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Abstract. We investigate the statistical properties of translation in-
variant random fields (including point processes) on Euclidean spaces (or
lattices) under constraints on their spectrum or structure function. An
important class of models that motivate our study are hyperuniform and
stealthy hyperuniform systems, which are characterised by the vanishing
of the structure function at the origin (resp., vanishing in a neighbour-
hood of the origin). We show that many key features of two classical
statistical mechanical measures of randomness - namely, fluctuations and
entropy, are governed only by some particular local aspects of their struc-
ture function. We obtain exponents for the fluctuations of the local mass
in domains of growing size, and show that spatial geometric considera-
tions play an important role - both the shape of the domain and the mode
of spectral decay. In doing so, we unveil intriguing oscillatory behaviour
of spatial correlations of local masses in adjacent box domains. We de-
scribe very general conditions under which we show that the field of local
masses exhibit Gaussian asymptotics, with an explicitly described limit.
We further demonstrate that stealthy hyperuniform systems with joint
densities exhibit degeneracy in their asymptotic entropy per site. In fact,
our analysis shows that entropic degeneracy sets in under much milder
conditions than stealthiness, as soon as the structure function fails to be
logarithmically integrable.

Keywords: Translation invariant random fields, fluctuations, central limit
theorem, correlation functions, entropy, hyperuniformity, stealthy systems.

1. Introduction and Main Results

1.1. Setup and notations. Random fields with spectral constraints have
attracted considerable attention in recent years, both in the mathematics and
the statistical and condensed matter physics communities. An important mo-
tivation, from the point of view of applications, comes from the investigation
of hyperuniform point fields, whose structure function vanishes at the origin.
A sub-topic of particular interest recently in condensed matter physics is the
study of stealthy hyperuniform systems, whose structure function vanishes
in a region containing the origin.
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In this work, we will concern ourselves with random fields that live on
Euclidean spaces. For ease of enunciating and analysing the statements of re-
sults, we will focus on the situation where the random field (Xi)i∈Zd actually
lives on a Euclidean lattice, although most of our results have straightfor-
ward generalisations to the case of random fields indexed by a continuum
Euclidean space. Restricting ourselves to random fields that are invariant
under translations in Zd implies that their spatial correlation function de-
pends only on their spatial separation. The spectrum, also known as the
structure function, of the process can then be defined as the Fourier trans-
form of this pair correlation function. We are interested in investigating the
properties of the random field X under the assumption that the spectrum
satisfies certain constraints.

We now introduce the exact definitions and concrete notations. Let X =
(Xi)i∈Zd be a real valued mean zero and variance one translation invariant
random field with covariance

E[XiXj] = K(i− j), for i, j ∈ Zd,

where K is defined on Zd. Note that K(0) = 1 as the variance is one. Let S
be the Fourier transform of K. Then S is defined on [−π, π]d by

S(θ) =
∑
j∈Zd

eiθ·jK(j), where θ ∈ [−π, π]d. (1)

Here θ · j =
∑d

k=1 θkjk, the usual dot product in the d-dimensional Euclidean
space. This function S is known as the diffraction spectrum or structure
function of the field X. Observe that S is symmetric, i.e., S(−θ) = S(θ),
and Bochner’s theorem [Fol95, Theorem 4.18] implies that S is non-negative.

For any Λ ⊂ Rd, we denote by QΛ the charge (or the local mass) carried
by the random variables located in the region Λ, i.e.,

QΛ(X) =
∑
i∈Λ

Xi.

It is clear that E[QΛ(X)] = 0. We study the fluctuations of QCL(X) and
QBL(X), where, for x = (x1, . . . , xd),

CL = {x ∈ Rd : |x1|, . . . , |xd| ≤ L} and BL = {x ∈ Rd :
√
x2

1 + · · ·+ x2
d ≤ L}.

More precisely, the asymptotic values of Var(QCL(X)) and Var(QBL(X)) are
calculated, as L → ∞, where Var(Y ) denotes the variance of Y . This is
done under various conditions on the kernel function K, equivalently, on the
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structure function S. We also show that under the appropriate condition on
S

QBL(X)− E[QBL(X)]√
Var(QBL(X))

→ N (0, 1), as L→∞,

where N (0, 1) denotes the standard normal distribution.
Finally we study the asymptotic behaviour of the entropy of X|Λ := {Xi :

i ∈ Λ}, as the size of the region Λ increases, in the setting where X has joint
densities.

1.2. Hyperuniformity. Hyperuniform (also known as super homogeneous)
processes are statistical mechanical systems that exhibit a higher level of uni-
formity than processes that can be considered to be purely random. In the
domain of random point fields, the role of “pure randomness” is played by
the Poisson process, which entails that points in disjoint spatial domains are
statistically independent of each other. To the contrary, hyperuniform pro-
cesses exhibit strong spatial correlation, which in particular acts to provide
a measure of regularity that is noticably higher than the Poisson process.
Thus, hyperuniform systems lie somewhere in between purely random and
purely crystalline states of matter, which explains the interest in them from
the perspective condensed matter physics. A large gamut of literature has
emerged in recent years that address the investigation of such systems, see
e.g. [AM81], [MY80], [GLS06], [GL18], [TS03], [Mar13], [JLH+14], [JT11],
[FTS09], [BFN15], [HMS13], [DSM+15], [HL15], [HCL17], to provide a par-
tial list. For an overview of this fairly large body of literature, we refer the
interested reader to [THJ02], [GL17b], and the references therein.

An important aspect of hyperuniform point processes is the fluctuations
of the particle count in a large domain of space. For the Poisson process, this
scales like the volume, while for a hyperuniform system it grows slower than
the volume, e.g., it may scale like the surface area (or even slower) of the
domain. Hyperuniform processes cover a wide class of examples of natural
statistical mechanical systems, principal among them being (one component)
Coulomb systems, determinantal processes, and their derivatives. Hyperuni-
form processes arise naturally in the investigation of spectrally constrained
random fields. For translation invariant processes, hyperuniformity can be
shown to be equivalent to the vanishing of the spectrum at the origin of the
frequency domain, and thus spectral considerations are naturally motivated
in the study of such systems (see, e.g., [GL18], [GL17b], [BBM10]).

1.3. Stealthy hyperuniform systems. As alluded to earlier, an important
category of processes with spectral constraints is that of stealthy hyperuni-
form processes (SHP). Originating in the study of random point fields, these
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processes pertain to the situation where the spectrum vanishes in a neigh-
bourhood of the origin. The nomenclature “stealthy” originates from the
fact that such a point configuration is invisible to diffraction experiments
involving frequencies that fall in the “spectral gap”. Stealthy hyperuniform
processes have been the subject of intensive investigations in the recent past,
see e.g. [TZS15], [ZST15a], [ZST15b], [ZST16], [CDJZ+16], [GL18] for a par-
tial list, and the references therein . SHP are naturally hyperuniform, they
are a natural class of models for investigation under the ambit of spectrally
constrained stochastic systems.

In [GL18], a rigorous mathematical investigation of SHP was undertaken.
In fact, most of the results therein are applicable to a wider class of mod-
els, which the authors referred to as generalised stealthy processes. These
are translation invariant random fields (or more generally, random measures)
whose spectrum vanishes in some open subset of the frequency domain (signif-
icantly relaxing the requirement that the “spectral gap” be a neighbourhood
of the origin). An important theme of the results in [GL18] is a very high
degree of “orderliness” exhibited by SHP. This can be observed, for instance,
in the bounded holes conjecture of Torquato, Zhang and Stillinger, which was
established in the affirmative in [GL18]. This result entails that the “holes”
(i.e., regions in the physical space that are devoid of particles), are at most of
a deterministically fixed size. Moreover, it was shown that this deterministic
upper bound on hole sizes in inversely proportional to the size of the spectral
gap.

1.4. Maximal Rigidity and its consequences. The most intriguing prop-
erty of generalized stealthy systems, established in [GL18], is perhaps the
result that such systems exhibit “maximal rigidity”. That is, the exact con-
figuration (in the case of particle systems) or the exact realisation of the
random field / random measure , when restricted to a bounded domain of
the physical space, is a deterministic function of the configuration (realisa-
tion of the random field) outside the domain. This caps a fairly long line
of work on “rigidity phenomena” in random point fields ( [Gho15], [GP17]
[GL17a], [Buf16], [BQ18], [KN+19]), which entails that certain statistics of
local particle configurations (like local mass, local center of mass, etc) are
degenerate (that is, non-random) under spatial conditioning. With the nat-
ural understanding that the complete determination (or degeneracy) of the
field under spatial conditioning is justifiably referred to as maximal rigidity,
SHP form an important class of models from this perspective.

The true physical interpretation or implication of the maximal rigidity
exhibited by stealthy systems is not well-understood. Rigidity under spatial
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conditioning is one of several possible ways to address the question of statisti-
cal degeneracy in a spatial system, and it naturally begs the question, exactly
how degenerate are stealthy random fields ? While it might be tempting to
contemplate a complete or nearly complete lack of randomness (in some ap-
propriate sense), a cautionary example is provided by the class of stealthy
Gaussian random fields. It is known from classical Gaussian process the-
ory that thanks to the Bochner-Khinchine Theorem [Luk60, Theorem 4.2.2],
there is a one-to-one correspondence between translation invariant Gaussian
random fields and non-negative spectral measures. Using this dictionary, a
Gaussian random field is stealthy as soon as the spectral measure vanishes
on some neighbourhood of the frequency domain - a fairly mild condition
in the context of the Bochner-Khinchine theorem, thereby ensuring that a
vast category of Gaussian random fields are, in fact, stealthy. However, the
mildness of this constraint in view of Bochner-Khintchine also guarantees at
the same time that these processes can be hardly viewed to be devoid of or
lacking in randomness in any significant sense.

