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BY LOGAN CHARIKER1 AND JOEL L. LEBOWITZ2

Abstract. We investigate the macroscopic time evolution and stationary states of a mean

field generalized contact process in Rd. The model is described by a coupled set of nonlinear

integral-differential equations. It was inspired by a model of neurons with discrete voltages

evolving by a stochastic integrate and fire mechanism. We obtain a complete solution in the

spatially uniform case and partial solutions in the general case. The system has one or more

fixed points and also traveling wave solutions.

1. Introduction

We consider the mean-field (hydrodynamic) limit of a (novel) stochastic lattice system

inspired by neuronal integrate-and-fire models [7]. On the microscopic level the system

consists of variables S(zzz, t) associated to lattice site zzz ∈ Ω ⊂ Zd, at time t ∈ R+. S(zzz, t) can

take integer values 0, 1, . . . , k. These can be thought of as discrete values of the voltage of a

neuron at site zzz, or as the state of infection of the individual at zzz. There are k stages of the

infection with S(zzz, t) = 0 corresponding to the healthy state.

A sketch of the microscopic dynamics is as follows: when none of the S(zzz, t) are in state

k, the system is in a static state. When S(zzz, t) = k it has a probability dt of firing (healing,

dying) during the time interval (t, t + dt). This is independent of the values S(www, t) for
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www 6= zzz. When S(zzz, t) fires it is instantaneously reset to S ′(zzz, t) = 0. A neuron at site www,

with S(www, t) = j, j ≤ k − 1, will jump from j to j + 1 with rate kλJγ(zzz,www), λ > 0, when

S(zzz, t) = k. The function Jγ(xxx,yyy) has the Kac form [8],

Jγ(zzz,www) = γdJ(γ(zzz −www)) = γdJ(γ(www − zzz)) ≥ 0(1)

with
∫
Rd J(rrr)drrr = 1.

When k = 1, each site can exist in one of only two states, one an inactive state and the

other active, and in this respect the model becomes similar to a contact process and also to a

popular two-state neuron system known as the stochastic Wilson-Cowan model [9, 15]. The

case k > 1 introduces multiple inactive states 0, . . . , k−1, in which a site exerts no influence

on its neighbors, and it must traverse sequentially through the states to reach the active state

k, which is followed by a reset at rate 1 to the state 0. This is inspired by integrate and fire

neuron models, where the firing of other neurons is required to drive the membrane potential

of a particular neuron from a resting potential to a threshold level in order for it to become

active itself. There is an abundance of integrate and fire neuron models used throughout

neuroscience. Less tractable than two-state neuron models, many results for integrate and

fire models are given by numerical simulation (e.g., [11], [3], [12]), although there are some

results proved, in particular for non-spatially-dependent networks in the mean field limit[2].

We are interested here in the inclusion of a spatial structure. [5] and [6] have shown

rigorous results in the hydrodynamic limit of a network of neurons, which have continuous

membrane potentials and a stochastic firing threshold. Individual neuron firings produce

infinitesimal jumps in the membrane potential of all other neurons, weighted by a spatially
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dependent connectivity function. In contrast, neurons in the model studied in this paper

have a fixed firing threshold.

We will be interested in the macroscopic equations on the scale x = γz in the mean field

limit γ → 0. We shall not discuss here the derivation of the macroscopic equations from the

microscopic models. That will be done in a different publication [4]. Here we shall discuss

the solution of the resulting macroscopic equations for different values of k.

