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Eigenvalue Spectra of Random Matrices for Neural Networks
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The dynamics of neural networks is influenced strongly by the spectrum of eigenvalues of the matrix
describing their synaptic connectivity. In large networks, elements of the synaptic connectivity matrix can
be chosen randomly from appropriate distributions, making results from random matrix theory highly
relevant. Unfortunately, classic results on the eigenvalue spectra of random matrices do not apply to
synaptic connectivity matrices because of the constraint that individual neurons are either excitatory or
inhibitory. Therefore, we compute eigenvalue spectra of large random matrices with excitatory and
inhibitory columns drawn from distributions with different means and equal or different variances.

DOI: 10.1103/PhysRevLett.97.188104 PACS numbers: 87.18.Sn, 02.10.Yn, 05.90.+m, 87.19.La

Knowledge of the statistical properties of eigenvalues of
large random matrices has proven valuable in a wide range
of applications [1,2]. In neuroscience, networks of neurons
are often studied using models in which interconnections
are represented by a synaptic matrix with elements drawn
randomly [3,4]. The distribution of eigenvalues of this
matrix is useful for studying spontaneous activity and
evoked responses in such models [3–7]. For example, the
existence of spontaneous activity depends on whether the
real parts of any of the eigenvalues are large enough to
destabilize the silent state in a linear analysis, and the
spectrum of eigenvalues with large real parts provides
strong clues about the nature of the spontaneous activity
in the full, nonlinear models. A classic result in random
matrix theory is Girko’s circle law [8], which states that,
for large N, the eigenvalues of an N ! N asymmetric
random matrix lie uniformly within the unit circle in the
complex plane, if the elements are chosen from a distribu-
tion with zero mean and variance 1=N. When partial
symmetry is included, the circle changes to an ellipse [9].

Unfortunately, these results do not apply to the synaptic
matrices used in realistic neural network models. Neurons
are either excitatory or inhibitory, which means that the
synapses they make on their targets are all of one type or
the other. Thus, the elements of the synaptic matrix must be
drawn from two distributions with different means and
perhaps different variances. Furthermore, each column of
the matrix must have all excitatory (positive) or all inhibi-
tory (negative) elements. Our goal is to determine the
eigenvalue spectra of such matrices.

We construct a random synaptic matrix by choosing the
elements of fN ‘‘excitatory’’ columns from an excitatory
distribution and the elements of the remaining "1# f$N
‘‘inhibitory’’ columns from an inhibitory distribution. Ini-
tially, we consider distributions for the excitatory and in-
hibitory columns with different means (!E=

!!!!
N

p
> 0 for ex-

citatory and !I=
!!!!
N

p
< 0 for inhibitory) but the same vari-

ance, 1=N. We primarily study a ‘‘balanced’’ situation
[10,11] in which the average of the combined excitatory
and inhibitory distributions is 0, i.e., f!E%"1#f$!I&0.

The result of numerically calculating the eigenvalues of
such a matrix is shown in Fig. 1(a). Most of the eigenvalues
lie within the unit circle, but there are a number of outliers.
The location of these outlying eigenvalues varies from
matrix to matrix, and their number does not appear to go
to zero as N increases. This makes it difficult to study them
analytically. Interestingly, the circle shown in Fig. 1(a) that
contains most of the eigenvalues has unit radius. If each
element of the matrix were chosen to be either excitatory or
inhibitory and then assigned a value from the appropriate
distribution, the eigenvalues of the synaptic strength matrix
would obey a circle law, but the radius of the circle would
be

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1% f!2

E % "1# f$!2
I

p
, rather than 1. Thus, the col-

umnwise assignment of distributions has a dramatic effect
on the distribution of eigenvalues.

It is possible to remove the outliers in Fig. 1(a) [see
Fig. 1(b)] by imposing a constraint that we now derive.
When the variances of the excitatory and inhibitory distri-
butions are equal, we can write our N ! N synaptic matrix
as J%M, where the elements of J obey hJiji & 0 and
hJ2iji & 1=N, with the angle brackets representing an aver-
age over the distribution from which these elements are

Re(λ) Re(λ)

Im(λ) b. Im(λ)a.

