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Abstract
We solve exactly the one-dimensional Schrödinger equation for ψ(x, t) describ-
ing the emission of electrons from a flat metal surface, located at x = 0, by a
periodic electric field E cos(ωt) at x > 0, turned on at t = 0. We prove that for all
physical initial conditions ψ(x, 0), the solution ψ(x, t) exists, and converges for
long times, at a rate t−

3
2 , to a periodic solution considered by Faisal et al (2005

Phys. Rev. A 72 023412). Using the exact solution, we compute ψ(x, t), for
t > 0, via an exponentially convergent algorithm, taking as an initial condition
a generalized eigenfunction representing a stationary state for E = 0. We find,
among other things, that: (i) the time it takes the current to reach its asymptotic
state may be large compared to the period of the laser; (ii) the current averaged
over a period increases dramatically as �ω becomes larger than the work func-
tion of the metal plus the ponderomotive energy in the field. For weak fields,
the latter is negligible, and the transition is at the same frequency as in the Ein-
stein photoelectric effect; (iii) the current at the interface exhibits a complex
oscillatory behavior, with the number of oscillations in one period increasing
with the laser intensity and period. These oscillations get damped strongly as x
increases.

Keywords: photoemission, Schrödinger equation, exact solution, electron emis-
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1. Introduction

There have been many advances in recent years in the development and application of short
intense laser pulses to produce femto-second and even atto-second beams of electrons from
metallic surfaces [1–26]. A full microscopic description of the short-time behavior of the
emission process is therefore highly desirable.

In this note, we present, for the first time, an exact solution for the time-dependent
Schrödinger equation describing the emission of electrons from a flat metal surface by an
oscillating electric field. We use the Sommerfeld model of quasi-free electrons with a Fermi
distribution of energies, confined by a step potential U = EF + W, where EF is the Fermi energy
and W is the work function of the metal. This setup was first used by Fowler and Nordheim
[27] in 1928 for a time-independent field, and is commonly used as a model for the process of
emission, both for a constant and an oscillating field [1, 4, 22, 24, 27–35]. In both cases one
imagines the metal occupies the half space x < 0, and focuses attention on electrons, part of
the Fermi sea, moving from the left towards the metal surface at x = 0. These are described
by a wave function eikx , k > 0, x < 0 and have energy 1

2 k2 (in atomic units). In the sequel, we
shall generally consider values of k such that 1

2 k2 = EF. The field is described classically.
The time evolution of the wave function of an electron in such a beam subjected to an

oscillating field for x � 0, is described by the one dimensional Schrödinger equation: for x ∈ R

and t > 0,

i∂tψ(x, t) = −1
2
Δψ(x, t) +Θ(x)(U − Ex cos(ωt))ψ(x, t) (1)

where Θ(x) = 0 for x < 0 and Θ(x) = 1 for x > 0, E is the electric field perpendicular to
the surface, ω

2π is the frequency and we are using atomic units � = m = 1. We note that in
experiments one usually applies the laser field to a sharp tip in order to enhance the strength
of the field. One also includes a carrier wave envelope. Here we ignore these as well as the
Schottky effect. Including them would greatly complicate the problem. We believe that the
simpler model considered here already captures many of the relevant physical phenomena so
we focus on its exact solution. The values of the field we use in our computations are those
generally used for the enhanced field at a sharp tip. The short time behavior would be the same
as if the field was cut off after some time t0.

In the absence of an external field, E = 0, the Schrödinger equation (1) has a ‘stationary’
solution e−i 1

2 k2tϕ0(x) in which there is, for k2 < 2U, a reflected beam of the same energy and
intensity as the incoming beam eikx and an evanescent, exponentially decaying tail on the right.
The requirement of continuity of ψ and its spatial derivative at x = 0 then gives [22]

ϕ0(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eikx +
ik +

√
2U − k2

ik −
√

2U − k2
e−ikx for x < 0

2ik

ik −
√

2U − k2
e−
√

2U−k2x for x > 0

(2)