2. Macroscopic Equations

The γ → 0 limit of the microscopic model yields the following equations on the macroscopic

spatial scale for the vj(xxx, t), the fraction of the population density at position x in state j,

j = {0, 1, . . . , k},

∂v0(xxx, t)

∂t
= vk(xxx, t)− v0(xxx, t)λkRk(xxx, t)(2)

∂vj(xxx, t)

∂t
= [vj−1(xxx, t)− vj(xxx, t)]λkRk(xxx, t), j = 1, . . . , k − 1(3)

∂vk(xxx, t)

∂t
= −vk(xxx, t) + vk−1(xxx, t)λkRk(xxx, t),(4)

where xxx ∈ Λ ⊂ Rd is a cubical box of sides L, with periodic boundary conditions and uniform

density equal to one,

Rk(xxx, t) =

∫
Λ

J(xxx− yyy)vk(yyy, t)dyyy.(5)

We assume that J(r) has a range less than L/2. In the spatially uniform state, when vj(yyy, t)

is independent of yyy, then, by (5) and (1), Rk = vk.
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It follows from equations (2)-(4) that starting with vj(xxx, 0) ≥ 0,
∑k

j=0 vj(xxx, 0) = 1, then

k∑
i=0

vi(xxx, t) =
k∑
i=0

vi(xxx, 0) = 1, vi(xxx, t) ≥ 0, for all t ≥ 0.(6)

It is clear from the above equations that if vk(xxx, 0) = 0 for all xxx then vi(xxx, t) = vi(xxx, 0)

and the system remains in its initial state forever. This is not very interesting and we shall

assume from now on that vk(xxx, 0) > 0 for some values of xxx. It is still possible however that

vk(xxx, t)→ 0 as t→∞. We shall call that “extinction”.

Using (6) we can replace vk(x, t) in (2) and (3) by

vk(x, t) = 1−
k−1∑
j=0

vj(x, t)

leading to a closed set of equations for vj(x, t), j = 0, . . . , k − 1 with

Rk(x, t) =

∫
Λ

J(x− y)
[
1−

k−1∑
j=0

vj(y, t)
]
dy.

3. Stationary States

Consider now the stationary solutions of (2)-(4). We see that in addition to the Rk = 0

solution corresponding to vk = 0, there is a stationary solution Rk(xxx, t) = R̄(xxx) > 0 of the

form

v̄j(xxx) =
1

λkR̄(xxx) + k
, j ≤ k − 1(7)
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while

v̄k(xxx) =
λR̄(xxx)

1 + λR̄(xxx)
,(8)

and R̄(xxx) satisfies the eq.

R̄(xxx) = λ

∫
J(xxx− yyy)

R̄(yyy)

λR̄(yyy) + 1
dyyy.(9)

Equations (7)-(9) have the spatially uniform solution

R̄ = v̄k =
λ− 1

λ
and v̄j =

1

λk
, j < k,(10)

which is a physical sustaining stationary solution with v̄k > 0, for λ > 1. For λ ≤ 1 the only

physical stationary solution is v̄k = 0.

Note that equation (9) for the stationary R̄(xxx) is independent of k. Thus if there exists

a non-vanishing, spatially dependent stationary state R̄(xxx), then it will be so for all k. We

will show in section 6 that for k = 1, the only stationary nonzero vk is the spatially uniform

one. Hence this will be true for all k.

The stationary state v̄vv = (v̄0, . . . , v̄k) given in (10) is linearly stable (as shown in section

5), so if we start close enough to v̄vv then the system will always approach v̄vv as t → ∞. On

the other hand there are, as shown in section 4 for k > 1, initial uniform states vj(0) with

vk(0) > 0 such that vk(t)→ 0 as t→∞. Initial states vj(xxx, 0) close to vj(0) would also have

vk(xxx, t)→ 0 as t→∞ for all xxx; see figure 1 and section 7.
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4. Solution of the macroscopic equations in the spatially uniform case

The macroscopic equations in the spatially uniform case take the form

dv0

dt
= vk − (kλvk)v0(11)

dvj
dt

= (kλvk)[vj−1 − vj], j = 1, . . . , k − 1(12)

dvk
dt

= −vk + (kλvk)vk−1(13)

where vj(t) = fraction of neurons in state j = 0, 1, . . . , k.

