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ABSTRACT

The Wigner function is assembled from analytic wave functions for a one-dimensional closed system (well with infinite barriers). A sudden
change in the boundary potentials allows for the investigation of time-dependent effects in an analytically solvable model. A trajectory
model is developed to account for tunneling when the barrier is finite. The behavior of the density (the zeroth moment of the Wigner func-
tion) after an abrupt change in potential shows net accumulation and depletion over time for a weighting of energy levels characteristic of
the supply function in field emission. However, for a closed system, the methods have application to investigations of tunneling and trans-
mission associated with field and photoemission at short time scales.

https://doi.org/10.1063/1.5086434

I. INTRODUCTION

Models of phenomena in narrow anode-cathode gaps are of
increasing importance in nanoscale studies treating quantum tun-
neling and time dependent behavior for field and photoemission.1–7

When anode-cathode gaps are comparable to tunneling distances,
or when emitter curvature is such that changes to the tunneling
path result in departures from conventional treatments, then the
reliability of those approaches, which lead to the 1D equations of
electron emission, is affected.8–12 The canonical equations are
based on the evaluation of transmission and reflection coefficients
and probabilities, which are standard problems in quantum
mechanics13–15 for the evaluation of current, but the problem of
tunneling time remains unresolved,16–19 more so for curved tunnel-
ing paths. A trajectory interpretation is desirable to develop to
model emission at very short time scales and accounts for how tun-
neling and complications such as multidimensionality7,20 are to be
addressed. Additionally, a trajectory interpretation would allow
tunneling time contributions to be associated with delayed emission
effects in the prediction of emission pulse properties.21 Before a tra-
jectory interpretation can be realized, however, methods to recon-
cile quantum mechanics with classical trajectory-like behavior are
required. Wigner22–24 and Bohm trajectories (or “paths”)25–29 have

properties that may be appropriate. Numerical simulations of reso-
nant tunneling diodes (RTDs) using the Wigner function,30–33 for
example, share similarities to how they are to be used here.

A suitable method is based on wave functions confined by
Dirac delta function potentials V(x) ¼ Γδ(x), where Γ governs the
strength of the potential,34 as it provides a basis for finding a trac-
table Wigner distribution function (WDF). The wave function
approach allows for treating time dependent behavior. The WDF
allows for developing a trajectory interpretation. With modifica-
tions, the solutions can enable investigating field penetration
effects into a barrier and responses to sudden changes in barrier
height (as would accompany the sudden application of an applied
field). The demonstration is undertaken with the simplest poten-
tial profiles first so as to develop the methods systematically: the
first undertaking is a direct solution of Schrödinger’s equation,
and the second is based on a limiting procedure applied to a
Transfer Matrix Approach (TMA)35 for a potential modeled by a
delta sequence.36 The associated Wigner trajectories can then be
developed. Finally, the time-dependent behavior of the wave
functions after a sudden change in the potential is shown. These
separately established components will be used to develop time
dependent trajectories and their associated transit times in a
separate study.
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A. Schrödinger formulation

The stationary one-dimensional (1D) Schrödinger’s equation
for a Dirac delta function potential with Γ ; �h2γ=2m becomes

@2
xψ(x) ¼ γδ(x)� k2

� �
ψ(x): (1)

Solutions are [where subscript a refers to the region to the left
(x , 0) of the origin and b to the right (x . 0)]

ψ(x , 0) ; ψa(x) ¼ Aeikx þ Be�ikx ,

ψ(x . 0) ; ψb(x) ¼ A0eikx þ B0e�ikx:
(2)

The conventional narrative, which treats an open system and thereby
relates transmission and reflection probabilities, is now modified to
consider a box with infinite barriers at x ¼ +L=2 with a δ-function
potential at the origin: such a system is closed (no current J) and has
discrete energy levels. Although having J ¼ 0 appears to be a limita-
tion, it enables certain simplifications. The following conditions are
then used to determine the coefficients of Eq. (2).

