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What is physics? To me—growing up with 
a father and mother both of whom were 
physicists—physics was not subject 
matter. The atom, the troposphere, the 
nucleus, a piece of glass, the washing 
machine, my bicycle, the phonograph, a 
magnet—these were all incidentally the 
subject matter. ... Physics was a point of 
view that the world around us is, with 
effort, ingenuity, and adequate resources, 
understandable in a predictive and 
reasonably quantitative fashion. Being a 
physicist is a dedication to a quest for this 
kind of understanding.

Text:  APS News,  Aug/Sep 2007.
Photo: Princeton University Office of Communications 



As with many of the people we honor at these events,  John 
has been honored before, has served our community, ...

and used to be a 
bit younger.*

*Photo from the Emilio Segrè Visual Archives @ AIP.
Keywords:  Middle age | three-quarter view | Suits (clothing) ...



Perhaps less obviously, he enjoys 
the open ocean,

and is remarkably comfortable 
in a tuxedo.



Chapter 1: Solid state physics.
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Theory of the Contribution of Excitons to the Complex Dielectric
Constant of Crystals*t
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It is shown that the ordinary semiclassical theory of the absorption of light by exciton states is not
completely satisfactory (in contrast to the case of absorption due to interband transitions). A more complete
theory is developed. It is shown that excitons are approximate bosons, and, in interaction with the
electromagnetic field, the exciton field plays the role ef the classical polarization field. The eigenstates of
the system of crystal and radiation field are mixtures of photons and excitons. The ordinary one-quantum
optical lifetime of an excitation is infinite. Absorption occurs only when "three-body" processes are
introduced. The theory includes "local field" effects, leading to the Lorentz local field correction when it
is applicable. A Smakula equation for the oscillator strength in terms of the integrated absorption constant
is derived.

for which the wavelength of light is much greater than
a lattice constant. '
In Sec. III the quantum theory of a classical dielectric

is developed. This problem reduces to the interaction
of the radiation field with a second boson field, the
polarization field. Some possible generalizations of
the classical dielectric theory are brieQy discussed.
Section IV is devoted to constructing an approximate
exciton Hamiltonian and to finding the interaction
between excitons and photons for this approximate
Hamiltonian. It is shown that excitons are approximate
bosons and, in interactions with the electromagnetic
6eld, play the role of the quantized polarization field
of Sec. III.
In Sec.V the interactions which cause true absorption

in crystals are introduced. These interactions result in
finite lifetimes for the mixed eigenstates constructed in
Sec. IV, and can be treated in terms of a complex
dielectric constant. The final section is a summary of
the theory, with emphasis on the application to
experiments.

I. INTRODUCTION
'HE lowest energy excited states of insulating
crystals are usually states of an electron in the

conduction band bound to a hole in the valence band.
These bound states, called excitons, were first intro-
duced by Frenkel' in 1931. The existence of such
nonconducting excited states has been tentatively veri-
fied in both extremes of exciton models, the Frenkel
(tight-bonding) model and the Wannier (weak-bonding)
model, by means of optical absorption experiments in
the visible and near ultraviolet regions. '
The usual method of calculating the optical properties

due to exciton states is by use of the semiclassical
theory of radiation. This method is satisfactory for
the calculation of the dielectric constant in frequency
regions of no absorption. The use of this method to
treat optical absorption by exciton states raises
difhculties perculiar to sets of energy states for which
there is but one crystal state having a given wave
number k in a 6nite energy interval. The problem of
the description of the fundamental absorption process
is the subject of Sec. II. This problem was the motiva-
tion for the investigation of the exciton-photon system.
The purpose of the present work is to formulate the

problem of the optical properties of excitons in a more
rigorous manner than the semiclassical theory through
the use of a quantum-electrodynamical formalism
and to present a more complete view of the absorption
process. The theory, as developed here, is applicable
only to crystals exhibiting optical isotropy. The
frequency region considered is limited to frequencies
*Based on a Ph.D. thesis submitted to Cornell University.
t A summary of this work was given at the March meeting of

the American Physical Society LJ. J. Hopfield, BulL Am. Phys.
Soc. Ser. II, 3, 125 (1958)j.
$ Present address: Bell Telephone Laboratories, Murray Hill,

New Jersey.' J. Frenkel, Phys. Rev. 37, 17 (1931).' For experimental evidence of tight-binding excitons, see
L. Apker and E. Taft, Phys. Rev. 79, 964 (1950);81, 698 (1951)
87, 814 (1951).For experimental work on weak-binding exciton
see Gross, Zakharchenya, and Reinov, Doklady Akad. Na
S.S.S.R. 92, 265 (1953); 97, 57, 221 (1954). J. H. Apfel an
L. N. Hadley, Phys. Rev. 100, 1689 (1955).

II. PROBLEMS IN THE TREATMENT OF THE
OPTICAL PROPERTIES OF EKCITONS

The general theory of the interaction of radiation with
insulating crystals is well known. 4 In order to show why
the theory as it exists is not complete, the nature of
the fundamental absorption process for exciton states
will be discussed in detail. The usual description of the
absorption process will be shown to be unsound. The
inappropriateness of the usual description was the
incentive for developing a more complete theory of
the optical properties of exciton states.
Unessential complications in the discussion can be

avoided by choosing a very simple model of an insulating
crystal. The model used here is a simple cubic array of

~The general mathematical approach is the same as that of
s, U. Fano, Phys. Rev. 103, 1202 (1956).

4For a brief review of the semiclassical theory and further
d references, see F.Seitz, The 3IoderN Theory ofSolsds (McGraw-Hill

Book Company, Inc., New York, 1940), pp. 647 ff.
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The field operators are given in terms of a's and b's by wave number k and polarization li, since B is invariant

under translation and diGerent polarizations are not
coupled. Define
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If 0.1, is to be a normal-mode annihilation operator, then
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The normal modes of the Hamiltonian will be

expressed in terms of a, new set of creation and annihila- Using definition (9) and Eqs. (6) and (7), the eigenvalue
tion operators. It is sufficient to work with a single problem (10) may be written in matrix form,
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There are two normal modes for a given wave vector.
The second subscript labels these modes. Let C be
the four-by-four matrix between the coupled and
uncoupled systems of oscillators:

k2
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In units of h=c=1, the eigenvalues of (11) are
determined by the equation
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.«4g C42 C43 «44. .b g*.
(14)

(In the present units, os=index of refraction= ~k~/E,
and e=to'=k'/E'. ) The same relation exists between
frequency and wave number for the quantum-mechanical
normal modes as for the classical ones.
If the Hamiltonian in the uncoupled system is to be

that of uncoupled harmonic oscillators, the new
oscillator operators will have the usual commutator
relations

«2i*
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«41
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The combination of the commutation rules for the n
representation and for the a, b representation yield
relations between the c;;, which are sufhcient to show
that

1.50

[&k'crk'f]= [&k' 4'k ~ ]=0~
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«14 C34* «4*.
A plot of E(k) and some useful combinations of c;;(k)
are given in Figs. 1 and 2 for the particular case
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The classical theory of light propagating in a simple
isotropic dielectric with dispersion can be characterized
by the frequency dependence of the dielectric constant
c(co). Since the exciton contribution to the complex
dielectric constant can be most easily understood
through comparison to a classical dielectric, it is useful
to begin by developing the quantized form of a classical
dielectric. The role of boundary conditions and
deviations from simple classical behavior are brieQy
discussed.
The Lagrangian density for an infinite classical

dielectric in interaction with the electromagnetic field
may be taken to be

1 (1 BA y' 1 1 (&Py'
+vq i

——(vxA)'+
8~ & c Bt ] Ss 2(oo'p( Bt)

1 1 BP——(P)'+ (& P)+—A (3)
2p 8t

This is the Lagrangian density for an oscillating
polarization density P with a restoring force, as can be
seen by comparing (3) with the Lagrangian for a
moving charged particle. The equations of motion for
the field variables of (3), in conjunction with the usual
definitions of B, E, and D, are equivalent to the usual
Maxwell's equations plus the constitutive equation

1 O'P
+P=pE.

Gop BP
(4)

'0 The chief objection to the shape-function approach is that
phase averages are taken at the wrong point in the calculation.
Matrix elements between initial and intermediate states are
squared and summed, whereas in a second-order process it is
actuallly the compound matrix elements to the anal states which
should be squared and summed. This can give rise to a dependence
of calculated results on the method of describing the intermediate
states.

properties is not a really satisfactory procedure. There
are technical difhculties" involved in the shape-function
approach. More important, the semiclassical approach
treats excitons as independent entities, whereas in
reality an exciton which interacts with the radiation
field does not exist as an independent entity. Such
excitons are always accompanied by a photon compo-
nent. The separation of the exciton from its photon
component as is done in the semiclassical method
produces a misleading interpretation of the absorption
process.
In the following sections, a field-theoretic (rather

than a semiclassical) method is developed for treating
the mixed state of excitons and photons. The funda-
mental absorption process in the interpretation to be
developed is the scattering of the mixed states. A
complex dielectric constant will be derived from the
properties of these states.

IIL QUANTUM THEORY OF A CLASSICAL
DIELECTRIC

If the equations of motion are solved for solutions
periodic in time, with angular frequency or, the dielectric
dispersion law determined by (4) is simply

1 GP/Cg0

Equation (3) is thus a suitable Lagrangian density for
a classical dielectric.
In order to quantize the fields, the Coulomb gauge

(v A=O) and Born-von Karman periodic boundary
conditions in a rectangular parallelepiped box of
volume V are used to expand A, P, and y in plane
waves. The Lagrangian and Hamiltonian of the system
can then be expressed in terms of the Fourier components
of the fields and their conjugate momenta. The
longitudinal modes are not of interest for radiation
problems, and can be omitted.
The resultant Hamiltonian represents a system of

coupled harmonic oscillators. It is, of course, possible to
find the normal modes of these oscillators before
quantizing the system. This will not be done, because
the Hamiltonian of the coupled oscillators is the
analog of the exciton-phonton Hamiltonian of Sec. IV.
We therefore quantize the coupled system. The
Hamiltonian for the system is

&= & I &clkl (ak, k*ak, k+-,')+a, (bk, ,*bk, ,y-', )
iA 0'(4 p)~

XL(akk bkk akkbkk )2(clkl~o)'

+ (a k) bkk —a—k'k bkk )$+irp~o
c/k[

XLakkakk +akk akk+akk a—kk +a kgakk)
~ (6)

where the a's and b's are those combinations of
coordinate and momentum which, when quantum-
mechanical commutation rules are applied, are boson
creation and destruction operators. ai,),*is the Hermitian
conjugate operator to a&)„etc., and

Lak'k ak'k $=Lakk, bkq, j=t akk, bk k.*1=Lbkk, bk I, )=0,
La», a'k j—Lb», b'k *3=&kk bkk.
The operators ai,)* are exactly the photon creation
operators of the usual Maxwell field while the bi,y* are
creation operators for the polarization field. The
polarization field "particles" analogous to photons will
be called "polaritons. " (Excitons will be shown to be
one kind of polariton in Sec. IU. Optical phonons are
another example of polaritons. ) The sum is taken over
all k space and over polarizations perpendicular to k.