The current,

j(x, t) := Im(ψ∗(x, t)∂xψ(x, t)) (3)

is zero and no electrons leave the metal.
In [36] we solved the time-dependent Schrödinger equation (1) for any initial condition,

including ϕ0(x), for the constant field. This corresponds to setting ω = 0 in (1). We showed
that ψ(x, t) converges, as t →∞, to the well known Fowler–Nordheim (FN) solution [27] for
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emission by a constant field. FN assumed a solution of (1), withω = 0, of the form e−
1
2 k2 tϕE(x),

so that ϕE(x) satisfies the equation

−1
2
ΔϕE +Θ(x)(U − Ex)ϕE =

1
2

k2ϕE. (4)

The solutionϕE(x) has the formϕE(x) = eikx + REe−ikx for x < 0 and an Airy function expres-
sion for x > 0. The FN computation of the tunneling current fromϕE(x) via (3), is still the basic
ingredient for the analysis of experiments at present [22]. The main modification is the use of
the Schottky factor [22, 35], rounding off the barrier at x = 0, which, as already noted by FN,
is only important for 1

2 k2 ∼ U.
The rate of convergence of the solution of the time-dependent Schrödinger equation (1),

with ω = 0 and an initial condition of the form (2), to the FN solution was shown in [36] to be
like t−

3
2 . Surprisingly, the deviation of the current from the FN solution becomes quickly very

small, so the ‘effective’ time of approach to the FN solution was found to be, for realistic values
of the parameters, of the order of femtoseconds. It is therefore not significant for emission in
constant fields acting over much longer times.

Here, we investigate solutions of (1) with E > 0, ω > 0 and general ψ(x, 0). This covers a
wide range of physical situations, depending on ω and E, ranging from mechanically produced
oscillating fields to those produced by lasers of high frequency. As the Keldysh parameter
γ := 2ω

E

√
W increases, the process goes from tunneling to multi-photon emission [37]. In sit-

uations in which the laser is turned on for only a short time, with pulses as short as a few
laser periods, knowing the early time behavior is important. In fact, we shall see later that the
asymptotic approach to the periodic state considered in Faisal et al [28], which we discuss in
detail in section 4, can be much longer than a laser period. Solving (1) for ω �= 0 turns out to
be much more difficult than the constant field case, since here, the solution cannot be written
in terms of known functions. The very existence of physical solutions, which are bounded at
infinity, is not mathematically obvious.

In addition to the work in [28] there have been very many studies of the emission pro-
cess using various approximations [1, 4, 24, 29–34, 38–41]. Of particular note is the work
of Yalunin et al [29] who consider the same setup as we (except for a phase difference in the
field). They use various analytic approximations for obtaining solutions of the periodic type
considered in [28]. They also carry out numerical solutions using the Crank–Nicolson method.
This method is discussed in section 3 and compared to the exact result in figure 5. As shown
there the Crank–Nicolson method is not correct for very short times. In particular, the current
does not tend to its initial value, zero, as time tends to 0, see [29, figure 5].

The outline of the rest of the paper is as follows. In section 2, we give a brief description of
the method used to solve (1). In section 3, we present the results for the initial state ψ(x, 0) =
ϕ0(x) in (2). In section 4, we describe the asymptotic form of ψ(x, t) as t →∞. The appendix
contains more information about the derivation of the solution of (1).

2. Solution of the Schrödinger equation

We solve (1) by using the one sided Fourier transforms ψ̂−(ξ, t) = 1√
2π

∫ 0
−∞ e−iξxψ(x, t) dx and

ψ̂+(ξ, t) = 1√
2π

∫∞
0 e−iξxψ(x, t) dx. These satisfy the equations

i
∂ψ̂−(ξ, t)

∂t
− ξ2

2
ψ̂− =

1√
2π

∂ψ

∂y
(0, t) − iξ

1√
2π

ψ(0, t) (5)
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and

i
∂ψ̂+(ξ, t)

∂t
+ i

E
2

cos(ωt)
∂ψ̂+

∂ξ
−
(
ξ2

2
+ U

)
ψ̂+(ξ, t)

=
1√
2π

∂ψ

∂x
(0, t) + iξ

1√
2π

ψ(0, t) (6)