1. The continuity of ψ(x) at x ¼ 0 gives

Aþ B ¼ A0 þ B0: (3)

2. Being in a box requires current density
Jk(x) ; (�h=2mi)

�
ψy@xψ � ψ@xψy

� ¼ 0 from which

jAj2 � jBj2 ¼ jA0j2 � jB0j2 ¼ 0 (4)

and is satisfied by

B ¼ Aeif, B0 ¼ A0eiw
0
: (5)

3. The boundaries ψa(�L=2) ¼ ψb(L=2) ¼ 0 entail

f ¼ �kLþ π, f0 ¼ kLþ π: (6)

4. Integrating Schrödinger’s equation from x ¼ 0� to x ¼ 0þ

results in @xψb(0
þ)� @xψa(0

�) ¼ γψb(0), or

�Aþ A0 þ B� B0 ¼ � iγ
k

A0 þ B0ð Þ, (7)

which, using Conditions 2 and 3, becomes

(2kþ iγ)e�ikL þ (�2kþ iγ)eikL � 2iγ ¼ 0: (8)

5. The boundary conditions further entail even and odd parity
solutions.
• Even occurs for kj ¼ π(2jþ 1)=L for which ψa(x) ¼ 2A
cos (kjx) and ψb(x) ¼ 2A0 cos (kjx), but then Eq. (8) requires
�4iγ ¼ 0, or the absence of a δ-function potential.

• Odd occurs for kj ¼ 2πj=L for which ψa(x) ¼ 2Ai sin (kjx)
and ψb(x) ¼ 2A0i sin (kjx), but then Eq. (8) is identically zero
and so odd parity solutions exist for any γ, because the wave
function identically vanishes at x ¼ 0.

6. If the wave function vanishes at the origin where the delta func-
tion exists, then the requirement that the derivative of the wave
function be continuous entails A ¼ A0.

The six conditions result in

ψa(x) ¼ ψb(x) ¼ 2 sin (kjx), (9)

where the normalization is over the cell size (L=2).
Importantly, the sequence of the derivation shows that

increasing the box by L ! 2L and inserting δ-function potentials
at +L=2 (thereby excluding the “even parity” solutions) do not
change the form of ψ(x) but simply extends the range over
which it holds to +3L=2. The insertion of additional cells
can therefore be iterated so that L ! (N þ 1)L with N an
integer and δ-function potentials placed at xp ¼ pL=2 with
p ¼ 0, + 1, + 2, . . . , + N . When the even parity solutions of
Condition 5 are excluded, then if Aj is associated with cell j, Aj

need not be related [the wave function ψ j(x) for cell j is not
affected by ψ j+1(x) for the adjacent cells]. When the even parity
solutions not excluded, then the condition @xψ(pLþ=2)�
@xψ(pL�=2) ¼ γψ(pL=2) would have had to be accounted for,
with L+ being infinitesimally to the right or left of L.

B. Transfer Matrix Approach

The same result using a Transfer Matrix Approach (TMA) is
now shown. The TMA allows for generalization to barriers with
finite height and width and will therefore be applicable to barriers
closer to conditions characteristic of field and photoemission. The
Dirac delta function potential is replaced by a delta sequence36

defined by

δl(x) ;
1
l
Θ

l
2

� �2

�x2
" #

, (10)

where Θ(z) is the Heaviside Step function (0 when z , 0, 1
when z . 0). It mimics a Delta function because (i) in the
limit that l ! 0, then δl(x) is zero everywhere except at x ¼ 0
where it goes to 1 as 1=l; (ii) the integral

Ð1
�1 δl(x)dx ¼ 1; and

(iii)
Ð1
�1 g(x)δ l(x)dx � g(0) for a smooth function g(x) as l

vanishes.
The formulation allows the use of plane wave solutions e+ikx

for the wave function ψ(x) in the regions to either side of the delta
function barrier γδl(x), and e+κx in the thin region defining the
barrier, where κ2 ; k2o � k2, �h2k2o=2m ¼ γ=l and �h2k2=2m ¼ E.