Thank you, Al. I have done my best to repay you 
through similarly nurturing another generation of 
independent students.  (JJH, 2014)
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The classical dielectric theory of optical properties is a local theory, and results in a dielectric constant
dependent only on frequency. This dielectric behavior can be written as a sum over resonances, each reso-
nance occurring at a particular frequency. The spatial dispersion (i.e., nonlocal dielectric behavior) effect
considered here is the eRect of the wave-vector dependence of the resonant frequencies on optical properties.
The additional boundary condition needed for the application of such a theory is discussed for the case in
which the resonance is due to an exciton band and the wave-vector dependence to the Rnite exciton mass.
Experimental data presented on the reflection peaks due to excitons in CdS and ZnTe exhibit gross de-
partures from the reQectivities expected from classical theory. Particularly striking are sharp subsidiary
reRectivity spikes. The departures from classical results are all well represented by calculations based on the
theory of spatial resonance dispersion and a simple approximation to the derived boundary condition.

I. INTRODUCTION
HE mell-known classical optics of nonmagnetic
crystals is based upon the concept of locaJ di-

electric behavior. In this approximation, the dielectric
polarization P within a small volume of radius ro
(ro«any wavelength involved) depends only on the
value of the electric field inside this volume (at the pres-
ent time and in the past) and is Not explicitly dependent
on the electric field or other parameters outside the
volume under consideration.
The term "spatial dispersion" has been used to apply

to dielectric behavior for which the local description is
not valid. In general, spatial dispersion refers to the
wave-vector dependence of the dielectric constant.
Implicitly contained in the supposition of local di-

electric behavior is the neglect of the transport of
energy by any mechanism other than electromagnetic
waves. When energy transport by other mechanisms
must be considered anomalous (nonlocal) dielectric
behavior results, often accompanied by new physical
phenomena. For example, a metal in which the electron
mean free path becomes smaller than the classical skin
depth exhibits the anomalous skin e6ect. ' In this case,
the energy transported by the electrons is, in the in-
terior of the crystal, as important as the energy trans-
ported by the electromagnetic field.
Of all possible spatial dispersion effects, we confine

ourselves to the one which seems to be the most radical
in effect in classical optics, namely, the effect of a second
mechanism of energy transport on classical optics. In
particular, the effect of a noninfinite exciton mass on
the reQectivity of insulating crystals near an isolated
exciton line is investigated both theoretically (Secs. II
*Alfred P. Sloan, Research Fellow.
t Supported in part by the National Science Foundation.
'G. E. H. Reuter and K. H. Sondheimer, Proc. Roy. Soc.

(London) A195, 336 (1948).

II. THEORY
The development of the theory of spatial dispersion

in optical spectra of excitons has in great part been due
to Pekar' ' in a series of papers beginning in 1957. The
nature of this theory has unfortunately been obscured
by its formalism. In this section, the rudiments of the
theory of spatial dispersion are developed from a simple
classical point of view.
Let an electric field Ese'"'*e '"' exist in a crystal. A

polarization wave

P (Q n(k+2~G ~)esttto x)E etit xe irat—
6

where G is a reciprocal lattice vector and n(k+2srG, co)
is a second-rank tensor function of k+2z.G and co, will
accompany the electric field. By restricting considera-
tion to sufFiciently low energies Lco«c/(lattice constant)]
the terms of nonzero G introduce only renormalization
corrections which can be absorbed in n(k, to). In this
approximation,

Pi(co) =n(k, to)Ei, (co) (2)

and n(k to) can be regarded as the frequency- and wave-
vector-dependent polarizability tensor. It describes the
polarization response in a "Gedanken" experiment for
which k and co are independently specified.
By "the effects of spatial dispersion" we mean the

effect of the wave-vector dependence of n in (2). Classi-
s S. I. Pekar, Zh. Eksperim. i Teor. Fiz. 33, 1022 (1957) Ltrans-

lation: Soviet Phys.—JETP 6, 785 (1958)].'S. l. Pekar, Fiz. Tverd. Tela 4, 1301 (1962) Ltranslation:
Soviet Phys.—Solid State 4, 953 (1962).j

and III) and experimentally (Sec. V). Section IV con-
tains a brief account of general experimental and theo-
retical problems involved in demonstrating the e8ect
of spatial dispersion in the exciton region.
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(8) CLASSICAL DIELECTRIC

k and the others perpendicular to k in directions in-
dependent of the magnitude of k (e.g., k is in a (100)
direction in a cubic crystal). Fourth, only the zero and
second-order terms in the expansion of n(k) and cp;(k)
will be retained. The first-order terms will vanish in a
crystal having inversion symmetry and will be small
under much broader circumstances. For E polarized in
a given principal direction, (2) is approximated by

ep 1— (np+Qsk )oIp
Pi(oI) = + ~~(~) (4)

4pr oIps+ Bks ops scpI—'—
The solutions (periodic in space and time) to Max-

well's equations for the dielectric defined by (2) are
found by solving the eigenvalue problem,

CO Ct)

k'EI,—k(EI, k) = —iDx=——[EI,+4prPI, ].c') c' (5)

cal local dielectric theory is obtained simply by setting
k=0 in (2).
For a given wave vector, insulating crystals are

characterized by polarizabilities of the form

n, (k)oI, s(k)
n(k, oI) =P—

i cp'(k) —oI'—soII', (k) (3)

by virtue of the fact that the polarizability obeys a
Kramers-Kronig relation at any fixed wave vector. )The
summation in (3) should be understood to include the
possibility of integration over the index j.g A conven-
tional isolated optical absorption line is associated with
an isolated resonance, a single term L for which oI;(0)
is isolated from the other zero wave-vector resonant
frequencies.
The presence of resonances in (3) prevents n(k, oI)

from being usefully expanded in powers of k. Instead,
both the numerator and denominator (of each term)
must be expanded.
To keep the physics from disappearing in a morass

of tensor notation, the problem will be simp/ified. First,
the frequency will be chosen near a particular resonance
in (3), and the sum over all other oscillators will be
lumped into a frequency- and wave-vector-independent
background dielectric constant e. Second, the wave-
vector dependence of the phenomenological damping
term I' will be ignored. (Indeed, the calculations of
Sec. IV show that the value of F is small enough to be
ignored in some experiments. ) Third, a direction of k
is chosen such that e has one principal axis parallel to

WYÃY/YYYYFPY/YÃYNÃZYÃNÃYPNFYPYYÃi

(b) SPATIAL DISPERSION

Fzo. 1.The spring and charged mass-point models of a classical
dielectric, (a); and one exhibiting spatial resonance dispersion,
(b). These models represent scalar analogs to the actual vector
equations. The directions of P and x are indicated. 47I (Qp+Qsk )oIp= ep+

oIps+Bks
(6)

For real frequencies, k and e will be in general complex.
In classical optics, o.~=8=0. For a given frequency,

(6) is linear in k', and there are two roots for k. These
roots are the complex numbers, k and —k one referring
to a right-running and one to a left-running solution.
For a given (principal) pola, rization, frequency, and
direction of propagation only one transverse mode exists.
The ca,se 8=0, o.2&0 is rather similar to the classical
case. Although there will be some effects of the wave-
vector dependence (in particular, when np=0, a "for-
bidden" absorption line will be seen if ~2/0, a line which
would be absent in classical optics), (6) remains linear

0 I I

0~ki kr —--=
0

ki kr~
Fn. 2. The frequency wave-vector dispersion relation for the

transverse normal modes of light coupled to a classical dielectric
(graph at left) and a dielectric having spatial resonance dispersion
(at right). No damping is included. The normal mode wave vectors
are in either case either purely real or purely imaginary, and are
plotted to the right or left accordingly. The dashed lines show the
dispersion relations for 0.0——zero; the solid lines for a fjnite (xp.
Parameters have been chosen to display clearly the differences
between the models,

Under the approximations described, the solutions of
(5) divide themselves into longitudinal solutions (EI,
paralle1 to k) and transverse solutions.
When (4) is substituted into (5), the transverse solu-

tions to (5) are determined by the condition
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FIG. 5. The normal incidence reflectivity spectrum of CdS in
the vicinity of the irst exciton peak for two diBerent but classically
equivalent geometries $(a) and (c)g. A classical reiiectivity curve
crudely representing these anomalies is shown in (h).

V. EXPERIMENTAL OBSERVATIONS
AND CALCULATIONS

A1l experimental reQectivity spectra described here
were taken on "good" CdS and ZnTe crystals at I.6—
4.2'K. The spectra were measured using a Bausch and
Lomb grating spectrograph with a linear dispersion of
2 A/mm. Some spectra were obtained from a photo-
graphic plate, but the more detailed spectra in CdS
were measured photoelectrically. In some experiments,
great care was taken to keep the cone of incidence and
angle of incidence as small as 2'. No observable dif-
ference between these experiments and experiments
using angles of incidences 2—3 times larger was observed.
It is therefore believed that no qualitative (and only
small quantitative) difFerences exist between these
experiments and ideal ones performed with parallel
light at normal incidence. "Good" crystals of CdS was
taken to mean crystals in which the higher states of the
excitons from the first valence band were observable in
reQection. In really good crystals, the v=3 state is ob-
servable as an anomaly in the reQection, and the e= 2

of CdS crystals. The absence of an v=2 state in the
dispersion curves of Brodin and Strashnikovas suggests
that their r was an order of magnitude shorter. )
ReQectivity experiments also have their drawbacks,

the chief of which is the question of what the surface
looks like. Experimental reproducibility defines a sur-
face condition, but it is not necessarily the condition
used, of a perfect crystal-vacuum interface, assumed for
the theory.
In addition, the theoretical expression for the reQec-

tivity is algebraically so complicated that one loses
all intuition concerning the expected form of the re-
Qectivity. Armed with the knowledge that, in order to
compute quantitatively experimental results in any
spatial resonance dispersion experiment on excitons,
an understanding oJ the boundary condition at an actual
surface is necessary, we proceed.