Both (5) and (6) admit explicit solutions for initial values ψ̂±(ξ, 0) and specified boundary
values ψ(0, t) and ∂xψ(0, t), see the appendix. The continuity conditions for ψ and ∂xψ at
x = 0 then lead to an integral equation for ψ(0, t) of the form

ψ(0, t) = h(t) + Lψ(0, t) (7)

where L is some compact integral operator whose expression is rather involved, see the
appendix, and h(t) is a function of the initial condition ψ(x, 0). We prove the existence and
uniqueness of a physical solution of (7) for all t > 0, by showing that L is a contraction. Given
that solution ψ(0, t), we can obtain ψ(x, t) for all x by direct integration. To evaluate the solu-
tion numerically for the initial condition (2), we expand ψ(0, t) in a Chebyshev polynomial
series and identify the coefficients of this expansion. The complexity of this integral operator
L results in complex behavior of its solutions as discussed in the sequel. The full mathematical
proof of the existence and uniqueness of the solution of (1) will be presented separately [42].

3. Short time behavior

We carried out the numerical solution of the integral equation forψ0(t) (7) with initial condition
ϕ0(x) given in (2), using an exponentially convergent algorithm. The numerical computation
is based on expressing the solution ψ0(t) of (7) in terms of Chebyshev polynomials. Since this
solution becomes periodic at long times, it is actually convenient to first split time into small
intervals, and expand ψ0(t) into Chebyshev polynomials in each interval. Then, to compute
the right side of (7), we must compute integrals of ψ0(t), which we carry out using Gauss
quadratures. Once that is done, (7) is approximated (by truncating the Chebyshev expansion
and the Gauss quadratures) by a finite linear system of equations, which can be solved easily.
One has to pay attention to make sure that this approximation is good. In this work, we have
striven to ensure that the approximation converges to the exact solution exponentially fast as
the truncations of the Chebyshev expansion and Gauss-quadratures are removed. This is not
entirely trivial, as both ψ0 and L have square root singularities, so the Chebyshev polynomial
expansion and the Gauss quadratures have to be adjusted to take these into account.

We take �
2k2

2m = EF = 4.5 eV, W = 5.5 eV. Unless otherwise specified, we also take ω =

1.55 eV. The laser period τ = 2π
ω

is then equal to 2.7 fs.
Figure 1 shows the density at the interface |ψ0(t)|2. The maxima and minima of the density

are approximately in phase with the field. Figure 2 shows the values of the current j(0, t) passing
through the origin as a function of time for different strengths of the field, all at ω = 1.55 eV.
We see there a change of behavior as E increases from E = 1 V nm−1 to E = 30 V nm−1 (the
Keldysh parameter γ = 2ω

E

√
W goes from 18.6 to 0.62). For large values of E, fast oscillations

appear, which become faster and larger as E grows. In figure 3, the current is plotted for various
values of ω. It is seen there that the fast oscillations appear only for small values of ω. It
is also apparent that the frequency of these oscillations is not a function of just the Keldysh
parameter. In figure 4, we show a plot of the current for positive values of x, and see that the
fast oscillatory behavior within one period is strongly damped as x increases. The fact that
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Figure 1. The density |ψ0|2 (recall that ψ0(t) ≡ ψ(0, t) is the wavefunction at x = 0) as
a function of tω

2π for three periods, with E = 15 V nm−1, ω = 1.55 eV. The dotted line
is the graph of cos(ωt) (not to scale).

the electrons cross the surface at different phases of the field does not fit in with the ‘simple
man’ scenario [24, 43, 44], where electrons are ejected out of the metal only when the field is
positive, or even only when the field is at its maximum. These oscillations at x = 0 are also
observed in the approximate solution [29], though the details vary. We note that the height of
the first maximum is linear in E, while its location is almost independent of E. Note also that
the rapid oscillations occur mostly when the field is increasing. In the conclusions we further
discuss these oscillations and their possible link to the physics of this process.