1.5. Spectral constraints and measuring the lack of randomness. In
view of these considerations, the question of describing the nature of the “lack
of randomness” in stealthy processes becomes an intriguing and challenging
one. In this work, we investigate various aspects of stealthy random fields
that touch upon this question. More generally, we extend our investigation
to spectrally constrained random fields that are not stealthy but exhibit hy-
peruniformity in the sense of a vanishing spectrum at some point (usually the
origin in the frequency space). Taking a refined view-point, we investigate,
in particular, the degree of such vanishing of the spectrum in the context of
its consequences for the statistical constrains on the random field in physical
space. In our investigations, we focus attention on two classical measures of
orderliness in random processes, namely fluctuations and entropy.

1.6. Fluctuations for constrained systems. A key measure of random-
ness that we will focus on in this paper is fluctuations of the local field of
masses. This is motivated by the study of point processes, but as we shall
see, it can be considered also in the context of more general random fields,
and with important structural consequences. While the exact definitions will
be given subsequently it suffices for our introductory discussion to have in
mind that the local field of masses of a random field (indexed by a Euclidean
lattice), pertaining to a given domain D, is the sum of the field values for
indices that belong to D. Clearly, if the field is 0-1 valued (in other words, a
point process), then this quantity reduces to the total number of particles in
the domain D. In this work, without loss of generality we focus on random
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field with mean zero, since subtracting the mean has no effect on the vari-
ance. The study of the statistical fluctuations of masses has a long history,
see e.g., [Bec87], [BC87] and the references therein, and e.g. [GL17b] for a
more recent overview.

The starting point for examining the connection between spectral decay
and reduced fluctuations of the local mass is the fact, alluded to earlier, that
hyperuniformity is equivalent to vanishing of the structure function at the
origin. For the Gaussian Unitary Ensemble (GUE) in 1D or the Ginibre
ensemble in 2D (equivalently, the one component 2D Coulomb gas at the
inverse temperature β = 2), this amounts to a linear decay at the origin, and
fluctuation of local mass that is logarithmic (for GUE) and of the order of the
perimeter of the domain (for Ginibre). In both cases, asymptotic normality
of the fluctuations is also well-understood.

In this paper we investigate the precise quantitative nature of the rela-
tionship between the mode of spectral decay on one hand, and the asymptotic
statistical distribution of fluctuation on the other. We demonstrate that the
correspondence between spectral decay and the statistical behaviour of the
fluctuations is very general, and is largely independent of other properties of
the stochastic process.

1.6.1. Fluctuations in Balls . Our first result provides a functional of the
structure function that, on one hand, is asymptotically comparable to the
variance of the mass in a ball, and, on the other hand, is amenable to simple
analytical determination of the growth exponent. This result holds in great
generality, in particular, both for random fields indexed by Zd and by Rd.
We state the precise result below.

Let BL denote the ball of radius L in Rd, i.e., BL = {x ∈ Rd : ‖x‖ ≤ L}.
Furthermore, let dVSd−1 denote the d-dimensional spherical measure. Let
Td = [−π, π]d. We call a function f : Td (or Rd) 7→ R regular at the origin
if there exists an enveloping function A : Td (or Rd) 7→ R such that, on
some neighbourhood B(0; ε) of the origin, we have cA(ξ) ≤ f(ξ) ≤ CA(ξ)
for some constants c, C > 0, and the enveloping function A is such that
‖ξ‖−2

(∫
Sd−1 A(‖ξ‖ω)dVSd−1(ω)

)
is monotone for 0 ≤ ‖ξ‖ ≤ ε.

Furthermore, we recall the notation f(L) = Θ(g(L)) as L→∞ to mean
that there exist constants c1, c2, L0 > 0 such that

c1g(L) ≤ f(L) ≤ c2g(L), for all L > L0.

More generally, we write f(x) = Θ(g(x)) as x→ x0 if and only if there exist
constants c1, c2, δ > 0 such that

c1g(x) ≤ f(x) ≤ c2g(x), for all ‖x− x0‖ ≤ δ.

We establish that
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Theorem 1. Suppose the structure function S of a random field on Zd is
regular at the origin and S is bounded in [−π, π]d. Then

Var(QBL(X)) = Θ

(
L2d

∫
‖ξ‖≤c/L

S(ξ)dξ + Ld−1

∫
‖ξ‖>c/L

S(ξ)

‖ξ‖d+1
dξ

)
, as L→∞.

(2)

Remark 1. The same variance asymptotics can be shown to hold for point
processes (more generally, random measures) on Rd, with a similar proof.
We adhere to the case of Zd-indexed random fields in Theorem 1 purely for
the sake of definiteness and brevity.

The regularity assumption in Theorem 1 holds true in great generality. It
is trivially true in situations where the structure function S is itself monotone
in ‖ξ‖ near the origin, which is the case for the Poisson process and the
standard examples of hyperuniform systems. More generally, by a Taylor
expansion of S near the origin, such regularity will be true as soon as S has
bounded derivatives near the origin.

We observe that the asymptotic formula in Theorem 1 provides a very
general and complete description for the fluctuation exponent in a ball that
is valid in any dimension, and covers all settings where this exponent is be-
lieved to be understood. Moreover, the right hand side of (2) lends itself to
relatively simple estimation of its order in L as soon as the behaviour of the
structure function near the origin is known. E.g., for Poissonian systems, the
structure function does not vanish near the origin (in fact, it is a positive
constant), and as such, the first term in (2) provides the dominant contri-
bution, resulting in fluctuations of the order of the volume. On the other
hand, for well-known hyperuniform systems like the GUE in 1D (where S is
linear near the origin) and the Ginibre ensemble in 2D (where S behaves like
a quadratic near the origin), the second terms in (2) makes the dominant
contribution, and the variance grows like logL and L respectively.

1.6.2. Fluctuations for d = 1. For the sake of clarity, we first state our
results pertaining to stealthy and other spectrally constrained processes for
the case d = 1. The importance of the 1D case is that, besides being the most
studied setting, it is also the situation where we can examine the effect of
stealth or other spectral constraints without having to consider the intricacies
of geometric considerations.

Theorem 2. Suppose the structure function S of a random field on Z satisfies

σ2 := 2
∫ π
−π

S(x)
x2 dx <∞. Then

Var(Q[0,L](X))→ σ2 and Cov(Q[0,L](X), Q[L,2L](X))→ −σ
2

2
, as L→∞,
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where Cov(X, Y ) denotes the covariance of X and Y . Moreover, for k ≥ 2,

Cov(Q[0,L](X), Q[kL,(k+1)L](X))→ 0, as L→∞.

Note that if S is bounded and vanishing in a neighbourhood of the origin

then
∫ S(x)

x2 dx < ∞. In this case the covariance converges to the half of the
variance with negative sign when two intervals are adjacent to each other.
Moreover, the covariance converges to 0 when two intervals are not adjacent.

1.7. The geometry of spectral decay and its consequences. The most
intensively studied setting for hyperuniform systems is the 1D case, which
includes the famous example of the GUE process from random matrix theory.
However, in 1D, the variety of ways in which the spectrum can vanish at the
origin is relatively limited. In higher dimensions, the mode of decay of the
spectrum becomes important, and the physical manifestations of the various
decay modes is a significant question.

1.7.1. Fluctuations under spectral decay. Let n1, . . . , nk ∈ N∪{0} and
n = (n1, . . . , nd). Denote

C(n)
L = [n1L, (n1 + 1)L]× · · · × [ndL, (nd + 1)L].

Note that C(n)
L is a cube/box in Rd with side length L. In particular C(0)

L =
[0, L]d. We have the following result.

Theorem 3. Suppose the structure function S of a random field on Zd sat-

isfies σ2
d := 2d

∫ π
−π · · ·

∫ π
−π

S(x)

x2
1···x2

d
dx1 · · · dxd <∞. Then

lim
L→∞

Cov(QC(0)
L

(X), QC(n)
L

(X)) =


(−1)j

σ2
d

2j
if dim(C(0)

L ∩ C
(n)
L ) = d− j,

0 if C(0)
L ∩ C

(n)
L = ∅.

In particular, Var(QC(0)
L

(X))→ σ2
d as L→∞.

Here dim(C(0)
L ∩ C

(n)
L ) = 0 means the two cubes/boxes have a common

vertex point. Clearly d = 1 gives Theorem 2.
The Riemann Lebesgue lemma plays a crucial role in proving these results.

The assumption σ2
d <∞ is required to apply the Riemann Lebesgue lemma.

In the next subsection we show that if σ2
d is not finite then the variances and

covariances do not have finite limits as L→∞. We calculate the asymptotic
behaviour of the variances and covariances under suitable conditions on S.

Note that Theorem 3 implies that if σd is finite then Var(QCL(X)) remains
bounded in L, whereas Theorem 1 implies that the order of Var(QBL(X)) is
at least Ld−1 (also c.f. [Bec87]). A statistical mechanical explanation for this
phenomenon is given in Section 5.
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1.7.2. Growth of variances under spectral decay. We have the follow-

ing result. We use x = (x1, . . . , xd) ∈ Rd and CL = C(0)
L .