state shows a very marked and unusual reQection peak.
(see Fig. 9).The good crystals also showed the sharpest
structure for the reQectivity of the x=1 state. Experi-
ments were performed both on ZnTe (cubic) and ZnTe
with a uniaxial strain. Under the uniaxial stress, the
degenerate valence band splits and becomes simple,
while the optical properties become uniaxial.
ReQection was always observed from as-grown faces

with the crystals immersed in liquid helium. CdS grown
from the vapor occurs as plates with the hexagonal c
axis in the plane of the plates. ReQection measurements
with kJ c therefore presented no problems. For k~~c
crystal were found which had grown faces perpendicular
to the c axis. These faces had a width of only 10—20 p,
so that an enlarged image of the face was arranged to
fall on the spectrograph slit. The ZnTe crystals were
grown from the vapor, ' and were stressed in an ap-
paratus similar to one already described. "
ReQectivities were normalized by using a reQectivity

calculated from the index of refraction in a spectral
region where the crystal is transparent.
The reQectivity spectrum of CdS in the vicinity of

the lowest exciton (exciton 2) at 4.2'K is given in
Fig. 5(a) for light at normal incidence in a direction
perpendicular to the c axis and also polarized perpen-
dicular to the c axis. The reQectivity of a classical oscil-
lator (width 10 ' eV, 4prop ——0.0094, ep =8.1) is shown in
I'ig. 5(b). The two are rather similar, the difFerence
being chieQy the small reQectivity peak at 2.55445 eV
(marked by the arrow) not present in 5(b), and a quan-
titative failure to agree at energies at and slightly above
the reQectivity minimum.
Two quandaries present themselves. First, the width

of the classical dispersion oscillator which qualitatively
its the reQectivity is about 10 ' eV, whereas the width
of the exciton state involved, as inferred from trans-
mission experiments performed in other geometries,
must be less than 10 4 eV. Second, there occurs near the
reQectivity minimum a sharp peak not anticipated by
the simple classical form 5(b). It would be tempting to
explain the order of magnitude disagreement of the
reQectivity linewidth and the transmission linewidth
by assuming that the crystal is not as good, and the
lines are broader at the surface (where the reflection is
determined), rather than deep in the interior. This sup-
position is not really compatible with the observed
sharpness of the subsidiary structure, nor does it
explain this structure.
Exciton "A" in CdS is twofold degenerate, polarized

in the plane perpendicular to the c axis. For wave vector
perpendicular to the c axis (kJ c), "A" splits into a
longitudinal and a transverse exciton, at frequencies co~

and uo, respectively. The zero of the index of refraction
(of a transverse mode of propagation) occurs at energy

~ R. T. Lynch, D. G. Thomas, and R. E. Dietz, J. Appl. Phys.
34, 7O6 (&963).' D. G. Thomas, J. Appl. Phys. 32, 2298 (1961).

... a paper that had a picture of balls coupled by 
springs ... Balls and springs were pretty much 
the only thing he understood until he went 
horribly non-linear with neural networks.

Steve Girvin (2014)



His behind the scenes role in some other developments should get mention. He 
was there and involved in the whole story of the x-ray anomaly, the Kondo 
solution etc..  He assigned Mahan the problem in the first place, he was in 
Cambridge with me when Yuval and I solved it, but somehow his name never 
appeared on the papers.

PW Anderson (2014)

Comments on Solid State Physics, II, 40, 1969.



Chapter II:  Foundations for a theoretical physics of 
biological systems
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FIQ. 3. A schematic description of the interplay between the two bonding paths linking the 
iron atom to the heme plane. The iron atom will edopt the position which minimizes the total 
strain free energy of the two springs, which have different equilibrium lengths. 

spring constant appropriate to the inner part of the prosthetic group has an effective 
spring constant kFe. The spring appropriate to the rest of the molecule has an equi- 
librium length 1, and an effective spring constant k,. The description in terms of 
springs is a simple physical representation for discussing the strain free energy in a 
system which responds in a linear fashion to forces. 

Let the free energy of binding GboUnd - Go of a ligand without strain effects be 
denoted by G:. The actual free energy of binding will be different from Gi because 
of strain free energy stored in the springs, which are not of equal equilibrium lengths, 
and which are therefore both storing strain energy when the coupled system is at 
equilibrium. By solving for the equilibrium lengths and equilibrium energies of the 
spring system with and without a ligand bound, one finds that the strain contribution 
to the energy of the bound state less that of the unbound state (Gt) is 

The amount of strain energy stored in each spring is in proportion to the reciprocal 
of its spring constant. 

The general result, equation (l), can be simplified for application to hemoglobin in 
the light of known properties of the molecule. In order to have the energy chiefly 
delocalized, we require k,, >> k,. This is a reasonable supposition, for k,, represents 
the spring constant due to the partially covalent bond between the iron atom snd 
the heme plane, while k, represents the stiffness of the much more flexible connection 
between the same two points via the protein. Thus 

G!L = P,V,, - 4) + Wk,. (2) 

The two terms of equation (2) have a simple meaning. In the limit k,, >> k,, there is 
no strain or strain energy stored in the k Fe spring, and the length of both bonds is 
ZFe when unligrtted and Ire + 6, when ligated. The work done in stretching the spring 
representing the protein is its change in length 6, multiplied by the average force 
exerted by the protein, namely 

In the case of hemoglobin 6, is about @75A. The distance (ZFe - I,) represents the 
total displacement of the proximal histidine (in the direction normal to the heme 
plane) which would result if the iron-histidine bond were out (and assuming such 
a large motion was still linear). The histidine would presumably move several 
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FIQ. 4. (a) The absorption spectrum of the “quickly reacting” R form of deoxyhemoglobin 
(--O-e-) and of normal deoxyhemoglobin (--O--O--). (Redrawn from the data of Gibson, 
1969.) The energy scale is in electron volts. (b) A fit of the configuration-co-ordinate model to 
the absorption spectrum of R deoxyhemoglobin (solid line). The dashed line shows the calculated 
spectrum for the T structure where the force P, is present. The abscissa is in electron volts with 
an arbitrary origin, and the calculated absorption spectrum haa been normalized to give the same 
peak height for the experimental and theoretical R structure spectra A shift of the dashed curve 
in (b) to the left by 0.03 eV has been suppressed to facilitate the comparison of shapes. 

The parameter d is the root-mean-square of the thermal deviation of the co-ordinate 
z from its mean value, V(z) is the energy of the optical transition as a function of 
the co-ordinate of the iron atom, and the derivative is evaluated at the mean position 
of the iron atom. 

At room temperature, d lies in the range 0.08 to 0.20 8, depending on the value 
taken for k,,. The energy derivative can be estimated in two ways. First, an electro- 
static model can be used to estimate the change in transition energy. In such a model 
the coulomb interaction between the iron ion and the electrons changes because the 
electron which makes the transition tends to move from an orbital which had con- 
siderable probability on the four nitrogens to one further from the iron. When the 
atom is 0.7 L% out-of-plane, this contribution is about -05 eV/A. While this calcu- 
lation gives a general scale, it includes no effects of the hybridization of the iron 
orbitals with those of the porphyrin. Extensive Huckel calculations (Zerner et al., 
1966) treat the hybridization effects well and the coulomb effects rather less SO, 

and provide an alternate approach to the evaluation of aV(z)/az. Utilizing the calcu- 
lated changes in the a,, and asu ( u is electronic state energies) for a distance of 0.5 a 
above the plane, the fact that the energy shifts must scale as x2 for small z, and the fact 
that the Soret band isanessentiallyequalconfiguration mixture of transitions from these 
two states, we find a value of +0.4 eV/A for the derivative. The latter is probably the 
better value, but in either case the scale of the line width contribution to (T expected 
from the iron motion is in the range 0.04 to O-10 eV. The experimental value of 0 
for R structure hemoglobin is about 0.09 eV. Thus the conclusion that the thermal 
motion of the iron normal to the heme plane can make a substantial contribution to 
the line width of the Soret band in deoxyhemoglobin seems justified. 
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A quantitative understanding of co-operativity in hemoglobin must include a 
description of where and how the free energy of co-operation is stored in the 
molecule. Experiments to date have not suoceeded in associating this energy 
with a particular bond. One extreme possibility is that the free energy is stored 
se small amounts of straiu energy in many bonds, so that all bonds sre almost 
normal. A linear diatribti elzergy mode2 can be constructed when the strain 
energies of bonds are sufficiently small. This model relates quantitatively small 
structural changes at the heme group, upon ligation, to the free energy of co- 
operation, although the energy of co-operation is not chiefly stored at the heme 
group in this model. It is in accord with the non-co-operativity of the oxi- 
dation of hemoglobina + --f aqua-methemoglobin + at pH 6, and describes the 
magnitude of changes observed in the Soret band when the quaternary structure 
is changed. It accounts for the scale of the motions in the heme region due to 
chsnges in the quaternary structure, and provides a framework for discussion 
of spectral and structural changes for affmity affecters which are not located nesr 
the heme group. The general model should be of use for discussing other cases 
of the control of local chemical properties by proteins. 

1. Introduction 

Many proteins contain prosthetic groups which are the reactive sites for the binding 
of small molecules or electrons. In these molecules the protein clearly modifies the 
binding free energy of the small molecule in relation to the prosthetic group. For 
example, the binding free energies of oxygen to sheep myoglobin (Hill, 1936) and to 
rat myoglobin (Strickland et al., 1959) differ by 0.7 kcal/mol, in spite of being rather 
similar molecules with the same prosthetic groups. In the oxygenation of hemoglobin, 
the fourth oxygen molecule bound has a free energy of binding which is 3.6 kcal/mol 
greater than the free energy of binding of the first oxygen molecule (Tyuma et al., 
1971; see also Wyman, 1965). This difference is due to changes in the protein struc- 
ture introduced by oxygen molecules already bound, and produces the co-operativity 
observed in the binding of oxygen by hemoglobin. In both examples, the protein 
structure must affect the chemistry of the prosthetic group. 

The binding of small molecules to isolated prosthetic groups is a problem of small 
molecule chemistry which will not be discussed here. The question interesting in a 
biochemical context is how the protein structure wwdulutes the binding energy of the 
prosthetic group. This modulation is small compared with the total energy involved, 
but is extremely significant biologically. A major purpose of the structure of proteins 
which contain prosthetic groups is presumably to produce appropriate modification 
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ABSTRACT A theory of electron transfer between two
fixed sites by tunneling is developed. Vibronic coupling in
the individual molecules produces an activation energy to
transfer at high temperatures, and temperature-inde-
pendent tunneling (when energetically allowed) at low
temperature. The model is compared with known results
on electron transfer in Chromatium and in Rhodopseudo-
monas spheroides. It quantitatively interprets these
results, with parameters whose scale is verified by com-
parison with optical absorption spectra. According to this
description, the separation between linking sites. for
electron transfer is 8-10 A in Chromatium, far smaller
than earlier estimates.

We bypass possible Winfield-like complications, and assume
that there are no other electron states available at low enough
energies to be thermally accessible. Section I shows that
transfer between two fixed sites, in suitable approximation, is
mathematically isomorphic with the conceptually simpler
problem of excitation transfer by the F6rster (7, 8) (dipolar)
mechanism. In Section II, the simplest possible model of the
coupling of electronic states to molecular thermal motions
is developed and used to calculate the temperature-dependent
electron transfer rate. The model is compared with experi-
mental results in Section III.

The transfer of an electron from one molecule to another is an
essential part of oxidative phosphorylation and photosyn-
thesis. The reversible oxidation of the heme of cytochrome c
by cytochrome oxidase is a specific example of such a process,
one of several electron transfers in the sequence of reactions
resulting in oxidative phosphorylation. The overall effective-
ness of such processes as photosynthesis or oxidative phos-
phorylation depends both on there being a large electron
transfer rate for desired transfers and a small rate for in-
appropriate transfers. A particular cytochrome (or iron-sulfur
protein) seems to have, as its sole chemical function, the
ability to exchange electrons with two other molecules A and
B, which (apparently) cannot directly exchange electrons.
The absence of direct exchange may be due either to spatial
localization or stereochemical constraints.