In figure 5, we show a comparison of our solution with the results obtained from a direct
solution of (1) via the Crank–Nicolson algorithm. The agreement, especially for the location
of the maxima and minima after very early times is very good. It is not so, however, for very
short times. This is expected since the Crank–Nicolson scheme is based on approximating
derivatives by finite differences. However, at short times, ψ(0, t) ∼ t

3
2 , which has a singular

second derivative at 0, so ∂tψ is poorly approximated by finite differences. The fact that the
result of the Crank–Nicolson algorithm is different at short times affects the values at later
times, as the initial error effectively changes the initial condition. The agreement at the end of
one period is still rather good, indicating that the behavior of the solution behaves weakly on
the initial condition.

Note, also, that the Crank–Nicolson method requires a cut-off in x, restricting ψ(x, t) to
x ∈ [−a, a]. This causes distortions in ψ due to reflections from these artificial boundaries, and
so can only be used for short times (reflections can be avoided by using non-local boundary
conditions, such as ‘transparent boundary conditions’).

In figure 6, we plot the running average of the current

〈 j〉t :=
1
τ

∫ t

t−τ

ds j(0, s), τ :=
2π
ω
. (8)

We plot 〈 j〉t at x = 0 for ω = 6 eV, E = 10 V nm−1, γ = 9.6. It is seen there that the relative
deviation of 〈 j〉t from its constant asymptotic value, described in section 4, remains significant
even when t ≈ 48τ .

The rate of the decay of the average current to its asymptotic value is evaluated in figure 7. In
order to compute this rate without having to guess the asymptotic value, we proceed as follows.
At the end of every laser period tn = 2π

ω n, we compute the minimal value μn and maximal value

5
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Figure 2. The normalized current j
k at the interface (recall that we are using atomic units,

so j
k is dimensionless) as a function of tω

2π for ω = 1.55 eV and three values of the elec-
tric field: E = 1, 15, 30 V nm−1. The Keldysh parameter γ = 2ω

E

√
W for these fields is,

respectively, 18.6, 1.24 and 0.621. The dotted line is the graph of cos(ωt) (not to scale).
As the field increases, fast oscillations in the current appear. These fast oscillations
mostly occur while the field is increasing.

6
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Figure 3. The normalized current j
k at the interface as a function of tω

2π for two values of
the Keldysh parameter. In (a), γ = 0.621, the blue curve has E = 30 V nm−1 and ω =
1.55 eV, and the red curve has E = 15 V nm−1 and ω = 0.755 eV. In (b), γ = 1.24,
the blue curve has E = 15 V nm−1 and ω = 1.55 eV, and the red curve has E =
7.5 V nm−1 and ω = 0.755 eV. At fixed E, the frequency of the oscillations decreases
with ω (compare the red curve in (a) with the blue curve in (b)). However, this frequency
does not only depend on the Keldysh parameter.

Mn of the average current in the period ( 2π
ω

(n − 1), 2π
ω

n]. The plot shows Mn − μn as a function

of t, and shows that 〈 j〉t ≈ 〈 j〉∞ + g(t)t−
3
2 , where g(t) is bounded and asymptotically constant.

This is consistent with the exact result in section 4.
In figure 8, we show an estimate of the asymptotic average current as a function of ω in

the vicinity of the one-photon threshold ωc = W + E2

4ω2 for E = 3, 10, 30 V nm−1. In order to
reduce the fluctuations and estimate the long-time average current, we took a second average,
and computed the average over a laser period of the average current, defined as

〈〈 j〉〉 :=
1
τ

∫ T

T−τ

dt 〈 j〉t. (9)

By dividing the current by ε2, we see that the average of the average of the current is propor-
tional to ε2. We see that there is a steep increase in 〈〈 j〉〉 as ω increases pastωc. This is precisely
what is observed in experiments on the photoelectric effect, where the emission of electrons
from the metal surface has such a threshold [45]. This became a key element in Einstein’s

7
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Figure 4. The normalized current j
k as a function of tω

2π at positive x. The parameters here
are E = 30 V nm−1 and ω = 1.55 eV, and the values of x are 0.12 nm (red), 0.24 nm
(green) and 0.37 nm (purple). The fast oscillations die down as x gets larger.