Theorem 4. Let α1, . . . , αd ∈ [0, 1]. Suppose the structure function S of a
random field on Zd satisfies

(C1) S(x) = Θ(|xi1|αi1 . . . |xik |αik ) whenever xi1 , . . . , xik → 0 and the other
co-ordinates are away from the axes.

(C2) For δ > 0,
∫ π
δ
· · ·
∫ π
δ

S(x)

x2
1...x

2
d
dx1 · · · dxd <∞.

Then we have

Var(QCL(X)) = Θ((logL)τdLd−md), as L→∞,

where τd = |{k ∈ {1, . . . , d} : αk = 1}| and md =
∑d

k=1 αk.

Remark 2. Condition (C1) can be written in the following way: for 1 ≤
i1, . . . , ik ≤ d and δ > 0, let Aδi1....,ik be the set {x = (x1, . . . , xd) : |xi| <
δ iff i ∈ {i1, . . . , ik}}. Then S(x) = Θ(|xi1 |αi1 · · · |xik |αik ) whenever x ∈
Aδi1....,ik .

Note that if S is bounded on [−π, π]d then (C2) holds. Also if αi > 1 for

all i = 1, . . . , k then S(x)

x2
1···x2

d
is integrable . In this case we get the variance

from Theorem 3. So the variances are bounded when α1, . . . , αd > 1.

It would be of interest to understand the various modes of spectral decay,
especially in the context of hyperuniform behaviour of the stochastic process
in physical space. Hyperuniformity, or equivalently the vanishing of the
structure function at the origin, implies that the correlation function K(i)
(which is a function of one-variable because of translation invariance) sums
to 0 over i ∈ Zd. In particular, this implies that some of the correlations
must be negative (since K(0) is a variance and therefore necessarily positive),
which explains the natural connections between hyperuniform systems and
negatively associated processes. Decay of the structure function “along the
axes” amounts to saying that K(i) sums to 0 even when we sum i over any
one co-ordinate, keeping the values of the other co-ordinates of i fixed. It is
a somewhat stronger notion of hyperuniformity than mere vanishing of the
structure function at the origin, and it covers examples as simple as products
of statistically independent 1D hyperuniform systems along each co-ordinate
direction. More generally, by the Bochner-Khinchine correspondence, we
can have Gaussian stochastic processes with any given functional form for
the decay of the structure function, as long as we remain within the realm of
non-negative spectral measures.
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The following result can be seen as a corollary of Theorem 3. For a real
number p ≥ 1, the Lp-norm is defined by

‖x‖p = (|x1|p + · · ·+ |xd|p)
1
p for x = (x1, . . . , xd) ∈ Rd.

Corollary 5. Let 0 ≤ α ≤ 1. Suppose the structure function S = Θ(‖x‖αp )

as ‖x‖p → 0, and
∫
‖x‖p>δ

S(x)

x2
1...x

2
d
dx <∞ for δ > 0. Then

Var(QCL(X)) =


Θ((Ld−α)) if 0 ≤ α < 1,

Θ((Ld−1 logL)) if α = 1.

Roughly speaking, we get Corollary 5 by putting α1 = α and α2 = · · · =
αd = 0 in Theorem 4.

1.7.3. The effect of domain shape. An important consequence of our
investigations is how the fluctuation exponent depends on shape of the grow-
ing domain (e.g., a ball vis-a-vis a cube). In fact, depending on the domain
shape, even under relatively mild decay of the structure function, the fluctu-
ations of the local mass can be bounded as the domain size grows to infinity.

1.7.4. The anomaly of oscillating correlations. As seen in Theorem
3 the spatial correlations of the field of local masses (i.e., the masses in
adjacent growing domains of similar sizes) exhibits a remarkable oscillating
behaviour. To understand this phenomenon, we recall that hyperuniformity
is often associated with repulsive interaction (or negatively correlated sys-
tems). Naturally, we expect this to be reflected in the spatial statistics of
the field of local masses. E.g., for Coulomb systems in 3D, the leading order
interactions among local masses in adjacent cubes that meet in a face have
been shown to be negative (c.f. [Leb83]). This is tune with the heuristic con-
nection between hyperuniformity and negative dependence, and is similar in
flavour to the j = 1 case in Theorem 3. However, Theorem 3 goes further and
unveils a more elaborate correlation landscape, depending on finer adjacency
geometry of neighbouring domains for strongly hyperuniform systems. In
fact, even the sign of the correlation can be positive or negative, depending
on the dimension of the surface where two neighbouring domains intersect.

In Section 5 , we explain this seemingly physically anomalous behaviour
of the fluctuations (and the correlations of the local field of masses) from a
microscopic statistical mechanical point of view, by showing that not only
are these differential growth exponents and oscillating signs of correlations
consistent with each other, but also are necessary from a statistical physics
perspective, and correspond naturally with the consideration of effects like
Debye screening.
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1.8. Central limit theorem. The next result show that QBL(X) is asymp-
totically normal, as L→∞, under appropriate conditions on the truncated
correlation functions of X. The k-th truncated correlation function ρTk of X
is defined by

ρTk (i1, . . . , ik) =
∑

π∈P(k)

(|π| − 1)!(−1)|π|−1
∏
B∈π

ρB[i1, . . . , ik],

where P(k) denotes the set of all partitions of {1, . . . , k}, |π| is the number of
parts in the partition, ρB[i1, . . . , ik] = ρ|B|(ij : ij ∈ B). The k-th intensity
function ρk of X with respect to counting measure on Zkd is given by

ρk(i1, . . . , ik) = E[Xi1 · · ·Xik ], for i1, . . . , ik ∈ Zd.

We elaborate further details of correlation and truncated correlation func-
tions in Sections 6.1 and 6.2.

Theorem 6. Let ρT (i1, . . . , ik), for i1, . . . , ik ∈ Zd, be the truncated correla-
tion functions of the random field (Xi)i∈Zd. Suppose

sup
i1

∑
i2,...,in∈Zd

ρT (i1, . . . , ik) <∞. (3)

Let N (0, 1) denote the standard normal distribution. Then

QBL(X)− E[QBL(X)]√
Var(QBL(X))

→ N (0, 1), as L→∞.

Theorem 6 in general, and condition (3) in particular, connects to the clas-
sical theory of particle number fluctuations, as developed in [MY80], [JLM93],
[CL95] and references therein.

1.9. Entropy and entropic degeneracy for constrained systems. A
key parameter of randomness, or the lack thereof, is that of entropy per
unit volume (in other words, entropy per site). We can envisage this as the
entropy per unit volume of the field restricted to a finite domain of space,
considered in the limit as the domain size grows to cover all space. For a
system to be deficient in randomness, one measure would be its entropy per
site to be degenerate in some appropriate sense.

One angle from which to look at maximal rigidity for stealthy random
fields would be to consider it from the perspective of the tail sigma field.
In one dimension, the notion of maximal rigidity under spatial conditioning
can be demonstrated to be equivalent to the fullness of the two-sided spatial
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tail sigma field. It may be mentioned here that the well-known Rokhlin-
Sinai Theorem [Gla03, p. 322] connects the spatial tail sigma field with the
entropy per site. However, an extremely important caveat to the Rokhlin-
Sinai Theorem is that it demands the much stronger assumption of fullness
of one-sided spatial tail sigma field (and not two-sided, as we have in the
models of our interest in 1D). In fact, the one-sidedness of the tail sigma field
is known to be necessary for the Rokhlin-Sinai Theorem, and the lack of this
particular characteristic makes an approach via Rokhlin-Sinai not tenable in
our setting. In particular, it compels us to undertake a direct investigation
of the entropy per site of stealthy (and indeed, other spectrally constrained)
stochastic systems, invoking results connected to disparate areas of classical
analysis and probability theory.

We will investigate the question of entropic degeneracy in the context of
random fields having joint densities, that is, for any finite set Λ ⊂ Zd, the
finite collection of random variables (Xi)i∈Λ has a joint density on R|Λ|. Next,
we revisit the concept of entropy for such random variables.

Let X be a continuous random variable with probability density function
f . Then the entropy of X is defined by

h(X) = E[− log f(X)] = −
∫
f(x) log f(x)dx.

Let Λ ⊂ Rd and Λ′ = Λ ∩ Zd. Define X|Λ := {Xi : i ∈ Λ′}. The entropy of
X|Λ is defined by

h(X|Λ) = −
∫
R|Λ′|

fΛ(x) log fΛ(x)dx,

where fΛ denotes the joint density function of X|Λ, and |Λ′| denotes the
cardinality of Λ′. Denote ΛL := {Lx : x ∈ Λ} for L > 0. We have the
following result.

Theorem 7. Let (Xi)i∈Zd be a real valued mean zero and variance one trans-
lation invariant random field with joint densities. Let Λ be a bounded finite
connected domain in Rd with 2-smooth boundary ∂Λ each connected compo-
nent of which has positive Gaussian curvature. Suppose |Λ′L| = O(Ld) as
L→∞. Then, if S(X) has a gap,

H(X) := lim
L→∞

h(X|ΛL)

|Λ′L|
= −∞.

Remark 3. More generally, the proof of Theorem 7 demonstrates that en-
tropic degeneracy is much more general than the vanishing of the structure
function near the origin, and sets in as soon as the structure function fails
to be logarithmically integrable.
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2. Proof of Theorem 1

This section is dedicated to prove Theorem 1. We write f(L) . g(L) for
all L if and only if there exists a constant C such that f(L) ≤ Cg(L) for all
L. We have the following result.