Since electron-transfer proteins play a specific chemical
role, one should be able to explain in quantitative physical
terms how the observed functional properties are related to
aspects of molecular structure. There are two major obstacles
to attempting such an explanation at present. First, very little
is known about the relative geometry of the donor and accep-
tor during the electron transfer process. Second, even when a
geometry is known or surmised, the mechanism of electron
transfer is unsure. A wide variety of transfer descriptions
have been utilized for particular systems. Hodges, Holwerda,
and Gray (1) have described the electron transfer between
cytochrome c and Fe(EDTA) in terms of the "outer sphere
electron transfer" of solution electrochemistry (2, 3). In the
Winfield mechanism (4) of electron transfer in cytochrome c,
the electron is visualized as being passed along a chain of
binding sites with a thermally activated transfer between
these sites. Thermal activation of an electron to a "conduc-
tion band" and, thence, free motion to a second site has been
suggested (5). Quantum mechanical tunneling of the electron
between two sites has also been invoked (5, 6).

In this paper, we bypass the first problem by assuming the
electron to be transferred between two sites in fixed geometry.

I. The two-site tunneling description of electron transfer
We consider the problem of the transfer of an electron be-
tween two sites a and b, with the electron initially in a wave
function p0a localized around site a. The final state will have
the electron in (pb, localized around b. spa and ptb weakly over-
lap, as sketched in Fig. 1. Because of the overlap between
these wave functions, there is a matrix element Tab of the
Hamiltonian between these two one-particle states. The
meaning of Tab can be seen from the special case of sites a
and b being equivalent, in which case the overlap generates a
splitting 2Tab between the bonding and anti-bonding states
(<Pa i (pb)1V2. The smallness of Tab results from the ex-
ponential decrease of wave functions in the barrier penetra-
tion region between the sites. The transfer process thus in-
volves tunneling, and Tab will be called the tunneling matrix
elemrent.
To develop a simple analog with excitation transfer, con-

sider two atoms a and b. Let the product 'a'7b be the wave
function for the electrons on a and b when atom a is excited
and b is in its ground state, and Lab' be the wave function
for all electrons when atom b is excited and a is in its ground
state. Define for convenience 'a = 'a'Vtb and "'b = VaPb'-
There is an excitation transfer matrix element Uab between
states "ia and *'b. In the F6rster (7, 8) description, excitation
transfer arises from the coupling of the transition dipoles on
atoms a and b, and is proportional to each transition dipole
and to the inverse cube of their separation. If atoms a and b
are identical, the symmetric and anti-symmetric excitation
states are split by 2Uab. Thus, while the mechanisms of
generating Uab and Tab are totally different, the identifications

Uab Tab, "a f'a, "'b* (Pb

makes the mathematical descriptions of transfer identical.
In the calculation of the rate of excitation transfer inter-

and intramolecular vibrations of the atoms play an essential
role by giving an energy width to states that would otherwise
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9an
FIG. 1. The wave functions <P and SPb, well separated by a

distance R, with exponentially decaying tails overlapping weakly.
Irrelevant detail near the wave function centers is omitted.

be infinitely sharp. The single atom state characterizing an ex-
citation on atom a is given a spectral shape Sa(E) characterized
by a weighted optical emission spectrum at energy E of the
transition )a/ i*&a, with an appropriate normalization. This
emission spectrum includes all effects of the interaction of
the electronic excitation on atom a with its environment.
Similarly, the excitation of b is characterized by its ab-
sorption spectrum Sb'(E), including all effects of the motions
of atoms in the transition Vb - b. The rate of excitation
transfer from a to b by the F6rster mechanism can then be
written (7, 8)

Wab = (2T/h)JUabI2f Sa(E)Sb'(E)dE. [1]

While Uab is essentially temperature-independent, Wab and
Wba are both temperature-dependent due to the temperature
dependences of the spectra involved in the overlap integral.
A precise parallel exists for the transfer of an electron

from site a to b, including the effects of vibronic coupling.
The analog to the emission spectrum Sa(E) of fa' i/ia is
the electron removal spectral distribution Da(E). In the
presence of the coupling between the electronic state S0a and
the nuclear motions, the removal of an electron (which can
be thought of as being destroyed or transferred to a fictional
state of zero energy) is characterized by a distribution of
energies Da(E). Da(E) is broad for exactly the same reasons
of atomic position readjustment that make Sa(E) broad.
Similarly, there is an electron insertion spectrum Db'(E)
that describes the distribution of energy changes that result
from the insertion of an electron (from the fictional state at
zero energy) into electronic state 'pb. The rate of electron
transfer can then be written in exact analogy to Eq. 1 as

Wab = (2Tr/h)ITabj2 Da(E)Db'(E)dE. [2]

This equation can also be directly calculated from the usual
quantum mechanical expression for first-order transition
rates. Wab is in this problem always due to tunneling, although
the usual temperature dependence of Da(E) and Db'(E) will
make this tunneling rate temperature-dependent.

Eq. 2, with D(E) approximated by a high temperature
form of Eq. 4, represents a special case of the general theory
(9) of electron transfer in solution electrochemistry. The
suppositions (a) of fixed, well-separated sites, (b) of inde-
pendent atomic motions interacting with the electron at
each site, and (c) no important effect of atomic motions on
TabI are particularly appropriate to transfer between distant
sites embedded in a more or less rigid matrix. These approxi-
mations are relevant to many cases of transfer in biological

x-O

FIG. 2. The description of an electron removal process by a
configuration-coordinate diagram. The two curves represent the
total energy of the system as a function of the coordinate for the
two states with and without the electron. Da(E) is the thermal
probability distribution of the vertical separation between these
states.

systems, and lack some of the complexity of the electro-
chemical problem. At the same time, Eq. 2 will permit exten-
sions beyond Gaussian and high-temperature spectral func-
tions. The treatment of our simpler problem is modeled on the
usual description of tunneling through an insulating barrier
between two metals (10).
II. Results from a symmetric model of D(E)
We next describe the simplest available model of D(E),
which can be based on the analog to a symmetric configura-
tion-coordinate description (11) of optical emission spectra.
Fig. 2 gives the essence of the physical description of this
configuration-coordinate description. The upper curve de-
scribes the energy as a function of a vibrational coordinate x
with the electron in state (pa, and the lower curve the energy
as a function of the same coordinate in the absence of an
electron in Spa. In the symmetric model, the curvature ka of the
ground and excited states are the same, and there is no
entropy of electron transfer. At temperature T, the classical
probability distribution of being at x if the electron is present
is

/ ka 1/2P x) = I )exp(-ka(X - Xa)2/2KT).2TrKT/ [3]
The electronic removal is a vertical transition between the
two energy curves. Given P(x), the energy distribution
Da(E) is
Da(E) = (2TK~a 12 (E Ea +1:2kaxa2)2 [4]

Eq. 4 is based on a classical probability distribution, valid
when KT is greater than the vibrational energies hw = KTa
of the relevant vibrational coordinates. The single most
important effect of quantum mechanical corrections is to
product a zero-point width (11) to the distribution Eq. 3.
The modification of Eq. 4 valid (with restrictions-see next
paragraph) to lower temperatures is
Da(E) = (1/2T0a2)1/2 exp -((E - Ea + 1/2kaxa2)2/2aa2) {5]

Ca2 = kaxa2(KTa/2) coth Ta/2T
which reduces to Eq. 4 at high temperature.
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FIG. 3. The rate of photolysis-initiated transfer of an electron from cytochrome in Chromatium as a function of temperature. The
experimental points are from deVault and Chance (5). The solid line is a plot of Eq. 8 with Ta = Tb = 350'K, E. - Eb = 0.05 eV,1/2k4.2 = '/2kbXb2 = 0.5 eV, and ITab = 4 X 10-4 eV.

The form of Db'(E) follows from an exactly parallel model,
except that P(x) is replaced by

(kb/2wrKT) /2 exp(-kbx2/2KT) [6]
and the transition is in the opposite direction, whence
Db'(E) = (1/2-rob2) /2 exp(-(E + Eb - l/2kb4b2)2/2c-b2)

[7]
ab2 = kbXb2(KTb/2) coth Tb/2T.

From Eqs. 2,5, and 7
Wab =

22r/hITabI2(1/2Xra2)'/2 exp(-(Ea - Eb- A)2/2cT2) [8]
where
02 = (kaXa2/2)KTa coth Ta/2T + (kbXb2/2)KTb coth Tb/2T

and
A = '/2kaxa2 + 1/2kbxb2 Wba = Wab exp(- (Ea - Eb)/KT).
At high temperatures, quantum effects are unimportant, and
the approximations involved in calculating Eq. 8 are valid.
The process appears thermally activated, for at high tem-
peratures, u2 cx T. At low temperatures, the use of this
expression is limited at best to the case Ea > Eb + KTa or b,
with further possible restrictions depending on the size of a.
Eq. 8 is a strong coupling result, also requiring '/2kaxa2/KTa
>>.

III. The scale of parameters
The general scale of parameters for electron transfer can be
established by making a fit to an appropriate experiment.
The transfer of an electron from a cytochrome to fill a hole
made available by a flash of light (the earliest stages of photo-
synthesis) has been studied in Chromatium by deVault and
Chance (5). This transfer seems likely to come close to the
idealized problem the theory describes. It has simple kinetics,
has been studied over a wide range of temperatures, persists
to very low temperatures, and does not appear closely coupled

to water and its phases. Figure 3 shows the experimental
electron transfer rate and an approximate fit to the experi-
mental data by use of Eq. 8. In our ignorance of the two sites
of transfer, it is pointless to differentiate between the two
sites, a and b, as far as vibronic parameters are concerned.
We pick kaxa2 = kixb2 and Ta = Tb. Eq. 8, thus reduced,
contains four effective parameters, namely Ta, kaxa2 Tabf,
and (Ea - Eb).
The characteristic temperature Ta is 3500 4± 70° . (About

1500 marks the turning point of the data between two regions
of temperature behavior, and the characteristic turning
point involves Ta/2 in Eq. 5.) The other three parameters
are not uniquely determined. Fortunately, Ea - Eb is well
limited by usual constraints on electron transfer. Ea is greater
than Eb, for the electron transfer takes place even at zero
temperatures. But successive steps in electron transfer chains
normally have their standard redox potentials within about
0.05 V (unless energy is being usefully extracted in the step).
(Ea - Eb) occurs only in the exponential of Eq. 8. If it is
given a "typical" value of 0.05 V (1.18 keal), then A is so
large in order to fit the data that the values of both A and
Tab are insensitive to whether (Ea - Eb) is in error by a
factor of five. We thus obtain 1/2kaxa2 = 0.5 ± 0.1 eV (11.5
kcal) and ITabI = 4 X 10-4 ± 0-6 eV (9.6 cal). The value of
1/2kaxa2 is sharply constrained by the high temperature
activation energy. ITa1,| is much less definitely determined
because it occurs only as a prefactor.
The magnitude of Ta and '/2kaxa2 can be directly checked

on a semiquantitative basis by comparing the parameters
just determined, appropriate to adding (or removing) an
electron to a cytochrome, to the parameters relevant to opti-
cally exciting a similar heme electron without removing it.
The general considerations that were used to generate the
shape of Da(E) in Section II are identical with those of the
configuration-coordinate description of the broadening of
optical spectral lines. The only important difference between
optical excitation of electrons and the removal of electrons
is that the removal of an electron is a somewhat larger per-
turbation, so the effective '/2kaXa2 for an optical transition of
the heme is expected to be comparable to, but smaller than,
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ABSTRACT A theory of electron transfer between two
fixed sites by tunneling is developed. Vibronic coupling in
the individual molecules produces an activation energy to
transfer at high temperatures, and temperature-inde-
pendent tunneling (when energetically allowed) at low
temperature. The model is compared with known results
on electron transfer in Chromatium and in Rhodopseudo-
monas spheroides. It quantitatively interprets these
results, with parameters whose scale is verified by com-
parison with optical absorption spectra. According to this
description, the separation between linking sites. for
electron transfer is 8-10 A in Chromatium, far smaller
than earlier estimates.