A box of width L centered on the origin now possesses three
regions. Let region 1 be defined by �L=2 � x , l=2, region 2 by
�l=2 � x � l=2, and region 3 by l=2 , x � L=2. The wave func-
tions given by ψ j(x) ; Ajeikx þ Bje�ikx for j ¼ (1, 3) and
ψ2(x) ; A2eκx þ B2e�κx , and their first derivatives, have to match
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at x ¼ +l=2, conditions which are expressed for x ¼ �l=2 by

1=P P
ik=P �ikP

� 	
A1

B1

� 	
¼ 1=T T

κ=T �κT

� 	
A2

B2

� 	
, (11)

where P(x ¼ l=2) ¼ eikl=2 and T(x ¼ l=2) ¼ eκl=2, and for
x ¼ l=2 by

T 1=T
κT �κ=T

� 	
A2

B2

� 	
¼ P 1=P

ikP �ik=P

� 	
A3

B3

� 	
: (12)

Boundary conditions are a consequence of walls where
V(+L=2) ¼ 1, for which the wave functions vanish
[ψ1(�L=2) ¼ ψ3(L=2) ¼ 0], or

A1 þ B1ð Þ cos (Lk=2)� i(A1 � B1) sin (Lk=2) ¼ 0, (13)

A3 þ B3ð Þ cos (Lk=2)þ i(A3 � B3) sin (Lk=2) ¼ 0, (14)

where Eqs. (13) and (14) are used to specify the energy levels
k ! kn: when Aj ¼ �Bj, then kn ¼ 2πnx=L, whereas when
Aj ¼ Bj, then kn ¼ π(2n� 1)x=L. Eliminate A2 and B2 to obtain

A3

B3

� 	
¼ �(R=2κk)e�ikl �iS

iS �(Ry=2κk)e�ikl

" #
A1

B1

� 	
, (15)

where

R ¼ �2κk cosh(κl)þ i(κ2 � k2)sinh(κl),

S ¼ κ2 þ k2

2κk
sinh(κl)

(16)

and where κ2 ¼ k2o � k2. In the limit of small barrier width l � L
and large barrier height (ko � k), a parameter a is introduced such
that l ¼ La2 and ko ¼

ffiffiffiffiffiffiffi
γ=l

p ¼ (γ=L)1=2a�1. For small a, then,

R � κ(�2kþ iγ)(1þ ikLa2),

S � γ

2k
:

(17)

As a result, to order a3

A3

B3

� 	
¼ 1

2k
2k� iγ �iγ

iγ 2kþ iγ

� 	
A1

B1

� 	
: (18)

Consequently, in the limit a ! 0, when Bj ¼ �Aj for j ¼ 1, 3, then
kn ¼ 2πn=L and ψ / sin (knx) for any value of γ; however, when
Bj ¼ Aj then k ¼ π(2n� 1)=L and ψ j / cos (knx) only for γ ¼ 0.
The presence of a delta-function potential, therefore, entails only
sine forms of the wave function for the closed system under consid-
eration (for open boundary conditions, the cosine wave functions
have to be retained).

II. WELL AND INFINITE BARRIERS

A. Density matrix

A wave function contained in a region with infinite barrier
walls but otherwise such that V(0 � x � L=2) ¼ 0 is of the form
ψn(x) � sin (knx) with kn ¼ 2πnx=L, as occurs for either a well of
width L=2 or one cell of a well with a delta function potential at the
origin. Then, letting jAnj2 be proportional to the probability of
being in a state ψn, the density ρ(x) is given by

ρ(x) ¼ 2
L

XN
n¼1

A2
n sin

2πnx
L

� �� 	2
, (19)

where the normalized wave functions are given by
ψn(x) ¼

ffiffiffiffiffiffiffiffi
2=L

p
sin (knx) (compare Ref. 37, which applies the formal-

ism to Wigner wave packets). Since separate regions are no longer
under discussion here, but different wave functions are, the subscript
in An is associated with kn. If A2

n mimics f (k) from Eq. (A1), then

ρ(x)
ρo

¼ 3
N3

XN
n¼1

(N2 � n2) sin (2πnx=L)½ �2 (20)

as illustrated for various values of n in Fig. 1, where kN ; kF is the
energy of the highest filled level and corresponds to kF ¼ ffiffiffiffiffiffiffiffiffi