To simplify equations (11)-(13), we introduce the variable r(t) defined by the equations

dr

dt
= kλvk, r(0) = 0.

Writing vj(t) = ṽj(r(t)), valid as long as vk > 0, we get

dṽ0

dr
= −ṽ0 + q0, q0 =

1

kλ
,(14)

dṽj
dr

= ṽj−1 − ṽj, j = 1, . . . , k − 1,(15)

dṽk
dr

= ṽk−1 + qk, qk = −q0 = − 1

λk
.(16)

The autonomous equations for j = 0, 1, . . . , k − 1 can be rewritten in vector form

dṽvv

dr
= Aṽvv + qqq, ṽvv(0) = vvv(0)(17)

where ṽvv = (ṽ0, ṽ1, . . . , ṽk−1)T , qqq = (q0, 0, . . . , 0)T , and A is a k × k square matrix with

i, j ∈ {0, 1, . . . , k − 1}. A has −1’s along the diagonal and +1’s along the first subdiagonal:
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AAAAAAAAA = −IIIIIIIII +BBBBBBBBBk, BBBBBBBBBk =



0
1 0

1
. . .

1 0
1 0

 .(18)

Note that in successive powers of Bk, the +1’s move to lower subdiagonals:

(BBBk)i,j = δi−1,j, (BBB
2
k)i,j = δi−2,j, . . . , (BBB

k−1
k )i,j = δi−k+1,j, and BBBl

k = 000 for l ≥ k.

Equation (17) has the solution

ṽvv(r) = eArṽvv(0) +

∫ r

0

esAqqqds.(19)

Using equation (18), and the fact that Bk
k = 0, we have that

eAr = e−r1e−Br = e−r
[
1 + rBk +

r2

2
B2
k + · · ·+ rk−1

(k − 1)!
Bk−1
k

]
.

Each term within the square brackets corresponds to a distinct subdiagonal, so the matrix

eAr is 0 above the diagonal and constant along each subdiagonal. Let Hj be the value in the

jth subdiagonal: explicitly,

Hj(r) = e−r
rj

j!
,

for j = 0, . . . , k − 1. Then (19) can be expanded to give an explicit solution for ṽj in terms

of r.

ṽj(r) =

j∑
i=0

Hj−iṽi(0) +
1

kλ

∫ r

0

Hj(s)ds, j = 0, . . . , k − 1,(20)
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We also have

ṽk(r) = 1−
k−1∑
j=0

ṽj(r)(21)

= 1−
k−1∑
j=0

j∑
i=0

Hj−i(r)ṽi(0)− 1

kλ

∫ r

0

k−1∑
j=0

Hj(s)ds.

Clearly ṽi → v̄i = (λk)−1 for i < k, and ṽk → v̄k = (λ− 1)/λ as r →∞. Recalling now that

dr/dt = kλvk, we get

dr

dt
= k
(
λ− 1− λ

k−1∑
j=0

j∑
i=0

Hj−i(r)
[
vi(0)− 1

λk

])
= φ(r),(22)

which is an autonomous ODE, emphasized by introducing the notation φ(r) on the right.

The behavior of r(t) can then be determined by analyzing φ(r).

Starting with vk(0) > 0, we see that φ(0) > 0, and so r(t) is monotone increasing, and

satisfies

t =

∫ r

0

ds

φ(s)
(23)

so we have either

1. there exists r0 the smallest positive solution to φ(r) = 0, such that t→∞ as r → r0,

or

2. the integral is finite, in which case r → ∞ as t → ∞. This will certainly be the case

if φ(r) > 0 for all r > 0.

In case 1, since φ(r) = dr/dt = kλvk, we see that vk → 0 as t→∞; that is, in this case the

system goes to an inactive state with the firings dying out. In case 2, we see by equation
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(22) that as t→∞,

vk(t)→
φ(∞)

λk
= 1− k

λk
= v̄k,

and by equation (20) for j < k, that

vj(t)→ ṽj(∞) =
1

kλ
= v̄j,

so the system goes to the unique sustaining stationary state.