We bypass possible Winfield-like complications, and assume
that there are no other electron states available at low enough
energies to be thermally accessible. Section I shows that
transfer between two fixed sites, in suitable approximation, is
mathematically isomorphic with the conceptually simpler
problem of excitation transfer by the F6rster (7, 8) (dipolar)
mechanism. In Section II, the simplest possible model of the
coupling of electronic states to molecular thermal motions
is developed and used to calculate the temperature-dependent
electron transfer rate. The model is compared with experi-
mental results in Section III.

The transfer of an electron from one molecule to another is an
essential part of oxidative phosphorylation and photosyn-
thesis. The reversible oxidation of the heme of cytochrome c
by cytochrome oxidase is a specific example of such a process,
one of several electron transfers in the sequence of reactions
resulting in oxidative phosphorylation. The overall effective-
ness of such processes as photosynthesis or oxidative phos-
phorylation depends both on there being a large electron
transfer rate for desired transfers and a small rate for in-
appropriate transfers. A particular cytochrome (or iron-sulfur
protein) seems to have, as its sole chemical function, the
ability to exchange electrons with two other molecules A and
B, which (apparently) cannot directly exchange electrons.
The absence of direct exchange may be due either to spatial
localization or stereochemical constraints.

Since electron-transfer proteins play a specific chemical
role, one should be able to explain in quantitative physical
terms how the observed functional properties are related to
aspects of molecular structure. There are two major obstacles
to attempting such an explanation at present. First, very little
is known about the relative geometry of the donor and accep-
tor during the electron transfer process. Second, even when a
geometry is known or surmised, the mechanism of electron
transfer is unsure. A wide variety of transfer descriptions
have been utilized for particular systems. Hodges, Holwerda,
and Gray (1) have described the electron transfer between
cytochrome c and Fe(EDTA) in terms of the "outer sphere
electron transfer" of solution electrochemistry (2, 3). In the
Winfield mechanism (4) of electron transfer in cytochrome c,
the electron is visualized as being passed along a chain of
binding sites with a thermally activated transfer between
these sites. Thermal activation of an electron to a "conduc-
tion band" and, thence, free motion to a second site has been
suggested (5). Quantum mechanical tunneling of the electron
between two sites has also been invoked (5, 6).

In this paper, we bypass the first problem by assuming the
electron to be transferred between two sites in fixed geometry.

I. The two-site tunneling description of electron transfer
We consider the problem of the transfer of an electron be-
tween two sites a and b, with the electron initially in a wave
function p0a localized around site a. The final state will have
the electron in (pb, localized around b. spa and ptb weakly over-
lap, as sketched in Fig. 1. Because of the overlap between
these wave functions, there is a matrix element Tab of the
Hamiltonian between these two one-particle states. The
meaning of Tab can be seen from the special case of sites a
and b being equivalent, in which case the overlap generates a
splitting 2Tab between the bonding and anti-bonding states
(<Pa i (pb)1V2. The smallness of Tab results from the ex-
ponential decrease of wave functions in the barrier penetra-
tion region between the sites. The transfer process thus in-
volves tunneling, and Tab will be called the tunneling matrix
elemrent.
To develop a simple analog with excitation transfer, con-

sider two atoms a and b. Let the product 'a'7b be the wave
function for the electrons on a and b when atom a is excited
and b is in its ground state, and Lab' be the wave function
for all electrons when atom b is excited and a is in its ground
state. Define for convenience 'a = 'a'Vtb and "'b = VaPb'-
There is an excitation transfer matrix element Uab between
states "ia and *'b. In the F6rster (7, 8) description, excitation
transfer arises from the coupling of the transition dipoles on
atoms a and b, and is proportional to each transition dipole
and to the inverse cube of their separation. If atoms a and b
are identical, the symmetric and anti-symmetric excitation
states are split by 2Uab. Thus, while the mechanisms of
generating Uab and Tab are totally different, the identifications

Uab Tab, "a f'a, "'b* (Pb

makes the mathematical descriptions of transfer identical.
In the calculation of the rate of excitation transfer inter-

and intramolecular vibrations of the atoms play an essential
role by giving an energy width to states that would otherwise
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A quantitative understanding of co-operativity in hemoglobin must include a 
description of where and how the free energy of co-operation is stored in the 
molecule. Experiments to date have not suoceeded in associating this energy 
with a particular bond. One extreme possibility is that the free energy is stored 
se small amounts of straiu energy in many bonds, so that all bonds sre almost 
normal. A linear diatribti elzergy mode2 can be constructed when the strain 
energies of bonds are sufficiently small. This model relates quantitatively small 
structural changes at the heme group, upon ligation, to the free energy of co- 
operation, although the energy of co-operation is not chiefly stored at the heme 
group in this model. It is in accord with the non-co-operativity of the oxi- 
dation of hemoglobina + --f aqua-methemoglobin + at pH 6, and describes the 
magnitude of changes observed in the Soret band when the quaternary structure 
is changed. It accounts for the scale of the motions in the heme region due to 
chsnges in the quaternary structure, and provides a framework for discussion 
of spectral and structural changes for affmity affecters which are not located nesr 
the heme group. The general model should be of use for discussing other cases 
of the control of local chemical properties by proteins. 

1. Introduction 

Many proteins contain prosthetic groups which are the reactive sites for the binding 
of small molecules or electrons. In these molecules the protein clearly modifies the 
binding free energy of the small molecule in relation to the prosthetic group. For 
example, the binding free energies of oxygen to sheep myoglobin (Hill, 1936) and to 
rat myoglobin (Strickland et al., 1959) differ by 0.7 kcal/mol, in spite of being rather 
similar molecules with the same prosthetic groups. In the oxygenation of hemoglobin, 
the fourth oxygen molecule bound has a free energy of binding which is 3.6 kcal/mol 
greater than the free energy of binding of the first oxygen molecule (Tyuma et al., 
1971; see also Wyman, 1965). This difference is due to changes in the protein struc- 
ture introduced by oxygen molecules already bound, and produces the co-operativity 
observed in the binding of oxygen by hemoglobin. In both examples, the protein 
structure must affect the chemistry of the prosthetic group. 

The binding of small molecules to isolated prosthetic groups is a problem of small 
molecule chemistry which will not be discussed here. The question interesting in a 
biochemical context is how the protein structure wwdulutes the binding energy of the 
prosthetic group. This modulation is small compared with the total energy involved, 
but is extremely significant biologically. A major purpose of the structure of proteins 
which contain prosthetic groups is presumably to produce appropriate modification 
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ABSTRACT Animals that are primarily dependent on
olfaction must obtain a description of the spatial location and
the individual odor quality of environmental odor sources
through olfaction alone. The variable nature of turbulent air
flow makes such a remote sensing problem solvable if the
animal can make use of the information conveyed by the
fluctuation with time ofthe mixture ofodor sources. Behavioral
evidence suggests that such analysis takes place. An adaptive
network can solve the essential problem, isolating the quality
and intensity of the components within a mixture of several
individual unknown odor sources. The network structure is an
idealization of olfactory bulb circuitry. The dynamics of syn-
apse change is essential to the computation. The synaptic
variables themselves contain information needed by higher
processing centers. The use of the same axons to convey
intensity information and quality information requires time-
coding of information. Covariation defines an individual odor
source (object), and this may have a parallel in vision.

Humans rely chiefly on vision for their description of the
world around them. As a result, most of the olfactory
psychophysics and electrophysiology literature is chiefly
concerned with the question of identifying or analyzing a
single odor presented to the nose. Such studies ignore deeper
questions of the function of olfaction in highly olfactory
animals, which is to define and locate individual odor sources
in a complex environment.

This computational problem is also posed by vision. The
visual system must transform detailed retinal images into a
much smaller amount of significant information describing
physical objects and their locations. In a natural environ-
ment, vision allows us to parse our environment into objects
even when the objects are unfamiliar and many objects are
simultaneously present.
Consider an animal that has only an olfactory sense. To

what extent can it solve the remote sensing problem, under-
standing the nature and location of distant objects, particu-
larly when the objects are not familiar? In the visual system,
analysis of the computational problem provided by the data
and the task led to an understanding of what the "early"
visual system must compute (1). I describe here a similar
problem for the early processing in the olfactory system.
A description of a natural olfactory environment illustrates

the one important problem the earliest processing of an
olfactory system must solve if the system is to be able to
define and localize unknown odor sources in a complex odor
environment. Behavioral evidence suggests that animals can
solve this problem. This problem has a mathematical solu-
tion, which can be implemented by an elementary learning
network. Dynamic changes of the synaptic strengths are
essential to this solution. Part of the information needed by
higher processing areas is explicitly contained in the connec-
tion strengths themselves. The last two sections present

simulations of these ideas and discuss their relation to
olfactory physiology and psychophysics.