Figure 5. The current computed with our method (blue), compared with the
Crank–Nicolson algorithm (red), for ω = 1.55 eV and E = 15 V nm−1. The maxima
and minima seem to occur at the same time, and the agreement is pretty good for
t > π

ω . The inset focuses on short times, for tω
2π < 0.0005, for which the Crank–Nicolson

algorithm produces a different, and unphysical result: the current initially shoots down
to negative values before rising back up.

ansatz of localized photons. Here, in the classical treatment of the laser field, this phenomenon
appears as a consequence of the quantum treatment of the electrons. It shows that, despite it
simplicity, this model captures essential features of the physical phenomena.

4. Long time behavior of ψ(x, t)

The long time behavior of the system is given by the poles of the Laplace transform

ψ̂(x, p) =
∫ ∞

0
dt e−ptψ(x, t) (10)

8
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Figure 6. The normalized average current 1
k 〈 j〉t as a function of tω

2π at x = 0 (blue) and
x = 0.37 nm (red) for ω = 6 eV and E = 10 V nm−1. The inset shows the same data,
restricted to between the 12th and 48th period. Here, ω is large enough that absorbing
one photon suffices to overcome the work function. Even after 48 periods the average
current has not converged to its asymptotic value.

Figure 7. The convergence rate to the asymptote of the average current as a function of
tω
2π on a log–log plot for ω = 6 eV and E = 10 V nm−1. The dots are computed at the
end of each period tn = 2π

ω n, and their value is the difference between the maximum Mt

and the minimum μt of the normalized average current 1
k 〈 j〉t in the period immediately

preceding tn. The red line is a plot of 0.0030 × ( tω
2π )−

3
2 , which fits the data rather well.

on the imaginary axis, as can be seen by taking the inverse Laplace transform

ψ(x, t) =
∫ i∞

−i∞
dp eptψ̂(x, p) (11)

where the path of integration can be deformed to get contributions only from poles and branch
cuts in the negative real half-plane Re(p) � 0. The poles that have negative real parts would
give rise to exponentially decaying terms while branch cuts generally contribute t−

3
2 terms to

the approach to the asymptotic state. The contribution from poles on the imaginary p-axis then

9
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Figure 8. The average of the current 1
ε2
〈〈 j〉t〉 after 12 periods as a function of ω − ωc,

for various values of the field: E = 3Vnm−1 (blue), E = 10Vnm−1 (red), E = 30Vnm−1

(green). We see a sharp transition as ω crosses ωc.

give the long-time asymptotics of ψ is of the form

ψ(x, t) ∼ e
1
2 ik2tψ̄(x, t) (12)

where ψ̄(x, t) is periodic in t with period 2π/ω and 1
2 k2 is the energy of the electrons in the

incoming beam. This corresponds to the poles of ψ̂(p, t) on the imaginary axis being at

p = −1
2

ik2 + iωn, n integer (13)

As shown in [42], ψ̄(x, t) coincides with the wave function U(x, t) computed by Faisal et al
[28]. In that work it was assumed that (1) has a solution of the form (12) with an incoming
beam eikx for x < 0, without considering any initial conditions. Computing the residues at the
poles on the imaginary axis we show that, for x < 0,

ψ̄(x, t) ∼ eikx +
∑
m∈Z

e−imωte−ix
√

k2+2mωRm (14)

and for x > 0,

ψ̄(x, t) ∼ ei E
ω x sin ωt

∑
n,m∈Z

e−inωtg(κm)
n−me−κmxTm (15)

where

κm =

√
2U − k2 +

E2

2ω2
− 2mω (16)

and

g(κm)
n−m =

ω

2π

∫ 2π
ω

0
dt e−i(n−m)ωte

i E2

4ω2
ω sin(2ωt)+κm

2E
ω2 cos(ωt)

. (17)

This is exactly of the form obtained in [28]. Rn and Tm are computed by matching boundary
values of ψ(x, t) and ∂xψ(x, t) at x = 0. The phase ei E

ω x sin ωt comes from a change of gauge
with respect to [28] (we use the ‘length’ gauge, instead of the ‘magnetic gauge’ [40]).

A physical interpretation of (14) and (15), see [28], is that an electron in a beam coming from
−∞ and moving in the positive x-direction, eikx , k > 0, absorbs or emits ‘m photons’ and is

10
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either reflected, transmitted or damped. Transmission occurs when mω > U + E2

4ω2 − k2

2 ≡ ωc.