Illustrative Examples

The k = 1 case. In this case,

dr

dt
= λv1(t) = λ

(
1− e−rv0(0)− 1

λ

∫ r

0

e−sds

)
= φ(r).(24)

If 0 ≤ v0(0) < 1, then it can be checked that the right-hand side of equation (24) is bounded

below by a positive constant for all r ≥ 0. Therefore the system always approaches the

sustaining steady state solution if v1(0) > 0. More explicitly, we have in this case, v0(t) =

1− v1(t), so v1(t) satisfies the autonomous equation

dv1(t)

dt
= (λ− 1)v1(t)− λv2

1(t),(25)

whose solution is

v1(t) =
v1(0)

λ
λ−1

v1(0) +
(
1− λ

λ−1
v1(0)

)
e−(λ−1)t

→ v̄1 =
λ− 1

λ
as t→∞.(26)
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Thus for k = 1 any initial state with v1(0) 6= 0 will approach, as t → ∞, the sustaining

stationary state exponentially, as long as λ > 1.

Thinking of the process as a mean field model of infection, with v1 representing the infected

fraction of the population the model predicts as in the standard contact process a persistent

percentage of infected individuals for λ > 1, the percentage increasing with λ. For λ < 1,

v1(t)→ 0, there is no epidemic, as everyone gets eventually cured.

The k = 2 case. Unlike the k = 1 case, here it is possible to start the system with v2(0) > 0

and still have the firing die out, v2(t)→ 0 as t→∞.

Writing the solution (20) for k = 2, we get,

ṽ0(r) + ṽ1(r) =
1

λ
[1− e−r]− 1

2λ
re−r + v0(0)e−r[1 + r] + v1(0)e−r.

This yields

φ(r) = 2λ[1− ṽ1(r)− ṽ0(r)](27)

= 2(λ− 1)(1− e−r) + re−r[1− 2λv0(0)] + 2λe−r[1− v1(0)− v0(0)].

Clearly if v0(0) < 1
2λ

then φ(r) > 0 for all r > 0 and the system will go to the sustaining

stationary state. For v0(0) close to 1, there exists r0 > 0 for which φ(r0) = 0, in which case

the system goes to an inactive state with the firing dying out, i.e., v2 → 0 as t → ∞. The

region in the v0(0), v1(0) plane for which this occurs shrinks as λ increases, as demonstrated

numerically in figure 1. We expect similar behavior for k > 2. In fact it is easy to see from

(22) that if vi(0) ≤ 1
λk

for all i ≤ k − 1 then φ(r) > 0.
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Figure 1. Solutions of (27) for the k = 2 spatially uniform case, indicating in black
the initial conditions (v0(0), v1(0)) which go to the extinct states v2 = 0 as t→∞.
The extinct states are indicated by the dashed line. The sustaining stationary state
v̄0 = v̄1 = 1/(2λ) is shown by a red dot: it attracts all initial states in the white
region below the dotted line.

5. Linear Stability of the Sustaining State

Let us consider now the linear stability of the sustaining stationary states for general k

v̄j =
1

λk
, j < k, v̄k = 1− 1

λ
.

Let vj(xxx, 0) = v̄j + fj(xxx, t). Then setting

vj(xxx, t) = v̄j + fj(xxx, t),

The conditions

k∑
j=0

fj(xxx, t) = 0,

1− v̄j ≥ fj(xxx, t) ≥ −v̄j
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are satisfied for all t ≥ 0 if they are satisfied for t = 0.