Proposition 1. For large L,

Var(QBL(X)) . L2d

∫
‖ξ‖≤ c

L

S(ξ)dξ + Ld−1

∫
‖ξ‖> c

L

S(ξ)

‖ξ‖d+1
dξ,

for some positive constant c.

Note that there is no assumption on S for the upper bound. The next
result shows that the upper bound is tight under a mild condition on S. Let
Sd−1 denote the d-dimensional unit sphere.

Proposition 2. Suppose S satisfies the condition as in Theorem 1. Then,

Var(QBL(X)) & L2d

∫
‖ξ‖≤ c

L

S(ξ)dξ + Ld−1

∫
‖ξ‖> c

L

S(ξ)

‖ξ‖d+1
dξ, for large L,

for some positive constant c.

Proof of Theorem 1. The result follows from Propositions 1 and 2. �

The rest of this section is dedicated to prove Propositions 1 and 2. The
Bessel functions play a crucial role in proving the propositions. We first
recall the definition of Bessel functions. If <(ν) > −1

2
then Jν(z), the dν-

order Bessel function, is defined (see [Eps08, p. 128]) by the integral

Jν(z) =
( z

2
)ν

Γ(ν + 1
2
)Γ(1

2
)

∫ π

0

eiz cos θ sin2ν(θ)dθ. (4)

The following well known result plays a crucial role in the derivation.

Result 1. [Eps08, Theorem 4.5.4] Suppose that f(x) = F (‖x‖) is an inte-
grable function, then the Fourier transform of f is given by the one-dimensional
integral transform

f̂(ξ) =
cd

‖ξ‖ d−2
2

∫ ∞
0

J d−2
2

(r‖ξ‖)F (r)r
d
2dr.

Here cd is a constant depending on the dimension.
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Proposition 3. Suppose ϕL = 1BL. Then

ϕ̂L(ξ) = c′dL
d

∫ π

0

eiL‖ξ‖ cos θ sind(θ)dθ, (5)

where c′d is a constant depending on d.

Proof of Proposition 3. By Result 1 the Fourier transform of ϕL is given by

ϕ̂L(ξ) =
cd

‖ξ‖ d−2
2

∫ L

0

J d−2
2

(r‖ξ‖)r
d
2dr.

By the change of variables formula we get

ϕ̂L(ξ) =
cdL

d

(L‖ξ‖) d−2
2

∫ 1

0

J d−2
2

(tL‖ξ‖)t
d
2dt. (6)

Again the Fourier transform of the characteristic function of the unit ball
B1 ⊂ Rd is given by, see [Eps08, Example 4.5.3],

ϕ̂1(ξ) =
cd

‖ξ‖ d−2
2

∫ 1

0

J d−2
2

(r‖ξ‖)r
d
2dr =

cd

‖ξ‖ d2
J d

2
(‖ξ‖). (7)

Using (7) in (6) we get

ϕ̂L(ξ) =
cdL

d
2

‖ξ‖ d2
J d

2
(L‖ξ‖). (8)

From (4) we get

J d
2
(L‖ξ‖) =

(L‖ξ‖
2

)
d
2

Γ(d
2

+ 1
2
)Γ(1

2
)

∫ π

0

eiL‖ξ‖ cos θ sind(θ)dθ. (9)

The result follows from (8) and (9). �

We also use the following asymptotic of Bessel functions.
Asymptotic of Bessel function : We have, see [AS92, p. 364, 9.2.1],

Jα(z) =

√
2

πz

(
cos(z − απ

2
− π

4
) + e|Imz|O(|z|−1)

)
, for |arg(z)| < π.

Therefore there exist M, c > 0 such that

Jα(z) =

√
2

πz

(
cos(z − απ

2
− π

4
) + g(z)

)
, for |arg(z)| < π. (10)

where |g(z)| ≤M |z|−1 for all |z| > c.
Now we proceed to prove Propositions 1 and 2.
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Proof of Proposition 1. Let ϕL = 1BL . By Fact 1 we have

Var(QBL(X)) =

∫
|ϕ̂L(ξ)|2S(ξ)dξ

=

∫
‖ξ‖≤ c

L

|ϕ̂L(ξ)|2S(ξ)dξ +

∫
‖ξ‖> c

L

|ϕ̂L(ξ)|2S(ξ)dξ.

Note that from (5) we have

|ϕ̂L(ξ)|2 . L2d, for ξ ∈ [−π, π]d.

Therefore we get∫
‖ξ‖≤ c

L

|ϕ̂L(ξ)|2S(ξ)dξ . L2d

∫
‖ξ‖≤ c

L

S(ξ)dξ. (11)

Choose c such that (10) holds. Then, for large L, we have

J d
2
(L‖ξ‖) . 1√

L‖ξ‖
, for ‖ξ‖ > c

L
.

Then from (8), for ‖ξ‖ > c
L

, we get

|ϕ̂L(ξ)|2 . Ld−1

‖ξ‖d+1
.

Therefore we have∫
‖ξ‖> c

L

|ϕ̂L(ξ)|2S(ξ)dξ . Ld−1

∫
‖ξ‖> c

L

S(ξ)

‖ξ‖d+1
dξ. (12)

The result follows from (11) and (12). �

Proof of Proposition 2. From (5) we have

|ϕ̂L(ξ)|2 ≥ c′2d L
2d

(∫ π

0

cos(L‖ξ‖ cos θ) sind(θ)dθ

)2

.

Note that, for L‖ξ‖ ≤ c, there exists δc such that

L‖ξ‖ cos θ ≤ π

4
, for θ ∈ [π

2
− δc, π2 + δc].

Therefore, for L‖ξ‖ ≤ c, we have

cos(L‖ξ‖ cos θ) sind(θ) ≥ cosd(δc)√
2

, for θ ∈ [π
2
− δc, π2 + δc].
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Hence we get

|ϕ̂L(ξ)|2 & L2d, for L‖ξ‖ ≤ c.

Which implies , as S ≥ 0, that∫
‖ξ‖≤ c

L

|ϕ̂L(ξ)|2S(ξ)dξ & L2d

∫
‖ξ‖≤ c

L

S(ξ)dξ. (13)

Now choose c > 0 such that (10) holds. Then by (10) from (8) we get

|ϕ̂L(ξ)|2 =
CdL

d−1

‖ξ‖d+1

(
cos(L‖ξ‖ − dπ

4
− π

4
) + g(L‖ξ‖)

)2

, (14)

where Cd is a constant depending on d. Note that, as g(L‖ξ‖) ≤ M
L‖ξ‖ ,∣∣∣∣∣

∫
‖ξ‖> c

L

CdL
d−1g(L‖ξ‖)
‖ξ‖d+1

S(ξ)dξ

∣∣∣∣∣ . Ld−2

∫
‖ξ‖> c

L

S(ξ)

‖ξ‖d+1
dξ.

Let φ = dπ
4

+ π
4
. Therefore form (14) we have∫
‖ξ‖> c

L

|ϕ̂L(ξ)|2S(ξ)dξ =CdL
d−1I1 +O(Ld−2)I2, (15)

where

I1 =

∫
‖ξ‖> c

L

S(ξ)

‖ξ‖d+1
cos2(L‖ξ‖ − φ)dξ and I2 =

∫
‖ξ‖> c

L

S(ξ)

‖ξ‖d+1
dξ.

The rest of proof is dedicated to estimate I1. Let ξ = ‖ξ‖ω, where ω ∈ Sd−1.
Then dξ = ‖ξ‖d−1d‖ξ‖dVSd−1(ω). Then

I1 =

∫
Sd−1

∫
‖ξ‖> c

L

S(‖ξ‖ω)

‖ξ‖2
cos2(L‖ξ‖ − φ)d‖ξ‖dVSd−1(ω).

Since S is bounded on [−π, π]d, for fixed ε > 0, we have

0 ≤
∫
Sd−1

∫
‖ξ‖>ε

S(‖ξ‖ω)

‖ξ‖2
cos2(L‖ξ‖ − φ)d‖ξ‖dVSd−1(ω) . 1. (16)

Since S is regular, there exists a function A such that

c1A(ξ) ≤ S(ξ) ≤ c2A(ξ) and

∫
Sd−1 A(‖ξ‖ω)dVSd−1(ω)

‖ξ‖2
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is monotone for 0 ≤ ‖ξ‖ ≤ ε, where c1, c2, ε > 0. Note that A is bounded
and positive, as S is bounded and positive. Therefore

I1 &
∫
Sd−1

∫
c
L
<‖ξ‖<ε

A(‖ξ‖ω)

‖ξ‖2
cos2(L‖ξ‖ − φ)d‖ξ‖dVSd−1(ω).

Suppose A is radial: For simplicity, we first assume that A is radial, i.e.,

A(ξ) = A(‖ξ‖). Then the regularity condition implies that A(‖ξ‖)
‖ξ‖2 is monotone

for 0 ≤ ‖ξ‖ ≤ ε. Let A(‖ξ‖)
‖ξ‖2 be monotone decreasing. Let k0 ∈ N be such that

c ≤ k0π, and rk = πk
L
, k = 1, 2, . . .. Then

∫
c
L
<‖ξ‖<ε

A(‖ξ‖)
‖ξ‖2

cos2(L‖ξ‖ − φ)d‖ξ‖ ≥
b εL
π
c∑

k=k0

∫ rk+1

rk

A(‖ξ‖)
‖ξ‖2

cos2(L‖ξ‖ − φ)d‖ξ‖

≥
b εL
π
c∑

k=k0

A(rk+1)

(rk+1)2

∫ rk+1

rk

cos2(L‖ξ‖ − φ)d‖ξ‖

≥
b εL
π
c∑

k=k0

A(rk+1)

(rk+1)2

π

4L
.