Since we are taking k2

2 = EF, we have that U − k2

2 = W, the work function. The E2

4ω2 in (16) term
corresponds to the ponderomotive energy of the electron [38] in the laser field. Damping occurs
when mω < ωc. ωc is the minimum frequency necessary to let the electron with incoming
kinetic energy 1

2 k2 (in the x-direction) propagate to the right of the potential barrier. For large
x > 0, the current in the m-photon channel will have kinetic energy mω − ωc and the current
will be given by

√
mω − ωc. This will also be equal to the average current at large t, which is

independent of x. This explains the picture in figure 8 for m = 1. The larger m values necessary
for smaller ω are difficult to see.

5. Concluding remarks

In this paper we presented, for the first time, the exact solution of the time-dependent
Schrödinger equation (1). This is the simplest physical model describing the emission of elec-
trons from a flat metal surface by an oscillating field. The model was first used by Fowler and
Nordheim [27] for emission by a constant electric field, ω = 0. Their formula for the steady
state current, obtained from the stationary solution of (1), with ω = 0, still forms the basis
of the interpretation of experiments at present time [22]. There are modifications due to the
Schottky effect, but these are not expected to change the basic results. The situation is differ-
ent when the field acting on the metal surface is periodic in time. Equation (1) no longer has
an explicit ‘stationary’ (in this case, periodic) solution of the type considered by Faisal et al
[28]. In fact, even the existence of physical solutions of (1), i.e. ones bounded for all x, is prob-
lematic from a mathematical point of view. This is what we establish here by proving that the
integral equation (7) indeed has solutions which give a physical ψ(x, t) for all t > 0. We prove
this for a very general class of initial conditions and carry out exact numerical solutions for the
case of a particular physically motivated initial state. The numerics are proven to give arbitrary
accuracy for any fixed t and specified bounded initial state.

Our results reveal, as shown in the figures, many new features of the exact solution of (1),
e.g. the slow convergence in time of the average of the current to its asymptotic value, and the
rapid oscillations at the interface for strong fields and small ω.

A more detailed examination of our solution shows that the rapid oscillations are confined
to a very narrow region close to the metal surface. A time Fourier transform of the wave func-
tion—which corresponds to looking in energy space—indicates that these fast oscillations are
due to energy absorptions, En = n�ω for all n such that En exceeds the work function plus the
ponderomotive energy. Farther away from the metal surface, due to the transition to a semiclas-
sical behavior, energy absorption and hence the rapid oscillations, cease rapidly. The purely
quantum processes occur in the tunneling region proximal to the surface.

The slow convergence of the average of the current indicates that different initial conditions
may give different results in short pulse experiments. On the other hand, we prove that there is
indeed an asymptotic periodic state of the form assumed by Faisal et al [28]. The asymptotic
form (14) and (15) is true for all initial conditions of the formΘ(−x)eikx + f0(x) as long as f0(x)
only contains terms which are square integrable. The additional terms in ψ(x, t) which come
from f0(x) go to zero as t →∞. This follows from the fact, proven in [42], that the Floquet
operator associated to (1) has no point spectrum.
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Appendix A. The exact solution of (1)

Let ψ0(t) = ψ(0, t) and ∂xψ0(t) = ∂xψ(x, t)|x=0. The operator L in (7) is given by

Lψ0(t) :=
E

2ω
√

2iπ

∫ t

0
ds ψ0(s)

α(s, t)√
t − s

ei f (s,t) +
1

2π

∫ t

0
du ψ0(u)

∫ t

u
ds

g(s, t)√
s − u

(A1)

where

α(s, t) := sin(ωs) +
cos(ωt) − cos(ωs)

ω(t − s)
(A2)

f (s, t) :=
E2(cos(ωt) − cos(ωs))2

2ω4(t − s)
−
(

V +
E2

4ω2

)
(t − s)

+
E2

8ω3
(sin(2ωt) − sin(2ωs)) (A3)

and

g(s, t) :=
ei f (s,t) − 1

2(t − s)
3
2
+

i∂s f (s, t)ei f (s,t)