The Olfactory Environment and Task

In most olfactory environments, the simple diffusion of
odorant molecules is a negligible means of dispersing odor-
ants. Odors of distant objects are brought to the nose by
wind. Odorant molecules leaving the object follow the path of
the air packet to which they are added. This packet already
contains odorant molecules from other objects further up-
wind. The packet will move with the local wind, mixing
slowly with other nearby packets containing odors from other
objects, due to microturbulence in the air. Local winds
fluctuate markedly in both magnitude and direction. As a
result, the odor plume has a complex spatial structure (2) and
is increasingly mixed with odors from other parts of the
environment as time increases. Thus, the stimulus at the nose
due to distant objects contains mixtures of odors from many
sources, whose relative contributions are constantly chang-
ing. Physical studies with a single odor source and detector
in a natural environment verify these ideas (3). (Because
velocities and time scales of turbulence are very different for
water and air, aquatic environments are not necessarily
similar to atmospheric environments.)
Highly olfactory animals need to be able to understand the

location and odor properties of the various sources or "odor
objects" in their space in order to hunt for food or flee from
danger. When a single odor source is present, the problem is
simple. The perceived odor quality (i.e., the relative
strengths of different components of an odor) is a fixed
property of this sole source. The strength of the odor will
fluctuate with wind direction. For an object that is near, the
odor will be strong only for a narrow range ofwind directions,
and when the wind shifts from that direction the odor will
quickly grow weak. An object that is further away has an odor
plume that is more contorted and on average is also broader
and weaker. Its odor strength will correlate less well with the
local wind direction. The relative time scale of fluctuation
also contains information about distance. Thus, when a single
odor source is present approximately upwind, information
about the direction and even the approximate distance of the
object is available to a stationary olfactory animal. The
essential computation is an analysis of the fluctuations of the
odor intensity with time and the relation of these to fluctu-
ations in the local wind direction.
The problem of one odor object is trivial compared to the

real problem ofmany unknown objects. Except when sniffing
an object at the nose, an animal is always in an environment
of mixed and changing odor patterns. If each odor object
were to stimulate a different set of receptor cells in the
sensory epithelium, then the problem of separating objects
would be simple. However, physiological studies of the
vertebrate olfactory system generally indicate broadly tuned
receptor cells and the excitation of a large number of cells by
a given odor, so odors of different objects are believed to be
discriminated on the basis of the patterns of excitation, as
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recently reviewed by Kauer (4). Similar conclusions are
reached through behavioral studies (5, 6). Broad tuning
makes the problem of separating unknown objects in natural
environments appear very difficult.
Suppose that it is possible to analyze the fluctuations of the

instantaneous stimulation pattern in such a way that the
contributions of different odor sources to the mixture can be
separated. By next analyzing the fluctuations of each odor
object intensity in conjunction with fluctuations in the local
wind direction, the animal will generate an excellent repre-
sentation of the location and isolated odor of each odor
source in its vicinity. This paper investigates the hypothesis
that the function of the earliest part of olfactory processing in
highly olfactory animals is to accomplish this first separation
task-namely, to analyze the fluctuations of multisource
environments into individual odors.

Behavioral Evidence for Fluctuation Analysis

Many animals are able to search for a known odor such as a
favorite food. In concept, the animal computes a projection
of the ambient odor input against the known template and
thus measures the intensity of the target odor present. If the
environment has a substantial odor, whose excitation pattern
strongly overlaps the pattern of the search template (but with
different relative amplitudes), a simple template match to
look for a weak target odor becomes impossible. The envi-
ronment itself will always appear to have an appreciable
component of the target odor. A fixed environment could be
removed by subtractive adaptation, but realistic environ-
ments reflect constantly changing strengths and mixtures of
odors from a variety of sources. That an animal with a
broadly tuned set of sensory cells can locate a weak known
odor source indicates that an analysis of fluctuations is being
carried out to provide information not available from ele-
mentary processing.

Experiments in Limax maximus have demonstrated the
importance of fluctuations for odor learning. Hopfield and
Gelperin (7) carried out learning experiments on mixtures of
two food odors A and B. Slugs were aversively conditioned
while on a mesh 1 cm above a piece of filter paper painted
with a solution containing a 1:1 mixture of odorants A and B.
When later tested, the animals were found to be aversively
conditioned to the 1:1 mixture AB, but they had the same
nonaversive behavior as control animals to the individual
odors A and B. These experiments indicate that the mixed
odor object AB is perceived as an odorant distinct from A or
B. When different animals were trained with the same
protocol, except that the initial conditioning was done with
alternating stripes ofA and B 0.9cm apart, the slugs exhibited
aversive behavior to A alone, B alone, and the mixture AB.
The distance from the odor source to the slugs was always

greater than the separation between the stripes. The diffu-
sional mixing time for stripe sources of this separation is -1
sec. Thus, the odor available to the animals must always be
somewhat mixed and fluctuating due to thermally induced air
flows within the closed chamber. Since conditioning with
odor stripes results in aversive response to the individual
odors A and B (as well as to the mixture AB), the existence
of the individual odors A and B was presumably deduced
from odor fluctuations. The crucial difference between the
two experiments was the presence of fluctuations in the
relative amount of A and B presented by the stripes but not
by the 1:1 AB mixture, which allowed the animals to come to
different conclusions about the odor objects present.

Do Fluctuations Contain Enough Information?

The following analysis shows that while fluctuations do not
contain enough information to solve the source separation

problem in the most general case, in the usual case they do
contain enough information. A model of the olfactory world
and its processing can be described as follows. There are N
different types of olfactory processing cells receiving inputs
from sensory cells. Any particular odor k can be described by
a vector Sk whose components Skn describe the strength with
which that odor excites the olfactory processing cells of type
n when odor k is present at a standard concentration. When
odor k alone is present, the input to a cell of type n is then
given by

[1]

where ak(t) describes the time-dependent concentration of
odor k at the sensory epithelium. The details of olfactory
receptors and connections from sensory cells to the process-
ing cells are implicitly contained in the matrix Skn. The
function ak(t) does not depend on n. A single odor source
will, by definition, have all sources of odorant molecules
colocated in space, so all the components of the odor will
have the same time dependence ak(t) (or if it is extended in
space, they will have the same odor quality at each point).
When multiple odor objects are present, the time-

dependent input to the sensory cells will be the sum of Eq. 1
over K different odors k, 1, m .... The nervous system
measures the various I4(t). An ideal olfactory system would
be able to determine both the vectors Sk and the intensity time
dependences ak(t) for all the odor objects sampled by the
fluctuating wind pattern. To what extent is it possible to
determine these quantities from the measurements available?
Consider the case of two odors and two processing cells.

The scale of the odor vectors is arbitrary, as is the scale of the
functions ak(t). Each odor vector S, and S2 has two compo-
nents, one of which can in each case be picked as "1," to
define the arbitrary scale. The two odor vectors can therefore
be taken to be

Si =
(a ( ) [2]

Odor 1 thus excites processing cell 2 with strength a relative
to its excitation of cell 1. The components a and b will be
assumed to be positive, although this is not essential. From
Eq. 1

Il(t)= al(t) + a2(t)b 12(t) = al(t)a + a2(t)- [3]
At any single time t, the measurement of I(t) yields two
equations in four unknowns-namely, al(t), a2(t), a, and b.
They cannot be determined from two equations. Adding more
sampling times does not help, for each new sampling time t'
introduces two more equations and two more unknowns,
a1(t') and a2(t'). The problem is unsolvable in the general
case.
There are, fortunately, a variety of circumstances under

which the functions ak(t) are less than completely general and
which lead to an ability to solve for all the desired informa-
tion. The simplest of these is the case in which the fluctua-
tions with time of one odor are not correlated with the
fluctuations of the other odor. Such a description could be
appropriate when the turbulence and wind fluctuations bring-
ing one odor to the nose are independent of those that bring
another odor via a rather different path. Under these circum-
stances, useful expectation values over these fluctuations can
be computed by time averaging, denoted by ( ). (Neurobi-
ology can evaluate such expectation values through learning
and adaptation procedures.) The first moments obey

(I,) = (a,) + b(a2) (I2) = a(al) + (a2). [41
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Thinking allows an animal to take an effective action in a novel
situation based on a mental exploration of possibilities and
previous knowledge. We describe a model animal, with a neural
system based loosely on the rodent hippocampus, which performs
mental exploration to find a useful route in a spatial world it has
previously learned. It thenmentally recapitulates the chosen route,
and this intent is converted to motor acts that move the animal
physically along the route. The modeling is based on spiking
neurons with spike-frequency adaptation. Adaptation causes the
continuing evolution in the pattern of neural activity that is
essential to mental exploration. A successful mental exploration
is remembered through spike-timing-dependent synaptic plasticity.
The system is also an episodic memory for an animal chiefly
concerned with locations.

hippocampus | memory | planning | thought | hippocampus | memory

What is mental exploration? I am on the Princeton campus
and a visitor asks for walking directions to Firestone

Library. I consider where I am, where the library is, mentally
explore possible routes, and select one that will be easy to follow. I
do not have prelearned answers to all routing problems. Instead, I
have a knowledge base of relationships between locations, and use
it to mentally solve a novel routing task. At a more abstract level,
all imagination of multiple possible futures, all planning of a chain
of actions to achieve a novel goal, and much of what is meant by
thinking involve mental exploration.
Mental exploration takes place on the timescale of a fraction of

a second to minutes. It involves a protracted evolution of neural
activity, often while an animal is stationary, followed by an apt
behavioral action that directly relates to the activity during the
exploration. When circumstances permit its use, mental explora-
tion can be faster, more energy-efficient, and safer than a physical
exploration to solve the same problem. Mental exploration is
different from “mental time travel,” (1) which is a mental reca-
pitulation of a prior salient physical experience whereas mental
exploration is searching for an appropriate neural activity
sequence that may never before have been experienced.
In an attempt to understand such a capability, we have designed

and simulated a network of neurons for mental exploration
involving spatial tasks. The network controls the motor behavior
of a model animal (rudimentary rodent; RR). An experimental
paradigm is described for testing mental exploration, a paradigm
readily extensible to real animals in real (or virtual) environments.
RR moves along spatial paths as desired trajectories, not as
memorized motor patterns, giving a hint as to how an ability to
think may have piggybacked on an evolving ability to perform
other tasks (2).
Three key ideas are embedded in the modeling. First, in cir-

cumstances for which a network of simple neurons has activity
dynamics characterized by an attractor surface, adapting can
produce a continuing exploration on that surface. Second, when
an activity trajectory has been experienced that achieves a desired
“mental” goal, synaptic learning produces an ability to mentally
repeat that intended trajectory. Third, this repetition controls the
motor system in such a fashion that the physical path taken
corresponds to the path described by the trajectory of mental
activity. The modeling is loosely based on some of the most
salient facts about the rodent hippocampus, an area involved with

place, memory, and cognition (3–5). The speculation that think-
ing involves sequential and reverberant activation of assemblies
of cells representing concepts and the environment has a long
history (2, 6). This paper presents a concise model within which
such ideas can be examined and related to experiments.

Model
Behavioral Paradigm. Construct mazes α, β, γ, . . . , into which an
animal can be inserted at any location. Each maze has walls and
a floor with a variety of colors, patterns, textures, and so forth.
Only local sensory information is available. Individual features
are multiply used so that only the ensemble of features is a
unique descriptor of place. Over the course of several sessions of
experience in each environment, an animal will become familiar
with each environment through passive learning.
Next, place a thirsty animal at position w in α, where the

experimenter has now placed a dish of water. Let the animal
drink briefly, then remove it from w and insert it at x, which may
or may not be in α. The animal has learned that water is available
at w, but has been placed elsewhere. It has no direct way of
knowing whether x is connected to w, and water is available, or
whether x is in a different maze, and water is not available. An
animal that relies on physical exploration might search without
waiting, making choices (initially random) at branches, until it
either finds water or tires of searching. Or it could do nothing,
because the likelihood of reward (water) may not be worth the
cost of extensive physical exploration. An animal that can carry
out mental exploration should remain at x until it finds, through
mental exploration, whether x is connected to w by some path-
way and, if so, how to follow that path. If x is connected to w, it
should then move to w without random exploration. If x is not
connected to w, it should not search for w. Behavior corre-
sponding to this pattern would be strong circumstantial evidence
that the animal carries out mental exploration.
This animal behavioral paradigm is closely related to the

human “library” paradigm. The goal is stated verbally to humans
but by the introduction of water in the animal case. The physical
response is verbal in the library example but is appropriate
motion in the case of a thirsty animal. The parallel to the many
known maze environments is the possibility of being asked, while
at Princeton, how to walk to a library located at Caltech.