The last inequality follows from the fact that∫ rk+1

rk

cos2(L‖ξ‖ − φ)d‖ξ‖ ≥ π

4L
, for k = 1, 2, . . .,

as there exist Ik ⊂ [πk, π(k + 1)], for k = 1, 2, . . . , with |Ik| = π
2

such

that cos2(θ − φ) ≥ 1
2

when θ ∈ Ik. Since A(‖ξ‖)
‖ξ‖2 is monotone decreasing for

0 ≤ ‖ξ‖ ≤ ε, by the Riemann integration we have

b εL
π
c∑

k=k0

A(rk+1)

(rk+1)2

π

L
&
∫ ε

c
L

A(‖ξ‖)
‖ξ‖2

d‖ξ‖, for large L,

as monotone functions are integrable. Thus, for large L, we have

I1 &
∫

c
L
<‖ξ‖<ε

A(‖ξ‖)
‖ξ‖2

cos2(L‖ξ‖ − φ)d‖ξ‖ &
∫ ε

c
L

A(‖ξ‖)
‖ξ‖2

d‖ξ‖. (17)

Combining (15), (16) and (17) we get, for large L,∫
‖ξ‖> c

L

|ϕ̂L(ξ)|2S(ξ)dξ & Ld−1

(∫ ε

c
L

A(‖ξ‖)
‖ξ‖2

d‖ξ‖+O(1)

)
.
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Since A is bounded and A(ξ) = A(‖ξ‖), we get∫
‖ξ‖> c

L

|ϕ̂L(ξ)|2S(ξ)dξ & Ld−1

∫
‖ξ‖> c

L

A(ξ)

‖ξ‖d+1
dξ.

Using the regularity condition of S we have∫
‖ξ‖> c

L

|ϕ̂L(ξ)|2S(ξ)dξ & Ld−1

∫
‖ξ‖> c

L

S(ξ)

‖ξ‖d+1
dξ, for large L.

The inequalities also hold when A(‖ξ‖)
‖ξ‖2 is monotone increasing for 0 ≤ ‖ξ‖ ≤ ε.

Suppose A is not radial : Let h(‖ξ‖) :=
∫
Sd−1 A(‖ξ‖ω)dVSd−1 (ω)

‖ξ‖2 . Then by

change of variables we get∫
c
L
<‖ξ‖<ε

A(ξ)

‖ξ‖d+1
cos2(L‖ξ‖ − φ)dξ =

∫
c
L
<‖ξ‖<ε

h(‖ξ‖) cos2(L‖ξ‖ − φ)d‖ξ‖.

Now suppose h is decreasing for 0 ≤ ‖ξ‖ ≤ ε, using the same arguments as
before it can be shown that∫

c
L
<‖ξ‖<ε

h(‖ξ‖) cos2(L‖ξ‖ − φ)d‖ξ‖ &
∫ ε

c
L

h(‖ξ‖)d‖ξ‖

=

∫
Sd−1

∫ ε

c
L

A(‖ξ‖ω)

‖ξ‖2
d‖ξ‖dVSd−1(ω)

=

∫
c
L
<‖ξ‖<ε

A(ξ)

‖ξ‖d+1
dξ.

We get the last equality by the change of variables. Thus we have

I1 &
∫
c
L
<‖ξ‖<ε

A(ξ)

‖ξ‖d+1
dξ &

∫
c
L
<‖ξ‖<ε

S(ξ)

‖ξ‖d+1
dξ.

Therefore, by (15) and (16), we get∫
‖ξ‖> c

L

|ϕ̂L(ξ)|2S(ξ)dξ & Ld−1

∫
‖ξ‖> c

L

S(ξ)

‖ξ‖d+1
dξ. (18)

Therefore (13) and (18) give the result. �
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3. proof of Theorem 3

In this section we give the proof of Theorem 3. The following two facts
are the key ingredients for the proof.

Fact 1. Let X = (Xi)i∈Zd be a translation invariant random field with co-
variance kernel K. Suppose S is the Fourier transform of the covariance
kernel K. Then

Var(ϕ(X)) =

∫
|ϕ̂(ζ)|2S(ζ)dζ and Cov(ϕ(X), ψ(X)) =

∫
ϕ̂(ζ)ψ̂(ζ)S(ζ)dζ,

where ϕ and ψ are two functions on Rd, and ϕ(X) =
∑

i∈Zd ϕ(i)Xi. The ϕ̂

and ψ̂ are the Fourier transforms of ϕ and ψ respectively.

Fact 2 (Riemann Lebesgue lemma). If f is L1 integrable on Rd, that is to
say, if the Lebesgue integral of |f | is finite, then the Fourier transform of f
satisfies

f̂(z) :=

∫
Rd
f(x) exp(−iz · x) dx→ 0 as |z| → ∞.

For the sake of completeness the proof of Fact 1 is given in Appendix.
We skip the proof of Fact 2, we refer to [Eps08, Lemma 4.2.1].

Proof of Theorem 3. Let ϕ0,L(x) = 1C(0)
L

(x) and ϕn,L(x) = 1C(n)
L

(x). Then

QC(0)
L

(X) = ϕ0,L(X) and QC(n)
L

(X) = ϕn,L(X).

Therefore using Fact 1 we have

E[QC(0)
L

(X)QC(n)
L

(X)] =

∫ π

−π
· · ·
∫ π

−π
ϕ̂0,L(x)ϕ̂n,L(x)S(x)dx, (19)

where dx = dx1 · · · dxd. The Fourier transform of ϕn,L is given by, for x ∈ Rd,

ϕ̂n,L(x) =

∫
· · ·
∫
e−ix·t1

B
(n)
L

(t)dt =
d∏

k=1

∫ (nk+1)L

nkL

e−ixktkdtk.

Again, for k = 1, . . . , d, we have∫ (nk+1)L

nkL

e−ixktkdtk =
(1− e−iLxk)e−iLnkxk

ixk
.

Combining the last two equations we get

ϕ̂n,L(x) =
d∏

k=1

(1− e−iLxk)e−iLnkxk
ixk

and ϕ̂0,L(x) =
d∏

k=1

(1− e−iLxk)
ixk

.
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Therefore, for x ∈ Rd and n ∈ (N ∪ {0})d, we get

ϕ̂0,L(x)ϕ̂n,L(x) =

∏d
k=1(1− e−iLxk)(1− eiLxk)eiLnkxk

x2
1 · · ·x2

d

.

Let ε
(1)
k,1 = 0, ε

(2)
k,1 = 1, ε

(1)
k,2 = 0, ε

(2)
k,2 = −1 for k = 1, . . . , d. Then we can write

(1− e−iLxk)(1− eiLxk) =
∑

pk,qk∈{1,2}

(−1)

(
ε
(pk)

k,1 +ε
(qk)

k,2

)
e
iL
(
ε
(pk)

k,1 +ε
(qk)

k,2

)
,

for k = 1, . . . , d. Let p = (p1, . . . , pd), q = (q1, . . . , qd) ∈ {1, 2}d. Then

ϕ̂0,L(x)ϕ̂n,L(x) =
1

x2
1 . . . x

2
d

∑
p,q

(−1)
∑d
k=1

(
ε
(pk)

k,1 +ε
(qk)

k,2

)
e
iL
∑d
k=1

(
ε
(pk)

k,1 +ε
(qk)

k,2 +nk

)
xk .

(20)

The sum is taken over all possible values of p and q. Let f(x) = S(x)

x2
1···x2

d
. The

assumption on S implies that
∫
Rd |f(x)|dx <∞. Therefore∫

Rd
e
iL
∑d
k=1

(
ε
(pk)

k,1 +ε
(qk)

k,2 +nk

)
xkf(x)dx = f̂

(
−L(ε

(p1)
1,1 + ε

(q1)
1,2 + n1, . . . , ε

(pd)
d,1 + ε

(qd)
d,2 + nd)

)
,

where f̂ denotes the Fourier transform of f . Thus, from (19) and (20),

E[QC(0)
L

(X)QC(n)
L

(X)]

=
∑
p,q

(−1)
∑d
k=1

(
ε
(pk)

k,1 +ε
(qk)

k,2

)
f̂
(
−L(ε

(p1)
1,1 + ε

(q1)
1,2 + n1, . . . , ε

(pd)
d,1 + ε

(qd)
d,2 + nd)

)
.

If (ε
(p1)
1,1 + ε

(q1)
1,2 + n1, . . . , ε

(pd)
d,1 + ε

(qd)
d,2 + nd) 6= 0 then Fact 2 implies that

lim
L→∞

f̂
(
−L(ε

(p1)
1,1 + ε

(q1)
1,2 + n1, . . . , ε

(pd)
d,1 + ε

(qd)
d,2 + nd)

)
= 0. (21)

Suppose C(0)
L and C(n)

L are disjoint. Then there exists k ∈ {1, . . . , d} such that
nk ≥ 2. In this case we have

ε
(pk)
k,1 + ε

(qk)
k,2 + nk ≥ 1.

Therefore (21) implies that if C(0)
L and C(n)

L are disjoint then

lim
L→∞

E[QC(0)
L

(X)QC(n)
L

(X)] = 0.