2mμ
p

=�h,
where μ is the chemical potential (or the Fermi level at T ¼ 0 K).
Adopting the notation ψn(x) ; knjxh i, then Eq. (19) becomes the
diagonal elements of a mixed density matrix, or

ρ(x) ¼
XN
n¼1

f (kn) knjxh ij j2¼ xjρ̂jxh i, (21)

where the density matrix ρ̂ is defined by

ρ̂ ;
XN
n¼1

fn nj i nh j, (22)

FIG. 1. ρ(x)=ρo for N [ (3, 6, 9, 12) as per Eq. (20). The (symmetrical) x , 0
region is not shown. Compare to Fig. 12. Note that the number of “humps” is
given by (n� 1).
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where knj i ! nj i to reinforce that knj i is not the same as the kj i
momentum basis states often encountered. The weighting factor fn
takes over the role of A2

j and eases its identification with the supply
function of Eq. (A1).

B. Wigner function

The Wigner distribution function (WDF) is obtained from the
density matrix ρ̂ by38,39

f (x, k) ;
1
π

ð1
�1

dy e2iky x � yjρ̂jx þ yh i: (23)

The Wigner function mimics a classical distribution, e.g., the
density is recovered by

ρ(x) ¼ 1
2π

ð1
�1

f (x, k) dk, (24)

but the non-local features of quantum mechanics are made
manifest in the kets x+ yj i on which ρ̂ operates. Because of
the infinite barriers, the integration region of Eq. (23) must be
bound such that jx+ yj � L=2. This imposes the restriction
�L=2þ jxj � y � L=2� jxj. As a result of Eqs. (23) and (A3), the
definition of ψk(x), and the symmetry of the integrand of Eq. (23)
with respect to y ! �y, it follows:

f (x, k) ¼ 2
L2

XN
n¼1

(N2 � n2)
ðΔ
�Δ

Wn(k; x, y)dy,

Wn(k; x, y) ¼ cos (2ky) sin [kn(x þ y)] sin [kn(x � y)],

(25)

where Δ ¼ (L=2)� jxj. Observe that closed boundary conditions
and the aforementioned discussion entails that f (x, k) ¼ f (x, � k),
although that will not hold for open boundary condition situations
where current may flow. Introduce f+ ¼ 2(k+ kn)Δ, fo ¼ 2kΔ,
and sinc(f)¼ ( sinf)=f. With 2sin (aþ b) sin(a� b)¼ cos(2b)�
cos (2a), then two integrals arise from the integral in Eq. (25)
and are

ðΔ
�Δ

cos (2ky) cos (2kny)dy ¼ Δ sinc(fþ)þ sinc(f�)
� �

,

ðΔ
�Δ

cos (2ky) cos (2knx)dy ¼ 2Δ cos (2knx)sinc(fo),

(26)

which results in an analytic relation for f (x, k). If the first integral
and second integral of Eq. (26) are denoted Pn(k, x) and Qn(k, x),
respectively, then

f (x, k) ¼ 1
L2

XN
n¼1

(N2 � n2) Pn(k, x)� Qn(k, x)f g: (27)

Recalling the discussion following Eq. (9), the inclusion of 2ns � 1
delta function potentials within a well region defined by
�L=2 , x , L=2 (implying 2ns smaller well-like regions) would
alter Eq. (27) by eliminating contributions where n is a multiple of ns.

For example, ns ¼ 2 as in Fig. 2 (see also Fig. 3) shows four such
regions. The formulation has similarities to, but is not the same as
a delta-function Krönig-Penny model,40 because in the present for-
mulation, the boundary conditions are not open and therefore
there is no current flow.