Neural Circuit Organization. The overall RR system is shown in
Fig. 1. Areas A and E have excitatory place cells, analogous to
hippocampal place cells (7, 8), that respond selectively to spatial
location. Their Gaussian receptive field size was 3% of an
environment area. Lacking an understanding of how place cells
achieve selectivity, we simply presume that a place cell has an
input current derived from the sensory system, and which pro-
vides the location selectivity. Spike-timing details characteristic
of the real hippocampus are not included. Each model place cell
has a receptive field in each environment α, β, . . . , and these

Author contributions: J.J.H. designed research, performed research, analyzed data, and
wrote the paper.

The author declares no conflict of interest.

E-mail: hopfield@princeton.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0913991107/DCSupplemental.

1648–1653 | PNAS | January 26, 2010 | vol. 107 | no. 4 www.pnas.org/cgi/doi/10.1073/pnas.0913991107

Neurodynamics of mental exploration
John J. Hopfield

Neuroscience Institute, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544

Contributed by J. J. Hopfield, December 4, 2009 (sent for review October 15, 2009)

Thinking allows an animal to take an effective action in a novel
situation based on a mental exploration of possibilities and
previous knowledge. We describe a model animal, with a neural
system based loosely on the rodent hippocampus, which performs
mental exploration to find a useful route in a spatial world it has
previously learned. It thenmentally recapitulates the chosen route,
and this intent is converted to motor acts that move the animal
physically along the route. The modeling is based on spiking
neurons with spike-frequency adaptation. Adaptation causes the
continuing evolution in the pattern of neural activity that is
essential to mental exploration. A successful mental exploration
is remembered through spike-timing-dependent synaptic plasticity.
The system is also an episodic memory for an animal chiefly
concerned with locations.

hippocampus | memory | planning | thought | hippocampus | memory

What is mental exploration? I am on the Princeton campus
and a visitor asks for walking directions to Firestone

Library. I consider where I am, where the library is, mentally
explore possible routes, and select one that will be easy to follow. I
do not have prelearned answers to all routing problems. Instead, I
have a knowledge base of relationships between locations, and use
it to mentally solve a novel routing task. At a more abstract level,
all imagination of multiple possible futures, all planning of a chain
of actions to achieve a novel goal, and much of what is meant by
thinking involve mental exploration.
Mental exploration takes place on the timescale of a fraction of

a second to minutes. It involves a protracted evolution of neural
activity, often while an animal is stationary, followed by an apt
behavioral action that directly relates to the activity during the
exploration. When circumstances permit its use, mental explora-
tion can be faster, more energy-efficient, and safer than a physical
exploration to solve the same problem. Mental exploration is
different from “mental time travel,” (1) which is a mental reca-
pitulation of a prior salient physical experience whereas mental
exploration is searching for an appropriate neural activity
sequence that may never before have been experienced.
In an attempt to understand such a capability, we have designed

and simulated a network of neurons for mental exploration
involving spatial tasks. The network controls the motor behavior
of a model animal (rudimentary rodent; RR). An experimental
paradigm is described for testing mental exploration, a paradigm
readily extensible to real animals in real (or virtual) environments.
RR moves along spatial paths as desired trajectories, not as
memorized motor patterns, giving a hint as to how an ability to
think may have piggybacked on an evolving ability to perform
other tasks (2).
Three key ideas are embedded in the modeling. First, in cir-

cumstances for which a network of simple neurons has activity
dynamics characterized by an attractor surface, adapting can
produce a continuing exploration on that surface. Second, when
an activity trajectory has been experienced that achieves a desired
“mental” goal, synaptic learning produces an ability to mentally
repeat that intended trajectory. Third, this repetition controls the
motor system in such a fashion that the physical path taken
corresponds to the path described by the trajectory of mental
activity. The modeling is loosely based on some of the most
salient facts about the rodent hippocampus, an area involved with

place, memory, and cognition (3–5). The speculation that think-
ing involves sequential and reverberant activation of assemblies
of cells representing concepts and the environment has a long
history (2, 6). This paper presents a concise model within which
such ideas can be examined and related to experiments.

Model
Behavioral Paradigm. Construct mazes α, β, γ, . . . , into which an
animal can be inserted at any location. Each maze has walls and
a floor with a variety of colors, patterns, textures, and so forth.
Only local sensory information is available. Individual features
are multiply used so that only the ensemble of features is a
unique descriptor of place. Over the course of several sessions of
experience in each environment, an animal will become familiar
with each environment through passive learning.
Next, place a thirsty animal at position w in α, where the

experimenter has now placed a dish of water. Let the animal
drink briefly, then remove it from w and insert it at x, which may
or may not be in α. The animal has learned that water is available
at w, but has been placed elsewhere. It has no direct way of
knowing whether x is connected to w, and water is available, or
whether x is in a different maze, and water is not available. An
animal that relies on physical exploration might search without
waiting, making choices (initially random) at branches, until it
either finds water or tires of searching. Or it could do nothing,
because the likelihood of reward (water) may not be worth the
cost of extensive physical exploration. An animal that can carry
out mental exploration should remain at x until it finds, through
mental exploration, whether x is connected to w by some path-
way and, if so, how to follow that path. If x is connected to w, it
should then move to w without random exploration. If x is not
connected to w, it should not search for w. Behavior corre-
sponding to this pattern would be strong circumstantial evidence
that the animal carries out mental exploration.
This animal behavioral paradigm is closely related to the

human “library” paradigm. The goal is stated verbally to humans
but by the introduction of water in the animal case. The physical
response is verbal in the library example but is appropriate
motion in the case of a thirsty animal. The parallel to the many
known maze environments is the possibility of being asked, while
at Princeton, how to walk to a library located at Caltech.

Neural Circuit Organization. The overall RR system is shown in
Fig. 1. Areas A and E have excitatory place cells, analogous to
hippocampal place cells (7, 8), that respond selectively to spatial
location. Their Gaussian receptive field size was 3% of an
environment area. Lacking an understanding of how place cells
achieve selectivity, we simply presume that a place cell has an
input current derived from the sensory system, and which pro-
vides the location selectivity. Spike-timing details characteristic
of the real hippocampus are not included. Each model place cell
has a receptive field in each environment α, β, . . . , and these
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receptive fields are uncorrelated. The place cells have no
orientation selectivity.
In the absence of a control signal, the motor system moves RR

ahead at constant speed in a direction that wavers, representing
effectsofmotorandenvironmental noise.WhenRRruns intoawall,
its trajectory bounces (reversal of the normal component of veloc-
ity). A typical path produced by themotor system without control is
shown in Fig. 1A. Mathematical and simulation details of themotor
and neural systems are given in SI Modeling and Mathematics.

Area E is responsible for finding, through mental exploration,
an activity sequence representing an appropriate route. The rest
of the neural circuitry is for producing movement in physical
space. It illustrates how a mental trajectory that describes what
an animal wants to experience (intent) can be compared to what
the animal is actually experiencing (indirect sensory signals) to
control a motor system. Such a comparison, made by area A, is
essential in any real system, for the alternative (mental trajectory
→ motor command sequence) fails after a short time because of
noise and system imperfections.
The motor control area has a single input that can be selected

from different sources (area A, area E, olfactory neurons) by
area MLS (motor & learning and selection). There are synaptic
connections between the excitatory cells in area E, and from area
E to area A. These two sets of connections are learned from
experiencing environments. MLS also contains a neuron S that
can signal when a target has been found (success) by mental or
physical exploration. It is driven by a true reward such as water,
and by synapses from E with Hebbian learning capabilities.
Although it is an essential auxiliary to a complete system, the
output of S has only simple control properties (such as “learn
now” or “mental exploration has found the target”) and is not
modeled in detail. The switching that selects between different
possible sources of input to the motor controller is also not
modeled in detail.

Results
Learning Multiple Planar “Bump” Attractors. Let a ring of N neu-
rons have excitatory short-range and inhibitory long-range syn-
aptic interconnections. For appropriate ranges and strengths, the

stable activity states of the network are N equivalent localized
bumps (9). If N is large and the bumps contain many neurons,
the set of attractor points is essentially a continuous ring (or line)
attractor. There is an energy function (10) for the dynamics of
such systems. The minimum of this function in N-dimensional
neural activity space is a valley of constant energy along a curving
line, with the energy increasing rapidly in the other N − 1
directions. Planar attractors can be similarly constructed (11).
Planar attractors provide a short-term memory for two-

dimensional location. Consider the place cells of area E and a
rectangular environment R. Present the activity of the place cells
in an x-y display, with each cell displayed at the center of its
receptive field. When the animal is in R, the strongly active place
cells (driven by sensory inputs) will be in a small region centered
at the location of the animal as in Fig. 2A. In a system with a
planar attractor for R, if the sensory input is turned off when the
animal is at r, the bump will remain fixed (except for noise-
induced drift). This feature can be used for path integration (11).
There are multiple environments R, H, . . . , in the exper-

imental paradigm. For mental exploration it is necessary to
embed these multiple planar attractors simultaneously in the
synapses of area E. This can be done using learnable binary
excitatory synapses (strength 0 or 1) and a fixed global inhibitory
system, a procedure useful in associative memory (12). Allow RR
to explore environment R for a few minutes, using its motor to
move. During this exploration, place cells are active. Let there be
a spike-timing-dependent potentiation (STDP) procedure for
excitatory synapses that sums the effect of near-coincidences
between presynaptic action potentials of neuron j and the post-
synaptic action potentials of neuron k, weighted by exp(−|tpre −
tpost|/τlearning). Accumulate this value as Skj for each synapse.

area A
place cells

place cells
area E

place
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information
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motor

control
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Fig. 1. Circuit diagram and synaptic connection pathways (arrows) of the
model. (A) Twenty-second segment of the path of the model system in the
absence of control signals. (B) A trajectory as in A but with motor control
signals from olfactory neurons relayed via area MLS. An odor source with a
Gaussian profile is located at the center of the circle (radius σ).
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Fig. 2. Activity bumps and bump motions. (A) Locations of strongly active
place cells (dots) arrayed for environment R when the RR is at a particular
location in R. (B) The same activity state as in A but with cells arranged
according to their positions in environment H. (C) Same state as shown in D,
but neurons are arranged according to their place fields in R. (D) A clump of
strongly active neurons when the RR is in H and the cells are arrayed
according to their positions in H. (E) Trajectories of the center of gravity of
the bump location when started at 49 different spatial points (cyan dots) in
R. Black dots are located at 0.2-s intervals. Motions are followed for 10 s. Red
dots are final states.
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apart, the firing rates in this patch drop. The total spike rate from
area A as a function of x is equivalent to the chemosensory input
case whose effect is illustrated in Fig. 1B, and RR will move to be
near xe. If xe slowly moves, the animal will correspondingly move
its preferred position. Thus, the location of RR in real space
follows the mental location of the bump activity in area E. The
same considerations apply when the synaptic connections rep-
resent multiple environments. In this case, area A activity is
generated only when the mental trajectory in area E corresponds
to the physical environment that the RR is in.
The thin solid line of Fig. 5B shows the position of the RR

when the motor control system is guided by mental activity in
area E. The RR recapitulates in physical motion the trajectory
on which it was trained. Following the trajectory would be better
if the mental motion in area E were slower, but this cannot be
slowed too far without getting stuck.
This system does not learn motor commands. It has learned

the task at a higher level, from which (in combination with
sensory information) appropriate motor commands can be gen-
erated. Perturbations that deflect a physical trajectory have little
effect on this system, whereas they have disastrous accumulative
effects on a system that merely recapitulates a learned sequence
of motor commands.
Traveling along the pathway is a brief episode in the life of the

RR, a sequence of locations traversed in time. Fig. 5A represents
the mental recall of that episode, and Fig. 5B puts that memory
episode to use. Although spatial pathways can also be learned as
procedural memories, there is then no ability to recapitulate
without physical motion.