Setting (λ− 1)k = α, we obtain to first order in the fj,

∂f0

∂t
(xxx, t) = −αf0(xxx, t) +

∫
J(xxx− yyy)[fk(xxx)− fk(yyy)]dyyy(28)

∂fj
∂t

(xxx, t) = α[fj−1(xxx, t)− fj(xxx, t)], j = 1, . . . , k − 1.(29)

Taking the Fourier series in xxx,

f̂j(ξξξ, t) =
1

Ld

∫
Λ

fj(xxx, t)e
−2πiξξξ·xxxdxxx, j = 0, . . . , k − 1,(30)

where ξξξ = (ξ1, . . . , ξd) ∈ (L−1Z)d, gives

∂f̂0

∂t
(ξξξ, t) = −αf̂0(ξξξ, t) + f̂k(ξξξ, t)

(
1− Ĵ(ξξξ)

)
(31)

∂f̂j
∂t

(ξξξ, t) = α[f̂j−1(ξξξ, t)− f̂j(ξξξ, t)], j = 1, . . . , k − 1.(32)

Letting β(ξξξ) = (1− Ĵ(ξξξ))/α, we can write the above equations in vector form

∂f̂ff

∂t
(ξξξ, t) = α(AAA− β(ξξξ)MMM)f̂ff , MMM =



1 1 · · · 1

0 0 · · · 0

...
. . .

...

0 0 · · · 0


,(33)

where MMM is the k × k matrix with ones in the top row and zeros elsewhere.

We will show that for any fixed value of ξξξ, each eigenvalue of the matrix (AAA − βMMM) has

a negative real part, implying the convergence of f̂ff(ξξξ, t) to 000 as t → ∞. The characteristic
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polynomial of the matrix, computed by cofactor expansion along the top row, is

p(x) = (−1− β − x)−
k∑
k=2

(−1)j(−β)(+1)j−1(−1− x)k−j(34)

= (−1)k
[
(1 + β + x)(1 + x)k−1 + β

k∑
j=2

(1 + x)k−j
]
.

Letting p(x) = 0, y = x+ 1, and noting that y = 1 is not a solution to the equation, yields

0 = (y + b)yk−1 + β
k∑
j=2

yk−j(35)

= yk + β
k∑
j=1

yk−j

= yk + β
1− yk

1− y
,

which simplifies to

yk(y − (1− β)) = β.(36)

We now note that β ≥ 0. This follows from the fact that J is a real-valued function with

J(xxx) = J(−xxx) ≥ 0 and
∫

Λ
J(xxx)dxxx = 1. Therefore applying the absolute value to both sides

of (36) gives

|y|k|y − (1− β)| = β.(37)

We can deduce that |y| 6= 1, as otherwise the equation (37) implies y = 1, and we have

remarked that this not a solution to the characteristic equation. Therefore either

1. |y| < 1, or
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2. |y| > 1.

In case 1, it follows easily that the real part of y is less than 1, and therefore the real part of

x is negative. Case 2 implies that |y − (1− β)| < β, from which it also follows that the real

part of y is less than 1, and that the real part of x is negative. This implies that f̂j(ξξξ, t)→ 0

for all fixed ξ, and from this point, we can prove that fff converges to 000 uniformly.

Linear stability of the inert state v0 = 1. Having shown the linear stability of the

stationary sustaining state we consider now the linear stability of the state vk(t) = vk(0) =

0. Rather than considering all initial states vj(0),
∑k−1

j=0 vj(0) = 1, we consider here only

perturbations around the extreme case v0(xxx, t) = 1, vj(xxx, t) = 0, j > 0.