FLUCTUATION AND ENTROPY IN SPECTRALLY CONSTRAINED RANDOM FIELDS 21

It remains to show that if dim(C(0)
L ∩ C

(n)
L ) = d− j, for j = 0, 1, . . . , d, then

lim
L→∞

E[QC(0)
L

(X)QC(n)
L

(X)] = (−1)j
σ2
d

2j
.

Let n ∈ (N ∪ {0})d such that (ε
(p1)
1,1 + ε

(q1)
1,2 + n1, . . . , ε

(pd)
d,1 + ε

(qd)
d,2 + nd) = 0 for

some p, q ∈ {1, 2}d. In this case, Fact 2 implies that

lim
L→∞

E[QC(0)
L

(X)QC(n)
L

(X)] =
∑
p,q

(−1)
∑d
k=1

(
ε
(pk)

k,1 +ε
(qk)

k,2

)
f̂(0). (22)

Now we need to find the cardinality of the following set

Cn = {(p, q) ∈ {1, 2}d : ε
(pk)
k,1 + ε

(qk)
k,2 + nk = 0, k = 1, . . . , d}.

Note that if nk = 0 then ε
(pk)
k,1 + ε

(qk)
k,2 + nk = 0 when (pk, qk) ∈ {(1, 1), (2, 2)},

and if nk = 1 then ε
(pk)
1,1 + ε

(qk)
1,2 + nk = 0 when (pk, qk) = (1, 2).

Observe that if dim(C(0)
L ∩C

(n)
L ) = d−j then there exists j indices i1, . . . , ij

such that nik = 1 for k = 1, . . . , j and the rest of the d− j coordinates of n
are 0. Therefore the cardinality of Cn is

|Cn| = 2d−j.

Since f̂(0) =
∫
Rd

S(x)

x2
1···x2

d
dx =

σ2
d

2d
. Therefore from (22) we get

lim
L→∞

E[QC(0)
L

(X)QC(n)
L

(X)] = (−1)j
σ2
d

2j
.

The factor (−1)j appears because j many coordinates of n are 1. �

4. Proofs of Theorem 4 and Corollary 5

In this section we prove Theorem 4 and Corollary 5.

Proof of Theorem 4. We first prove the result for d = 1. Using that we give
the proof for d ≥ 2. Let d = 1. Then QCL(X) = ϕL(X) where ϕL = 1[−L,L].
Then

ϕ̂L(x) =

∫
ϕL(t)e−ixtdt =

∫ L

−L
e−ixtdt =

2 sinLx

x
.

Therefore Fact 1 implies that

Var(QCL(X)) =

∫ π

−π
|ϕ̂L(x)|2S(x)dx =

∫ π

−π

4 sin2 Lx

x2
S(x)dx.
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Since S is a symmetric function on [−π, π], we have

Var(QCL(X)) = 8I, where I =
∫ π

0
sin2 Lx
x2 S(x)dx.

Now we estimate I. Since S(x) = Θ(|x|α) as x → 0, there exist positive
constants c1, c2, δ > 0 such that

c1|x|α ≤ S(x) ≤ c2|x|α, for x ∈ (−δ, δ).

Using the last inequalities of S in (0, δ) we get

c1I1 + I2 ≤ I ≤ c2I1 + I2, (23)

where I1 =

∫ δ

0

sin2 Lx

x2−α dx and I2 =

∫ π

δ

sin2 Lx

x2
S(x)dx.

Since sin2 Lx ≤ 1, by (C2) we have

|I2| ≤
∫ π

δ

S(x)

x2
dx <∞. (24)

It remains to estimate I1. By the change of variables we get

I1 = L1−α
∫ δL

0

sin2 x

x2
xαdx. (25)

Since lim
x→0

sinx
x

= 1, there exists δ0 > 0 such that

1

2
≤ sinx

x
≤ 3

2
, for |x| ≤ δ0. (26)

Therefore we have∫ δL

0

sin2 x

x2
xαdx =

∫ δ0

0

sin2 x

x2
xαdx+

∫ δL

δ0

sin2 x

x2
xαdx. (27)

Using (26), for 0 ≤ α ≤ 1, we get

1

2
I ′1 ≤

∫ δ0

0

sin2 x

x2
xαdx ≤ 3

2
I ′1, where I ′1 =

∫ δ0
0
xαdx. (28)

Clearly I ′1 is finite. Since sin2 x ≤ 1, we have

∫ δL

δ0

sin2 x

x2−α dx ≤
∫ δL

δ0

1

x2−αdx =


1

1−α

(
1

δ1−α
0

− 1
(δL)1−α

)
if 0 ≤ α < 1,

log(δL)− log δ0 if α = 1.
(29)
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We have the following lower bound∫ δL

δ0

sin2 x

x2−α dx ≥
∫ 3π

4

π
4

sin2 x

x2−α dx ≥
1

2

∫ 3π
4

π
4

1

x2−αdx = cα, for α < 1. (30)

Clearly cα is a non-zero positive constant. Note that sin2 x ≥ 1
2

when x ∈
[kπ + π

4
, kπ + 3π

4
] for k ∈ N. Therefore, for α = 1,

∫ δL

δ0

sin2 x

x
dx ≥

δL/π−1∑
k=1

∫ kπ+ 3π
4

kπ+π
4

sin2 x

x
dx ≥ π

4

δL/π−1∑
k=1

1

kπ + 3π
4

& logL. (31)

Combining (28) (29), (30) and (31) from (27) we get

∫ δL

0

sin2 x

x2
xαdx =


Θ(1) if 0 ≤ α < 1,

Θ(logL) if α = 1.
(32)

From (25) and (32) we get

∫ δ

0

sin2 x

x2−α dx =


Θ(L1−α) if 0 ≤ α < 1,

Θ(logL) if α = 1.
(33)

Combining (23), (24) and (33) we get the result.

For d ≥ 2 : It remains to prove the result for d ≥ 2. Now ϕL = 1CL . Then

ϕ̂L(x) =

∫ L

−L
· · ·
∫ L

−L
e−it·xdt1 · · · dtd =

d∏
k=1

eiLxk − e−iLxk
ixk

=
d∏

k=1

2 sinLxk
xk

.

Note that QCL(X) = ϕL(X). Therefore by Fact 1 we have

Var(QCL(X)) =

∫ π

−π
· · ·
∫ π

−π
|ϕ̂L(x)|2S(x)dx =

∫ π

−π
· · ·
∫ π

−π

d∏
k=1

4 sin2 Lxk
x2
k

S(x)dx,

where x = (x1, . . . , xd) and dx = dx1 · · · dxd. As S is symmetric, then

Var(QCL(X)) = 8dJ, where J =
∫ π

0
· · ·
∫ π

0

∏d
k=1

sin2 Lxk
x2
k

S(x)dx. (34)

Let Aδi1....,ik = {x ∈ [0, π]d : xi| < δ iff i ∈ {i1, . . . , ik}} and [d] = {1, . . . , d}
Then define

Aδ = ∪dk=1 ∪i1,...,ik∈[d] A
δ
i1....,ik

.
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Note that Acδ = [0, π]d\Aδ = {x ∈ [0, π]d : x1, . . . xd ≥ δ}. Then

J = J1 + J2, where J1 =
∫
Aδ

∏d
k=1

sin2 Lxk
x2
k

S(x)dx, J2 =
∫
Acδ

∏d
k=1

sin2 Lxk
x2
k

S(x)dx.

Since sin2 Lx ≤ 1, by (C2) we have

|J2| <∞, for δ > 0. (35)

Now we estimate J1. We have

J1 ≤
d∑

k=1

d∑
i1,...,ik=1

Ii1,...,ik , where Ii1,...,ik =

∫
Aδi1....,ik

d∏
k=1

sin2 Lxk
x2
k

S(x)dx.

The assumption on S implies that there exists c1, c2, δ > 0 such that

c1x
αi1
i1

. . . x
αik
ik
≤ S(x) ≤ c2x

αi1
i1

. . . x
αik
ik
, for x ∈ Aδi1....,ik .

Using the last equation we get

c1J
′
1 ≤ I1,...,k ≤ c2J

′
1,

where

J ′1 =
k∏
j=1

∫ δ

0

sin2 Lxj

x
2−αj
j

dxj

d∏
j=k+1

∫ π

δ

1

x2
j

dxj = c
k∏
j=1

∫ δ

0

sin2 Lxj

x
2−αj
j

dxj.

Let τi1,...,ik = |{j ∈ [k] : αij = 1}|. Therefore by (33) we get

I1,...,k = Θ(L
∑k
j=1(1−αj)(logL)τ1,...,k)

Similarly we have Ii1,...,ik = Θ(L
∑k
j=1(1−αij )(logL)τi1,...,ik ). In particular, as

τd = τi1,...,id and md =
∑d

j=1 αj,

I1,...,d = Θ(Ld−md(logL)τd).

Which implies that Ii1,...,ik ≤ I1,...,d and hence

I1,...,d . J1 . I1,...,d =⇒ J1 = Θ(Ld−md(logL)τd). (36)

The left hand side follows from the fact that Aδ1...,d ⊂ Aδ. Therefore (35) and
(36) give the result. �
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Proof of Corollary 5. Let ϕL = 1[−1,1]d . Then from (34) we have

Var(QCL(X)) = 8dJ, where J =
∫ π

0
· · ·
∫ π

0

∏d
k=1

sin2 Lxk
x2
k

S(x)dx.