The density ρ(x) in Eq. (24) is obtained by summing over kn,
resulting in Fig. 3: observe the recovery of the density profile of the
(n ¼ 6) line of Fig. 1 and that it is repeated in each of the four
quadrants, even though the underlying f (x, k) is very different in

FIG. 2. Wigner function f (x, k) for N=ns ¼ nl ¼ 6, ns ¼ 2 (2ns � 1 ¼ 3 equi-
spaced δ-potentials). f (x, k) is symmetrical across the x ¼ 0 and k ¼ 0 axes.

FIG. 3. ρ(x) [Eq. (24)] with f (x, k) from Fig. 2 (nl ¼ 6, 2ns � 1 ¼ 3 δ-potential
barriers). Compare Fig. 12 in Appendix B.
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each of them. Just as ρ(x) is the density in x-space, ρ(k), defined by

ρ(k) ¼
ðL=2
�L=2

f (x, k)dx (28)

is the probability density in k-space. Its behavior is contrasted in
Fig. 4 to [1� (kj=kF)

2] from the discrete analog of the supply func-
tion f (k) of Eq. (A1). The presence of the delta-function barriers
results in sharpened regions where ρ(k) is significant, with the
sharpened areas corresponding to the kn of the discrete coefficient
in Eq. (27). Increasing the number 2ns � 1 of δ-potential barriers
within the well serves to sharpen the ρ(k) peaks.

The behavior of f (x, k) visible near the box edges at +L=2
possesses the same ripples found in the numerical simulation of
resonant tunneling diodes (RTDs) (e.g., Fig. 12 of Ref. 41 and
Fig. 10 of Ref. 42). Such ripples affect a trajectory interpretation.
The region closest to x ¼ +L=2 is of most interest: those boundar-
ies shall be made finite to analyze effects of a sudden transition.

Observe that the successful development of an analytic solu-
tion underscores a difficulty in time-dependent WDF simulations
treating a sudden change in which the determination of the WDF
relies on incoming boundary conditions31,41,43 (other Wigner-
based methods for treating RTDs exist33): the finite difference oper-
ator approximating derivatives at the incoming (open) boundary
assumes that the boundaries are a thermal Fermi-Dirac distribution
(much like the supply function of field emission44), but that
approximation is undercut by Figs. 4 and 5. That approximation is
not correct in the absence of scattering mechanisms that thermalize
the distribution far from the RTD. The gradient @xf (x, k) does not
vanish at the incident boundaries as assumed, and the oscillations
visible for k . kF depart from fo(k)/ ln (1þ exp [α(k2F � k2)] with
α ¼ �h2=2mkBT characteristic of a supply function. The conse-
quences of those approximations are made visibly apparent by simu-
lating an open boundary with an infinite barrier at the origin. The
WDF is then symmetrical so that the outgoing boundary is the same

as the incoming. Using the thermal distribution at the in/out boun-
dary and numerically solving for the WDF returns an f (x, k) that
for small k is noticeably different than the analytical result.45

Employing the boundary conditions suggested by Fig. 5 would likely
correct such deficiencies and have consequences for the RTD simula-
tions as well when L=2 is comparable to a scattering mean free path.

C. Steady state trajectories

The behavior of f (x, k) near x ¼ L=2 in closeup accentuates
features analogous to those seen in the numerical simulation of res-
onant tunneling diodes31,41,42 and field emission46 using Wigner
functions. Contours of f (x, k), which will be associated with a tra-
jectory interpretation,43 are shown in Fig. 6 and show that some
trajectories pass through the entire region of the box. The k values
for these trajectories are related to the positions of the peaks in
Fig. 5. The relation between the contour lines and trajectories is
established by considering the time evolution of the Wigner func-
tion, given by

@

@t
f x, k, tð Þ ¼ � �hk

m
@

@x
f x, k, tð Þ

þ
ð1
�1

V x, k� k0ð Þf x, k0, tð Þdk0,
(29)

V x, k� k0ð Þ ¼ � i
π�h

ð1
�1

e2i(k�k0)y

� V(x þ y)� V(x � y)f gdy,
(30)

FIG. 4. ρ(k) [Eq. (28)] with f (x, k) from Fig. 2 (nl ¼ 6 levels and 2ns � 1 ¼ 3
δ-potential barriers). A j ¼ 0 point of kj ¼ 2πj=nl is shown for visual complete-
ness, but does not correspond to an energy level.