FIG. 1. Numerical results for the distribution of eigenvalues in
the complex plane for N & 1000. (a) If excitatory and inhibitory
elements are drawn from distributions with different means but
the same variance, a few eigenvalues lie outside the unit circle.
(b) When Eq. (2) is imposed, the eigenvalues lie inside the unit
circle.
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the distribution of fixed-point solutions and then determine their stability as a function of
g and s. Because we are searching for fixed points, the mean field ⌘ is a time-independent
Gaussian random variable with zero mean and variance �2. The solutions of the static
version of equation 2,

x � s tanh(x) = ⌘ , (6)

are time-independent functions x(⌘), and the relevant consistency condition that determines
�2 is the static version of equation 4, which we can write explicitly as

�2 =
g2

p
2⇡�

Z 1

�1
d⌘ exp

 
� ⌘

2

2�2

!
tanh2

⇣
x(⌘)

⌘
. (7)

For s , 0, equation 6 must be solved numerically, and figure 2A, which presents a graphical
solution, illustrates a complication that arises when s>1, the range of interest. In this case,
for values of ⌘ between �⌘m and ⌘m there are three potential values of x(⌘) (figure 2A).
In averages over ⌘, as in equation 7, we must sum over x(⌘) located on all three branches,
although requiring stability, which we discuss next, restricts the allowed values of x(⌘).

x

x � s tanh(x)
⌘

x0xm

0
⌘m

�⌘m

�xm�x0 0

x

⌘

⌘min

xmin�xmin

�⌘min

0

A B

0

Figure 2. Graphical solution of the static mean-field equation 6. A) Solutions x(⌘) are points on the curve
x � s tanh(x) shown corresponding to that value of ⌘. In the region �⌘m  ⌘  ⌘m there are three solutions.
The points ±xm are the two local extrema of the function x � s tanh(x), and ±x0 and 0 are its zeros. B)
Stability requires restricting solutions to the range |x|> xmin, so that two values of x(⌘) are allowed only for
�⌘min<⌘<⌘min. The dashed curve indicates the portions disallowed for stable fixed-points.

The stability matrix from equation 2 for a fixed point with values xi, i=1 . . .N, is

Mi j = �i j

⇣
�1 + s

h
1 � tanh2(x j)

i⌘
+ gJi j

⇣
1 � tanh2(x j)

⌘
, (8)

and stability requires that none of its eigenvalues have real parts greater than 0. We can
evaluate stability using the distribution of mean-field values x(⌘) rather than the networks
values xi that appear in equation 8 and, in the limit N ! 1, the matrix 8 has an eigenvalue
at the point z in the complex plane if (Ahmadian et al., 2013)
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g
h
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h
1 � tanh2
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⌘i����

1
CCCCCCCCA

2+
> 1 . (9)
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Ahmadian, Fumarola, Miller (2013)
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mean-field approach. The fraction of ⌘ values in this range is given by
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Because the distribution of x(⌘) matches that of xi, for i=1, 2, . . . ,N in the network model,
this implies that the number of stable fixed-point solutions is 2 f N . The quantity f is shown
as a function of s and g in in figure 3. It falls from 1, when g= 0 to 0 along the transition
line to the chaotic state, and is 0 beyond this transition. Although these results follow from
a static analysis, they a↵ect the dynamics of the network. In particular, the more stable
fixed points available the faster the network settles into one of them and, thus, the shorter is
the lifetime of the transient chaotic state, which will be analyzed in the following section.

s
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0.8

1

g
Figure 3. The quantity f of equation 11 as a function of s and g. The curve in the lower portion of the plot is
the boundary between the nonzero fixed-point and persistent chaotic regions in figure 1 where f goes to 0.

Analysis of the Dynamics of the Model
To summarize the results of the previous section, above the long-dashed line s = 1 � g in
figure 1, nonzero fixed-point solutions exist, but they are unstable below the solid curve
and stable above it. In simulations, irregular activity is observed both below and above the
solid curve, but it is persistent in the region where the fixed points are unstable and transient
where the fixed points are stable. In figure 1, we have labelled this irregular activity as
chaotic, both when it is persistent and when it is transient. To justify this, we compute
numerically the maximum Lyapunov exponents for values of s and g in these regions.
Computing a Lyapunov exponent in the region where there are stable fixed points requires
that the irregular activity being analyzed lasts considerably longer than the inverse of the
maximum Lyapunov exponent. Therefore, we start our analysis by evaluating numerically
the lifetime of the transient irregular activity. We then presents results for the Lyapunov
exponents. Next, we use numerical simulations to examine the interaction between chaos

8
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