Let B(0, δ) := {x ∈ [0, π]d : ‖x‖p < δ}. Then we have J = J1 + J2, where

J1 =

∫
B(0,δ)

d∏
k=1

sin2 Lxk
x2
k

S(x)dx and J2 =

∫
B(0,δ)c

d∏
k=1

sin2 Lxk
x2
k

S(x)dx.

By the assumption of S implies that

|J2| <∞.

So it remains to estimate J1. Since S(x) = Θ(‖x‖αp ) as ‖x‖p → 0, there exist
c1, c2, δ > 0 such that

c1‖x‖αp ≤ S(x) ≤ c2‖x‖αp , for x ∈ B(0, δ).

Note that ‖x‖αp ≥ |x1|α. Therefore we have

J1 ≥
∫
B(0,δ)

d∏
k=1

sin2 Lxk
x2
k

dxk &
d∏

k=1

∫ δ/d1/p

0

sin2 Lxk

x2−αk
k

dxk

where α1 = α and α2 = · · · = αd = 0. Therefore by (33) we get

J1 &


Ld−α if 0 ≤ α < 1,

Ld−1 logL if α = 1.
(37)

Again, observe that

‖x‖αp ≤ dα/p(max{|x1|, . . . , |xk|})α ≤ dα/p(|x1|α + · · ·+ |xd|α).

Therefore by (33), for α1 = α and α2 = · · · = αd = 0, we get

J1 .
d∏

k=1

∫ δ

0

sin2 Lxk

x2−αk
k

dxk .


Ld−α if 0 ≤ α < 1,

Ld−1 logL if α = 1.
(38)

The result follows from (37) and (38), as |J2| <∞. �
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5. Comparison of fluctuations

Let Aδ = {x ∈ R : there exists i such that |xi| < δ} for δ > 0. Suppose
S(x) = 0 when x ∈ Aδ for some δ > 0, and S is bounded function in [−π, π]d.

Then it is clear that
∫ S(x)

x2
1···x2

d
dx <∞. Therefore Proposition 3 implies that

lim
L→∞

Var(QCL(X)) <∞. (39)

On the other hand, the same assumption on S implies that there exists L0

such that
∫
‖ξ‖≤ c

L
S(ξ)dξ = 0 and

∫
‖ξ‖> c

L

S(ξ)
‖ξ‖d+1dξ <∞ for L > L0. Therefore

Proposition 2 implies that

Var(QBL(X)) & Ld−1. (40)

In this section we give an intuitive explanation for the different behaviour
observed in (39) and (40) for d = 2.

To see this phenomenon, we first divide the ball of radius of L in grids of
length

√
L, as shown in the figure. We denote

A(k,l) = [k
√
L, (k + 1)

√
L]× [`

√
L, (`+ 1)

√
L], for k, ` ∈ Z.

Note that A(k,`) are squares with side lengths
√
L. Let ϕL = 1BL . Then

QBL(X) =
∑
k,`

Yk,`, where Yk,` =
∑

i∈Ak,`∩BL
Xi.

If Ak,` ∩ BL = ∅ then Yk,` = 0. Therefore

QBL(X)2 =
∑
k,`

∑
p,q

Yk,`Yp,q.
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Since E[QBL(X)] = 0, we have

Var(QBL(X)) =
∑
k,`

∑
p,q

E[Yk,`Yp,q].

Now consider the term when k = 0 and ` = 0, i.e.,
∑

p,q E[Y0,0Yp,q]. Roughly
speaking, Proposition 3 implies that, for large L,

E[Y0,0Yp,q] ≈ 0 if ‖(0, 0), (p, q)‖∞ ≥ 2.

Therefore from Proposition 3 we have∑
p,q

E[Y0,0Yp,q] ≈
∑
|p|,|q|≤1

E[Y0,0Yp,q]

= E[Y0,0Y0,0] + 4E[Y0,0Y0,1] + 4E[Y0,0Y1,1]

= σ2 − 4
σ2

2
+ 4

σ2

4
= 0.

Let Z0 = {(k, `) ∈ Z2 : Ak,` is surrounded by 8 complete boxes}. For
example, each shaded box in the figure is surrounded by 8 complete boxes.
But, the boxes which are not shaded do not satisfy this condition. Then, for
(k, `) ∈ Z0, we have ∑

p,q

E[Yk,`Yp,q] ≈ 0.

Let Z1 = {(k, `) ∈ Z2 : Ak,` ∩ BL 6= ∅}. It is clear that if (k, `) ∈ Z1\Z0

then ∑
p,q

E[Yk,`Yp,q] 6= 0.

Again observe that |Z1\Z0| ≈ L. Which shows that Var(QBL(X)) is growing
like L, not constant.

Carrying out a similar analysis for an L× L square shows that only the
corner

√
L ×
√
L squares contribute. Thus Var(QCL) = 4 × σ2

4
= σ2. The

same is true for rectangles with sides of lengths proportional to L.

6. Proof of Theorem 6

We prove Theorem 6 in this section. First, we recall the definitions of
correlation, truncated correlation functions and their properties.
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6.1. Joint intensity functions : The joint intensity measures of X =
(Xi)i∈Zd . Let Cc(Rd) be the space of compactly supported continuous func-
tions on Rd. Let

ρk(i1, . . . , ik) = E[Xi1 · · ·Xik ], for i1, . . . , ik ∈ Zd. (41)

Next, for the sake of completeness, we show that ρk is the k-th intensity
function of X with respect to counting measure on Zkd. See [DRS18, Section
3.3], [CL95] for the details.

(1) The first intesity function: Define T1(ϕ) = E(ϕ(X)) and µ1 =
∑

i∈Zd ρ(i)δi,
where δx(·) denotes the Dirac-delta measure at x. Then

T1(ϕ) =
∑
i∈Zd

ϕ(i)ρ(i) =

∫
Rd
ϕ(x)dµ1(x).

By the uniqueness of first intesity measure, see [HKPV09, p. 10], µ1

is the first intensity measure . Therefore ρ(i) is the first intensity
function of X with respect to the counting measure on Zd.

(2) The second intensity function: Define a positive bilinear functional
on Cc(Λ)× Cc(Λ) by

T2(ϕ, ψ) = E[ϕ(X)ψ(X)],

which induces the a positive linear functional on Cc(Λ
2). Again

T2(ϕ, ψ) =
∑
i,j∈Z2d

ϕ(i)ψ(j)ρ2(i, j),=

∫
R2d

ϕ(x)ψ(y)dµ2(x, y),

where µ2 =
∑

i,j∈Zd ρ2(i, j)δiδj. Therefore µ2 is the second intensity

measure of X, see [HKPV09, p. 11]. Therefore ρ2 is the second
intensity function of X with respect to the counting measure on Z2d.

(3) The k-th intensity function : Similarly, we have the k-th intensity
function ρk with respect to the counting measure on Zkd, and given
by (41).

Note that if Xi ∈ {0, 1} for i ∈ Λ then X = (Xi)i∈Λ is a simple point process
in Λ. If the k-intensity measure µk is absolutely continuous with respect to
the Lebesgue measure, then we get the joint intensity function in Λ in usual
sense, as considered in [MY80]. See [HKPV09, Definition 1.2.2] for more
details.
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6.2. Truncated (connected) correlation functions. Correlations between
particles are better described by truncated (connected) correlation functions.
These functions are defined recursively, see [DRS18, Section 3.4], [CL95], by

ρT1 (i1) := ρ1(1i1),

ρn(i1, . . . , in) =
∑

π∈P(n)

∏
B∈π

ρTB[i1, . . . , in], (42)

where ρTB[i1, . . . , in] = ρT|B|(ij : j ∈ B), and P(n) denotes the set of all

partitions of {1, . . . , n}, B runs through the list of blocks of the partition π.
The truncated correlation functions can also be written explicitly in terms
of the correlation functions as follows

ρTn (i1, . . . , in) =
∑

π∈P(n)

(|π| − 1)!(−1)|π|−1
∏
B∈π

ρB[i1, . . . , in], (43)

where |π| is the number of parts in the partition. Note that (42) and (43)
implies that correlation functions are the analogue of the moments and trun-
cated correlation functions are the analouge of the cumulants of a measure.

6.3. Cumulants. Recall that the joint cumulant of X1, . . . , Xn is given by

κ(X1, . . . , Xn) =
∑

π∈P(n)

(|π| − 1)!(−1)|π|−1
∏
B∈π

E

(∏
i∈B

Xi

)
. (44)

If some of the random variables are independent of all of the others, then
any cumulant involving two (or more) independent random variables is zero.
If all n random variables are the same, then the joint cumulant is the n-th
ordinary cumulant. The joint cumulant holds the multilinearity property,
i.e.,

κ(X + Y, Z1, Z2, . . .) = κ(X,Z1, Z2, . . .) + κ(Y, Z1, Z2, . . .).

Now we proceed to prove the theorem.

Proof of Theorem 6. Marcinkiewicz (1939) [Mar39] showed that the normal
distribution is the only distribution whose cumulant generating function is
a polynomial, i.e. the only distribution having a finite number of non-zero
cumulants. Let

QBL(X) =
QBL(X)− E[QBL(X)]√

Var(QBL(X))
.
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It is enough to show that all but finitely many cumulants of QBL(X) are

asymptotically zero. Recall QBL(X) =
∑

i∈B′L
Xi, where B′L = {i ∈ Zd : i ∈

BL}. By the multilinearity property of the cumulant we have

κn(QBL(X)) =
∑

i1,...,in∈B′L

κ(Xi1 , . . . , Xin) =
∑

i1,...,in∈B′L

ρTn (i1, . . . , in).

