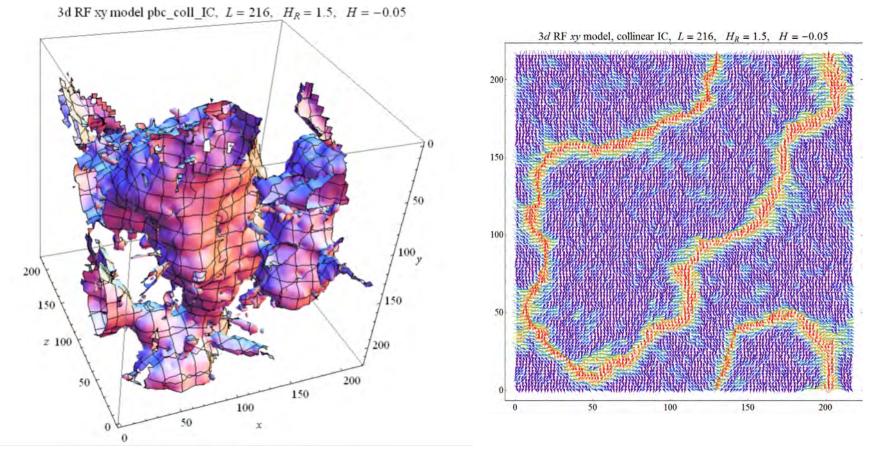
XY spins in a 2*d* random-field model. Red lines: $\langle h_x \rangle = 0$, Blue lines: $\langle h_y \rangle = 0$



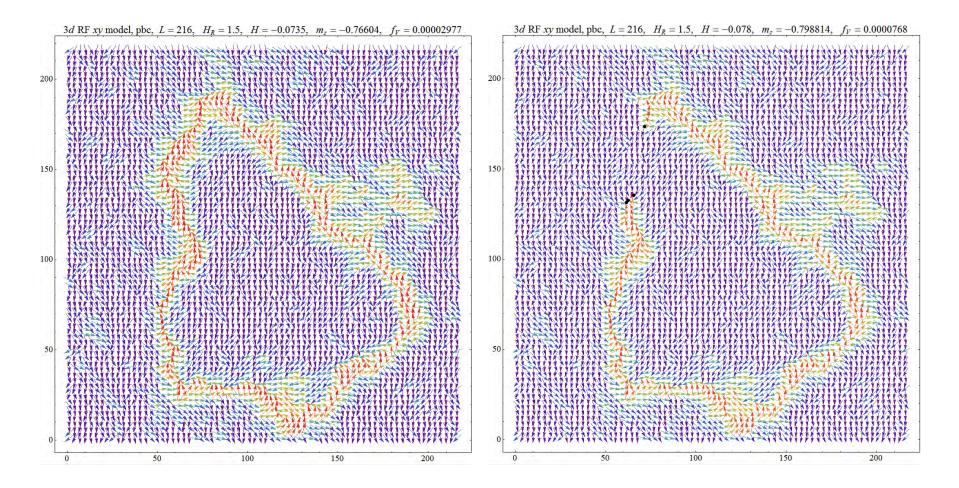
Random-field Heisenberg spin model in 3*d* Red: $\langle h_x \rangle = 0$, Blue: $\langle h_y \rangle = 0$, Green: $\langle h_z \rangle = 0$

(Tom Proctor, Dmitry Garanin, and EC, PRL 2014)

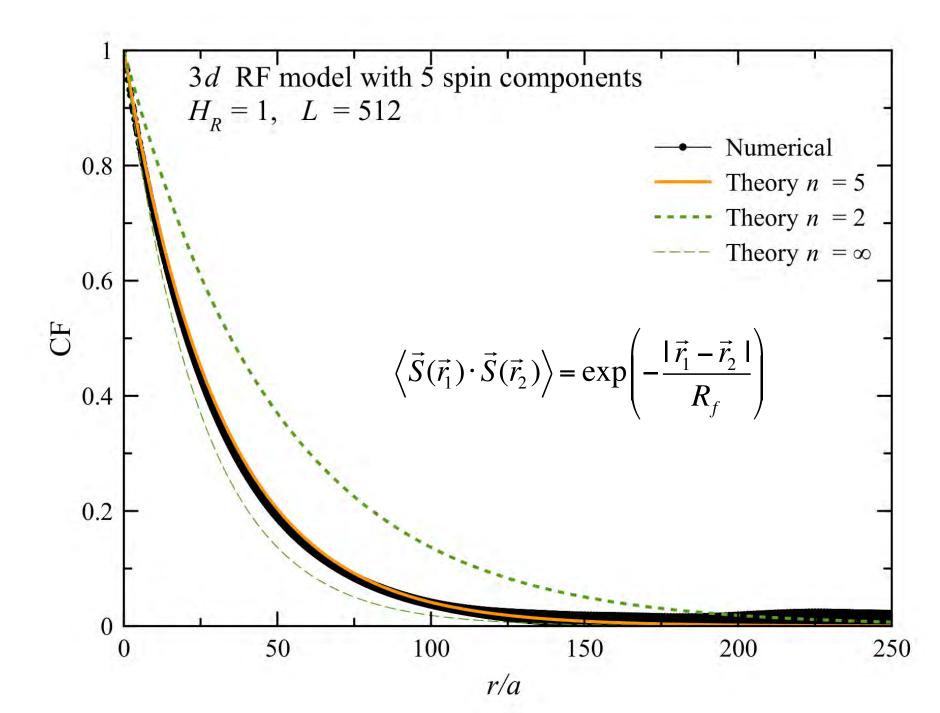


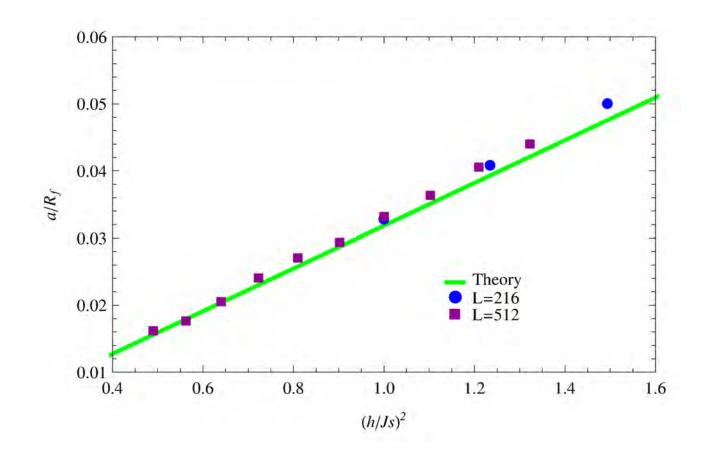


Spin membranes



Rapture of spin membranes by vortices





Analytical result for the correlation length:

$$\frac{R_f}{a} = 8\pi \left(1 - \frac{1}{n}\right)^{-1} \left(\frac{Js}{h}\right)^2$$

CONCLUSIONS

In the presence of the weak random field the behavior of the N-component fixed-length order parameter in D dimensions is controlled by topology.

1) At N < D + 1 the system possesses pinned singularities. It exhibits irreversible glassy behavior, with the final state depending on the initial condition.

2) At N = D + 1 the system possesses pinned nonsingular topological objects and exhibits weak metastability.

3) At N > D + 1 topological objects are absent and the system exhibits reversible dynamics with exponential decay of correlations.