Let

v0(xxx, t) = 1 + f0(xxx, t), f0(xxx, t) < 0,(38)

vj(xxx, t) = fj(xxx, t), fj(xxx, t) > 0, j = 1, . . . , k,
k∑
j=0

fj = 0.(39)

Linearizing in the f ’s gives, for k > 1,

∂f0

∂t
(xxx, t) = fk(xxx, t)− λk

∫
J(xxx− yyy)fk(yyy, t)dyyy(40)

∂f1

∂t
(xxx, t) = λk

∫
J(xxx− yyy)fk(yyy, t)dyyy(41)

∂fj
∂t

(xxx, t) = 0, for j ∈ {2, . . . , k − 1},(42)

∂fk
∂t

(xxx, t) = −fk =
k−1∑
j=0

fj, implying fk(xxx, t) = fk(xxx, 0)e−t,(43)

so for k > 1 the dead state in the vicinity of v0(xxx, t) = 1 is linearly stable, see figure 1.
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For k = 1, f1(xxx, t) ≥ 0,

∂f1

∂t
(xxx, t) = −f1(xxx, t) + λ

∫
J(xxx− yyy)f1(yyy, t)dyyy.(44)

Taking spatial Fourier transforms yields

∂f̂1

∂t
(ξξξ, t) = (λĴ(ξξξ)− 1)f̂1(ξξξ, t),(45)

which has the solution

f̂1(ξξξ, t) = f̂1(ξξξ, 0)e(λĴ(ξξξ)−1)t.(46)

Since Ĵ(0) = 1 there will be growth at least for small values of ξξξ, for which f̂1(ξξξ, 0) > 0,

so the state v0 = 1 is unstable for λ > 1. In fact as we shall now show for k = 1, any

perturbation of the state v0(0) = 1, will lead asymptotically to the stable stationary state

v̄0 = λ−1, v̄1 = (λ− 1)/λ.

6. k = 1, general case.

In this two-level case, v1(xxx, t) = 1− v0(xxx, t) is the only unknown function. It satisfies the

equation

∂v1(xxx, t)

∂t
= −v1 + λ(1− v1(xxx, t))

∫
J(xxx− yyy)v1(yyy, t)dyyy.(47)

Define f(xxx, t) by

f(xxx, t) = v1(xxx, t)− v̄1, v̄1 =
λ− 1

λ
.(48)
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Using the fact that
∫
J(xxx− yyy)dyyy =

∫
J(xxx− yyy)dxxx = 1 we get from (47)

∂f(xxx, t)

∂t
=− (λ− 1)f(xxx)(49)

+

∫
Λ

J(xxx− yyy)[f(yyy)− f(xxx)]dyyy

− λ
∫

Λ

J(xxx− yyy)f(yyy)f(xxx)dyyy.

= −
∫
dyyyJ(xxx− yyy)[f(xxx)− f(yyy)]− λ

∫
dyyyJ(xxx− yyy)f(x)

[
λ− 1

λ
+ f(yyy)

]

Multiplying (49) by f(xxx, t) and integrating over xxx yields

1

2

d

dt

∫
Λ

f 2(xxx, t)dxxx =− 1

2

∫∫
J(xxx− yyy)[f(xxx)− f(yyy)]2dxxxdyyy(50)

− λ
∫∫

J(xxx− yyy)f 2(xxx, t)v1(yyy, t)dyyydxxx ≤ 0

The inequality is strict for all initial conditions with v1(xxx, 0) not identically 0, and shows

that v1(xxx, t)→ v̄1 as long as v1(xxx, 0) > 0.

Traveling wave solution. We consider the time evolution of v1(x, t) when x ∈ R, i.e.,

we let L → ∞, and the initial state is one in which v1(x, 0) goes to the stable solution

v̄1 = (λ−1)/λ as x→ −∞ and to the unstable solution v1 = 0 as x→∞. Equation (47) for

k = 1 can be considered as a special case of the non-local KPP equation, with the diffusion

constant set equal to zero [1]. To get a feeling for the evolution of such an initial state we

first consider the limiting case when the width J(x− y) goes to 0, i.e.,

J(x− y) = δ(x− y).(51)
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Equation (47) then has the traveling wave solution

u1(x, t) =
λ− 1

λ

[
1− tanh[α(x− V t)]

]
/2, αV = (λ− 1)/2(52)