Using Mental Exploration to Choose and Physically Follow a Path.
One particular example illustrates some of the exploration abil-
ities of the complete system. The environment to be explored is
the T of Fig. 6. Its branches are narrow, so an active bump of place
cells spans the width of a branch. This T is one of five known
environments embedded in the connection matrices. The RR has
learned about a potential reward at a location w, so neuron S is
activated strongly when the center of the bump attractor in E is at
w. RR is now placed at position x. While the rat is stationary at x
and carrying out this mental exploration, there is a weak con-
tinuing input that favors a bump of activity in E at x.
The learning algorithm is to accumulate Skj as in the previous

section, beginning at a time when the mental location coincides
with the physical location x, and continue accumulating until
neuron S is activated. The accumulation should begin anew if the
mental exploration bump returns to x before activation of S,
because such a path segment is not useful. There is an obvious

signal available for this control, for there is strong activity in area
A when (and only when) the bump location in E corresponds to
the RR physical location.
Fig. 6A shows an example of the resulting mental exploration.

(i) The bump moves up the stem of the T. (Why the initial motion
is up rather than down lies in details of the synaptic matrices set by
a noisy learning experience.) The bump turns right at the T
junction and propagates to the end. At the end, the bump would
eventually reverse, but this is not favorable because it would
involve neurons recently activated. Instead, the activity bump
jumps back to x because of the weak continuing input. (ii)
Because of residual adaptation, the bump now propagates down
to the bottom of the stem, where it stops and jumps back to x. (iii)
The bump again moves upward and to the right, and then reini-
tiates at x. (iv) The bump moves from x upward and turns left,
finally reaching w, where it activates the potential reward neuron.
The mental exploration eventually found w, which causes the

synaptic change rule to be applied. Because the learning accu-
mulation is reset every time the RRmentally returns to x, only the
fourth path segment is represented in the synapse change. After
the relevant connection strengths increased, when a bump is ini-
tiated in area E at x and the input to area E is then turned off, the
bump will propagate directly to w. When the motor system is
engaged, the RR follows this trajectory in space (Fig. 6B).
The observed behavior of the RRwould be to remain stationary

for a few seconds, then take the direct path to w, making no errors.
No physical exploration was required. The ability of a system to
mentally jump from what seems a nonproductive location or dead
end back to the real-space initiation point to try another mental
trajectory is one of many advantages of mental exploration over
physical exploration. This elementary synapse change procedure
will not find good solutions to all problems. But even such a simple
procedure can successfully use mental exploration to reduce the
burdens associated with physical exploration.

Discussion
We have demonstrated that a simple system, based loosely on
the rodent hippocampus, generates a mental exploration of
possible actions (spatial paths to take) and selects a desirable
pathway. The mental recapitulation of that pathway produces
motor control signals that cause the RR to follow the chosen
route in physical space. The system was based on spiking neu-
rons, whose adaptation provides the driving force for mental
exploration on a low-dimensional activity landscape. The selec-
tion of an action involved a modest increase in strength of
selected synapses chosen by an STDP protocol, providing a
valley in an energy landscape that guides the motion. The RR
system displays the hallmarks of primitive thought.
Seward (18) carried out latent learning experiments that cor-

respond closely to the highly simplified version (Fig. 6) of the
general mental exploration paradigm described. A rat was first
allowed to explore a T maze having drooping box ends that were
not visible from the T intersection. The hungry rat was later
placed via a trap door into one of the end boxes where a familiar
food had been placed, allowed to eat briefly, and removed from
the maze. After 25 min in a detention box, the rat was inserted at
the root of the T. Eighty-seven percent chose to go to the food-
reward side of the T although the reward location was invisible
from the choice point. This is consistent with the kind of mental
exploration proposed. Electrophysiological experiments in freely
moving rats under this paradigm would test this explanation.
The RR system can also learn a pathway which it has physi-

cally experienced, a useful natural behavior of learning from self-
directed experience or from following others. Rodents can be
easily trained to follow amazingly complex paths, either by
inducing them to follow a pathway during training (in which case
their motor acts make the animal follow the path) or by physi-
cally guiding them through the pathway (in which case the motor
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x

Fig. 6. From mental exploration to physical performance. (A) The location
of the center of the activity bump (solid line) when the activity was initiated
at x. Red dots are ends of trajectories from which the activity bump jumped
back to a location near x (cyan dots) and reinitiated an exploration. (B) The
motion of the bump (blue line) and of the position of the RR (red line) after
learning. Dots are spaced at 0.4-s intervals. The jagged real-space trajectory
has been smoothed to facilitate clear presentation in this small-scale figure.
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Thinking allows an animal to take an effective action in a novel
situation based on a mental exploration of possibilities and
previous knowledge. We describe a model animal, with a neural
system based loosely on the rodent hippocampus, which performs
mental exploration to find a useful route in a spatial world it has
previously learned. It thenmentally recapitulates the chosen route,
and this intent is converted to motor acts that move the animal
physically along the route. The modeling is based on spiking
neurons with spike-frequency adaptation. Adaptation causes the
continuing evolution in the pattern of neural activity that is
essential to mental exploration. A successful mental exploration
is remembered through spike-timing-dependent synaptic plasticity.
The system is also an episodic memory for an animal chiefly
concerned with locations.

hippocampus | memory | planning | thought | hippocampus | memory

What is mental exploration? I am on the Princeton campus
and a visitor asks for walking directions to Firestone

Library. I consider where I am, where the library is, mentally
explore possible routes, and select one that will be easy to follow. I
do not have prelearned answers to all routing problems. Instead, I
have a knowledge base of relationships between locations, and use
it to mentally solve a novel routing task. At a more abstract level,
all imagination of multiple possible futures, all planning of a chain
of actions to achieve a novel goal, and much of what is meant by
thinking involve mental exploration.
Mental exploration takes place on the timescale of a fraction of

a second to minutes. It involves a protracted evolution of neural
activity, often while an animal is stationary, followed by an apt
behavioral action that directly relates to the activity during the
exploration. When circumstances permit its use, mental explora-
tion can be faster, more energy-efficient, and safer than a physical
exploration to solve the same problem. Mental exploration is
different from “mental time travel,” (1) which is a mental reca-
pitulation of a prior salient physical experience whereas mental
exploration is searching for an appropriate neural activity
sequence that may never before have been experienced.
In an attempt to understand such a capability, we have designed

and simulated a network of neurons for mental exploration
involving spatial tasks. The network controls the motor behavior
of a model animal (rudimentary rodent; RR). An experimental
paradigm is described for testing mental exploration, a paradigm
readily extensible to real animals in real (or virtual) environments.
RR moves along spatial paths as desired trajectories, not as
memorized motor patterns, giving a hint as to how an ability to
think may have piggybacked on an evolving ability to perform
other tasks (2).
Three key ideas are embedded in the modeling. First, in cir-

cumstances for which a network of simple neurons has activity
dynamics characterized by an attractor surface, adapting can
produce a continuing exploration on that surface. Second, when
an activity trajectory has been experienced that achieves a desired
“mental” goal, synaptic learning produces an ability to mentally
repeat that intended trajectory. Third, this repetition controls the
motor system in such a fashion that the physical path taken
corresponds to the path described by the trajectory of mental
activity. The modeling is loosely based on some of the most
salient facts about the rodent hippocampus, an area involved with

place, memory, and cognition (3–5). The speculation that think-
ing involves sequential and reverberant activation of assemblies
of cells representing concepts and the environment has a long
history (2, 6). This paper presents a concise model within which
such ideas can be examined and related to experiments.

Model
Behavioral Paradigm. Construct mazes α, β, γ, . . . , into which an
animal can be inserted at any location. Each maze has walls and
a floor with a variety of colors, patterns, textures, and so forth.
Only local sensory information is available. Individual features
are multiply used so that only the ensemble of features is a
unique descriptor of place. Over the course of several sessions of
experience in each environment, an animal will become familiar
with each environment through passive learning.
Next, place a thirsty animal at position w in α, where the

experimenter has now placed a dish of water. Let the animal
drink briefly, then remove it from w and insert it at x, which may
or may not be in α. The animal has learned that water is available
at w, but has been placed elsewhere. It has no direct way of
knowing whether x is connected to w, and water is available, or
whether x is in a different maze, and water is not available. An
animal that relies on physical exploration might search without
waiting, making choices (initially random) at branches, until it
either finds water or tires of searching. Or it could do nothing,
because the likelihood of reward (water) may not be worth the
cost of extensive physical exploration. An animal that can carry
out mental exploration should remain at x until it finds, through
mental exploration, whether x is connected to w by some path-
way and, if so, how to follow that path. If x is connected to w, it
should then move to w without random exploration. If x is not
connected to w, it should not search for w. Behavior corre-
sponding to this pattern would be strong circumstantial evidence
that the animal carries out mental exploration.
This animal behavioral paradigm is closely related to the

human “library” paradigm. The goal is stated verbally to humans
but by the introduction of water in the animal case. The physical
response is verbal in the library example but is appropriate
motion in the case of a thirsty animal. The parallel to the many
known maze environments is the possibility of being asked, while
at Princeton, how to walk to a library located at Caltech.

Neural Circuit Organization. The overall RR system is shown in
Fig. 1. Areas A and E have excitatory place cells, analogous to
hippocampal place cells (7, 8), that respond selectively to spatial
location. Their Gaussian receptive field size was 3% of an
environment area. Lacking an understanding of how place cells
achieve selectivity, we simply presume that a place cell has an
input current derived from the sensory system, and which pro-
vides the location selectivity. Spike-timing details characteristic
of the real hippocampus are not included. Each model place cell
has a receptive field in each environment α, β, . . . , and these
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There is, of course, much more.

A few words from friends.

John, in his own words: 
Annu Rev Cond Matt Phys 5, 1-13 (2014).
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