Again (43) and (44) implies that

ρTn (i1, . . . , in) = κ(Xi1 , . . . , Xin). (45)

Therefore using (45) we get

κn(QBL(X)) =
∑

i1,...,in∈B′L

ρTn (i1, . . . , in).

Since κn(cY ) = cnκn(Y ) for any random variable Y and E[QBL(X)] = 0,
then

κn(QBL(X)) =
1

(Var(QBL(X)))n/2

∑
i1,...,in∈B′L

ρTn (i1, . . . , in).

Recall that we assume that

sup
i1

∑
i2,...,in∈B′L

ρTn (i1, . . . , in) <∞.

Therefore there exists a positive constant C such that

κn(QBL(X)) ≤ C|B′L|
(Var(QBL(X)))n/2

.

Therefore by Proposition 2 we get

κn(QBL(X)) .
Ld

L(d−1)n/2
= L−

nd
2

(1− 1
d
− 2
n

).

Note that, for d > 3 and n ≥ 3, we have 1− 1
d
− 2

n
> 0, and

κn(QBL(X))→ 0, as L→∞.

If d = 2, 3 then we have 1− 1
d
− 2

n
> 0 when n ≥ 5. Therefore

κn(QBL(X))→ 0, as L→∞.

Therefore we have κ1(QBL(X)) = E[QBL(X)] = 0, κ1(QBL(X)) = E[(QBL(X))2] =

1 and limL→∞ κn(QBL(X)) = 0 for all n ≥ 5. So we get only finitely many
non-zero cumulants in limit. This completes the proof. �
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7. Proof of Theorem 7

In this section we prove Theorem 7 using the Szegö’s theorem. Let F be
a real integrable function on [−π, π]d, and let its Fourier transform is given
by

F̂ (k) =
1

(2π)d

∫
[−π,π]d

e−ik·θF (θ)dθ,

where k · θ =
∑d

j=1 kjθj. Let TL(F ) = (F̂ (i− j))|Λ′L|×|Λ′L|. Recall ΛL = {Lx :

x ∈ Λ} and Λ′L = Zd ∩ΛL. A multidimensional version of Szegö’s theorem is
stated below, which will be used in the proof of Theorem 7.

Theorem 8. [Lin75, Theorem 2] Let F > 0 be a function on [−π, π]d such
that ∑

k∈Zd
|F̂ (k)|,

∑
k∈Zd
|k||F̂ (k)|2 <∞,

where |k|2 =
∑d

j=1 k
2
j . Let Λ ⊂ Rd be as in Theorem 7. Then as L→∞

lim
L→∞

1

|Λ′L|
log det(TL(F )) =

1

(2π)d

∫
[−π,π]d

logF (θ)dθ.

For the classical Szegö’s theorem, we refer to [Sze52], [Ibr68], [Sim05] and
references there in. The following well known fact will be used in the proof
of Theorem 7. For the sake of completeness we provide a proof of this fact
in the appendix.

Fact 3. The maximum entropy distribution under constrains of mean and
variance is the Gaussian.

Proof of Theorem 7. Fact 3 implies that

h(X|ΛL)

|Λ′L|
≤ h(G|ΛL)

|Λ′L|
, (46)

where (Gi)i∈Zd be the mean zero variance one Gaussian field with the given
covariance kernel K. Now we show that the right hand side diverges to −∞
as L→∞.

Note that G|ΛL can be thought as a vector of |Λ′L| many Gaussian random
variables with mean zero and variance one. Again the joint distribution of
Gaussian random variables determined by its kernel. Therefore the joint
density of the random variables G|ΛL is given by

fL(xL) =
1√

det(2πΣL)
e−x

t
LΣ−1

L xL ,
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where xL is a vector of length |Λ′L| and ΣL is the covariance kernel matrix for
the random variables {Gi : i ∈ Λ′L}. In other words ΣL = (K(i−j))|Λ′L|×|Λ′L|.
Then

log fL(xL) = −|Λ
′
L| log(2π)

2
− log det(ΣL)

2
− xtLΣ−1

L xL.

Therefore the entropy of G|ΛL is given by

h(G|ΛL) = −
∫
R|Λ
′
L
|
fL(x) log fL(x)dx

=
|Λ′L| log(2π)

2
+

log det(ΣL)

2
+

1√
det(2πΣL)

∫
(xtΣ−1

L x)e−x
tΣ−1
L xdx.

(47)

By the change of variables formula, putting y = Σ1/2x, we get

1√
det(2πΣL)

∫
R|Λ
′
L
|
(xtΣ−1

L x)e−x
tΣ−1
L xdx =

1√
(2π)|Λ

′
L|

∫
R|Λ
′
L
|
(yty)e−y

tydy

=
∑
i∈Λ′L

1√
2π

∫
R
y2
i e
−y2

i dyi = |Λ′L|.

(48)

Therefore using (48) from (47) we get

h(G|ΛL) =
|Λ′L| log(2π)

2
+

log det(ΣL)

2
+ |Λ′L|.

Which implies that

lim
L→∞

h(G|ΛL)

|Λ′L|
= 1 +

log(2π)

2
+ lim

L→∞

log det(ΣL)

2|Λ′L|
. (49)

Next we calculate det(ΣL) using the strong Szegö’s theorem. Note that
we have ΣL = (K(i− j))Λ′L×Λ′L

. Recall (1), we have

S(θ) =
∑
j∈Zd

K(j)eij·θ, where θ ∈ [−π, π]d

and S ≥ 0 on [−π, π]d. Theorem 8 can not be applied directly for ΣL as
S vanishes near the origin. We perturb the structure function to apply the
Szegö’s theorem. Let ε > 0 and Sε(θ) = S(θ) + ε be a modified structure
function. Its Fourier coefficient are given by

Kε(j) =
1

(2π)d

∫
[−π,π]d

e−ij·θSε(θ)dθ = K(j) + εδ0(j).
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Let Σε
L = (Kε(i− j))|Λ′L|×|Λ′L|. Then Σε

L = ΣL + εI. Therefore we have

det(ΣL) ≤ det(Σε
L),

as ΣL is non-negative definite. Therefore using Theorem 8 we get

lim sup
L→∞

log det(ΣL)

|Λ′L|
≤ lim sup

L→∞

log det(Σε
L)

|Λ′L|
=

1

(2π)d

∫
[−π,π]d

logSε(θ)dθ. (50)

The right hand side of (50) goes to −∞ as ε → 0, since S is bounded and
zero in a neighbourhood of the origin. Therefore from (50) we get

lim
L→∞

h(G|ΛL)

|Λ′L|
= −∞. (51)

We conclude the result from (46) and (51).
We note in the passing that, even if the structure function S does not

vanish near the origin, as soon as S fails to be logarithmically integrable,
sending ε→ 0 in (50) we may deduce that the asymptotic entropy per site is
still −∞. Thus, entropic degeneracy already sets in under milder conditions
than actual vanishing of the structure function in a neighbourhood of the
origin. �

8. Appendix

For the sake of completeness, we provide a self-contained proof of Facts
1 and 3.

Proof of Fact 1. Recall ϕ(X) =
∑

i∈Zd ϕ(i)Xi. Therefore we have

Var(ϕ(X)) =
∑
p,q

ϕ(p)ϕ(q)E[XpXq] =
∑
p,q

ϕ(p)ϕ(q)K(p− q).

By the definition of S we have K(p) = Ŝ(p) for p ∈ Zd, i.e.,

K(p) =

∫
[−π,π]d

S(ζ)e−iζ·pdθ.
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Therefore we get

Var(ϕ(X)) =
∑
p,q

ϕ(p)ϕ(q)

∫
[−π,π]d

S(ζ)e−iζ·(p−q)dζ

=

∫
[−π,π]d

S(ζ)
∑
p,q

ϕ(p)ϕ(q)e−iζ·(p−q)dζ

=

∫
[−π,π]d

S(ζ)

(∑
p

ϕ(p)e−iζ·p

)(∑
q

ϕ(q)e−iζ·q

)
dζ

=

∫
S(ζ)|ϕ̂(ζ)|2dζ.

Similarly it can be shown that

Cov(ϕ(X), ψ(X)) =

∫
ϕ̂(ζ)ψ̂(ζ)S(ζ)dζ.

Hence the result. �

Proof of Fact 3. We give the proof only for dimension one, the higher dimen-
sional case can be proved similarly. Let g be the density function of the real
Gaussian random variable G with mean µ and variance σ2, i.e.,

g(x) =
1√
2πσ

e−
(x−µ)2

2σ2 .

Let f be a continuous density function of a random variable X with mean
µ and variance σ2. The relative entropy (also known as Kullback-Leibler
divergence) between f and g is given by

0 ≤ DKL(f‖g) =

∫ ∞
−∞

f(x) log(
f(x)

g(x)
)dx = −h(X)−

∫ ∞
−∞

f(x) log(g(x))dx.

Note that we have

log(g(x)) = −1

2
log(2πσ2)− (x− µ)2

2σ2
.

Which implies that, as the variance of X is σ2,∫ ∞
−∞

f(x) log(g(x))dx = −1

2
log(2πσ2)−

∫ ∞
−∞

f(x)
(x− µ)2

2σ2
dx

= −1

2
log(2πeσ2) = −h(G).

Thus we have h(G) − h(X) ≥ 0 . Also the properties of Kullback-Leibler
divergence imply that h(X) = h(G) when f = g. Hence the result. �
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