Numerical solutions of (47) with

J(x) =
1

2b
θ(b− |x|), θ(x) =


1, x ≥ 0,

0, x < 0,

and initial conditions

v1(x, 0) =


λ−1
λ
, for x < 0,

0, for x > 0,

show that v1(x, t) approaches a form close to (52) with αV ∼ (1−λ)/2 as t→∞; see figure

2. Similar behavior is found for J(x) a Gaussian.

7. Conclusions

We have shown that when λ > 1, the macroscopic equations (2)-(4) have a unique, linearly-

stable stationary state with nonzero firing rates vk(xxx, t) given by (10), which we refer to as

the sustaining stationary state. For k = 1, the basin of attraction of the sustaining stationary

state includes all initial conditions such that v1(xxx, 0) is not identically 0 for all x. The case

k > 1 is qualitatively different: even starting with vk(0) > 0 we can have vk(t) → 0. We

have shown this explicitly for k = 2 and found that there are linearly-stable extinct states

like vvv(x, t) = (1, 0, . . . , 0).
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Figure 2. Numerical simulation of k = 1 traveling front solutions. In all plots,
λ = 1.1 and J(x) = 1 for |x| < 1/2 and 0 otherwise. A. Traveling front arising from
step function initial conditions. At t = 0, v1(x) = v̄1 for x < 0 and 0 otherwise. The
traveling front is well approximated by a rescaled and shifted hyperbolic tangent
function, shown in red. B. Fronts developing from initial conditions set to eq. (52)
with α = 0.1 and α = 0.05. Front velocity is approx. double for α = 0.05 compared
to 0.1. C. Dependence of front velocity on α. v1(x) is initialized with eq. (52) for a
range of α, and velocity is computed numerically. Comparison with velocity given
in eq. (52) is given by the red dashed line. Note that for 1/α close to 0, the initial
condition is nearly a step function as in panel A.

For k = 2, we have seen in numerical simulations that even for initial conditions with

vvv(x, 0) = v̄vv for x in a small region of R and vvv(x, 0) = (1, 0, 0) outside of that region (J

the same as in figure 2), the firing (epidemic) can die out and approach an extinct state.

As the size of the region increases, eventually a point is reached where the firing becomes

self-sustaining and spreads throughout the system. We conjecture that there exists some

M > 0, depending on J(x), such that the initial condition with the region |xxx| < M set to v̄vv

will necessarily converge to v̄vv pointwise on the whole domain.

In the one-dimensional case x ∈ R, we showed the existence of traveling wavefront solutions

vvv(x, t) = vvv(x − V t) in the k = 1 case, with an analytic solution in the J = δ case and

numerically for other forms of J . Wavefront solutions have been studied extensively in the

case of neural models like the mean field Wilson-Cowan equations [13]. It remains to be
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rigorously shown that traveling fronts exist in the case k > 1. Based on numerical solutions

of the equations, we conjecture that stable traveling wave solutions exist for k > 1, and

that there are qualitative differences with the case k = 1. The existence of linearly stable

extinct states like vvv = (1, 0 . . . , 0) when k > 1 changes the properties of traveling fronts with

vvv(−∞) = v̄vv and vvv(∞) = (1, 0, . . . , 0). In particular, we conjecture that there exists unique

traveling waves, with wave velocity proportional to the width of J .

As the microscopic system described in the Introduction has been inspired by integrate and

fire models from neuroscience, we are interested in extensions of the model to include more

realistic components of biological neurons and neural networks. In particular, including sites

in the model which have an inhibitory effect on nearby sites will lead to a richer dynamical

landscape. Other models with mixed excitatory and inhibitory components have been shown

to have oscillatory activity, and such models have been used to study brain rhythms (e.g., [2],

[10], [14]). Additionally, the effects of inhibition on the propagation of traveling fronts in the

brain has been examined in [13]. An interesting question is how brain activity is contained

and localized to a particular region when externally driven. We would like to explore this

question in our model with the addition of both inhibition and an external drive component.
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