√
t − s

. (A4)

The function h in (7) is given by

h(t) := h+(0, t) + h−(0, t) − 1
π

∫ t

0
du h−(u)

∫ t

u
ds

g(s, t)√
s − u

(A5)

where

h−(x, t) :=
e−

iπ
4√

2πt

∫ 0

−∞
dy ϕ0(y)e

i
2t (x−y)2

(A6)

and

h+(x, t) :=
e−

iπ
4√

2πt
ei E

ω x sin(ωt)−i(V+ E2

4ω2 )t+ iE2

8ω3 sin(2ωt)
∫ ∞

0
dy ϕ0(y)e

i
2t (−x+y+ E

ω2 (1−cos(ωt)))2

(A7)

For our choice (2) of ϕ0, these two functions are explicit:

h−(x, t) =
e−

ik2
2m t

2

(
eikx erfc

(
e−

iπ
4

(
−
√

t
2

k +
1√
2t

x

)

+
ik +

√
2U − k2

ik −
√

2U − k2
e−ikx erfc

(
e−

iπ
4

(√
t
2

k +
1√
2t

x

)))
. (A8)
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and

h+(x, t) =
ik

ik −
√

2U − k2
ei E

ω sin(ωt)x−
√

2U−k2x

× e
E
ω2 (1−cos(ωt))

√
2U−k2−i( k2

2 + E2

4ω2 )t+i E2

8ω3 sin(2ωt)

× erfc

(
e−

iπ
4

(
i

√
t
2

√
2U − k2 +

E
ω2

1 − cos(ωt)√
2t

− 1√
2t

x

))
.

(A9)

ψ̂− is obtained by explicitly solving (5):

ψ̂−(ξ, t) = e−i ξ
2
2 t 1√

2π

∫ 0

−∞
e−iξxϕ0(x) dx

+
1

2
√

2π

∫ t

0
e−i ξ

2
2 (t−s) [i∂xψ0(s) − ξψ0(s)] ds (A10)

The PDE (6) can be solved explicitly by characteristics to give ψ̂+:

ψ̂+(ξ, t) = G

(
ξ − E

ω
sin ωt, t

)
(A11)

where

G(u, t) = e−iΦ(u,t) 1√
2π

∫ ∞

0
e−ikxϕ0(x) dx +

1

2
√

2π

∫ t

0
ds e−i(Φ(u,t)−Φ(u,s))·

·
[
−i∂xψ0(s) +

(
u +

E
ω

sin(ωs)

)
ψ0(s)

]
(A12)

where

Φ(u, t) =

(
u2

2
+ V +

E2

4ω2

)
t + u

E
ω2

(1 − cos(ωt)) − E2

8ω3
sin(2ωt). (A13)

One can then check that

∂xψ0(t) =

√
2√
iπ

d
dt

[
ψ0(t) ∗ t−1/2 − 2h−(0, t) ∗ t−1/2

]
(A14)

where ‘∗’ denotes the Laplace convolution

[ f∗g](t) =
∫ t

0
ds f (s)g(t − s) (A15)

is continuous for t > 0.
The solution ψ(x, t) of the Schrödinger equation (1) is, for x < 0, the inverse Fourier

transform of ψ̂−, while for x > 0 it equals the inverse Fourier transform of ψ̂+. Namely,

ψ−(x, t) = h−(x, t) +
e

iπ
4

2
√

2π

∫ t

0
ds

(
∂xψ0(s) + iψ0(s)

x
t − s

)
e

ix2
2(t−s)

√
t − s

(A16)
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and

ψ+(x, t) = h+(x, t) − ei E
ω sin(ωt)x e

3iπ
4

2
√

2π

∫ t

0
ds

Γ+(s, x, t)√
t − s

eiF(x,s,t) (A17)

where

Γ+(s, x, t) := − i∂xψ0(s) +

(
E
ω

sin(ωs) +
E
ω2

cos(ωt) − cos(ωs)
t − s

+
x

t − s

)
ψ0(s) (A18)

and

F(x, s, t) = f (s, t) + x
E
ω2

cos(ωt) − cos(ωs)
t − s

+
ix2

2(t − s)
. (A19)
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