FIG. 5. Close-up of Fig. 2 showing the region nearest x ¼ L=2 but not encom-
passing a Dirac delta potential.
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which can be recast as @t f ¼ L 	 f , where the Liouville operator L
is such that

f (x, k, t þ δt) ¼ exp iLδt=�hð Þf (x, k, t): (31)

The relation to the trajectories of classical phase space fc(x, t)
dictated by

@t fc þ _x@xfc þ _k@kfc ¼ 0 (32)

can be made if _x and _k are defined by the relation to Eq. (29).31,43

As an example, the harmonic oscillator at a particular energy level
has contours of f (x, k) that correspond to constant energy.
“Quantum trajectories” can be similarly described for time-
independent f (x, k) by their relation to the contour lines. A tunnel-
ing time can be related to the trajectories that penetrate barriers of
finite size, but such WDFs are more complex than the simple well
with infinite walls model.

Consider, therefore, a model of barrier penetration by
allowing a finite magnitude wall on only one side. The steady
state trajectories associated with in Fig. 5 are shown in Fig. 6.
The phase space points (xj, kj) on the trajectories can be used
to find time by

t jþ1 ¼ tj þ 2m
�h

� �
x jþ1 � xj
k jþ1 þ kj

: (33)

By comparison, a classical trajectory would have kj ¼ kinitial for all
j. The trajectories for the blue, aqua, green, and red trajectories of
Fig. 6 (bottom) can thereby be compared: doing so results in Fig. 7,
where x(t)=L is compared to t=Δ with Δ ¼ mL2=π�hn and
kF ¼ 2πn=L, e.g., Δ ¼ 46 fs for L ¼ 10 nm and n ¼ 6. Also shown
are conventional, or “classical,” trajectories (dashed lines) where
the velocity �hk=m is constant and the trajectory does not turn
around until the particle is reflected from the wall (top of figure). A
noticeable difference is that the WDF trajectories are reflected
before they reach the wall.

FIG. 6. (Top) Contours (nl ¼ 6) equispaced contour lines associated with the
full f (x, k) for nl ¼ 6 levels and 2ns � 1 ¼ 3 δ-potential barriers. (Bottom)
Close-up showing the region nearest the “surface” at x ¼ L=2: the closest
δ-potential is past the left boundary, at x=L ¼ 0:25.

FIG. 7. Trajectories associated with the contours of Fig. 6 (bottom), matched to
color. Time is in units of Δ ¼ mL2=π�hn. Dashed lines are “classical”
trajectories.
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III. WELL AND FINITE BARRIER

A. Density

As anticipated in Appendix B, the simplest modification to
the well of Sec. II is to retain the infinite potential (either delta
function or barrier) at x ¼ �L=2 but replace the infinite barrier at
x ¼ 0 with a finite potential V(0 � x , L=2) ¼ �h2k2o=2m and
retain V(x 
 L=2) ¼ 1. The matrix equation at x ¼ 0 that replaces
Eq. (11) becomes

1 1
ik �ik

� 	
A1

B1

� 	
¼ 1 1

κ �κ

� 	
A2

B2

� 	
(34)

and the vanishing of the wave function at the boundaries
x ¼ +L=2 result in

B1 ¼ �A1e
�ikL; A2 ¼ �B2e

�κL: (35)

The non-vanishing penetration of the wave function in region 2
(x . 0) and the vanishing of the wave function at x ¼ +L=2
require that kn now becomes

kn ;
2π
L
(n� sn), (36)

where sn is determined by the relation

tan (knL=2)
kn

¼ � tanh(κnL=2)
κn

(37)

and where κn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2o � k2n

p
. The determination of sn is accom-

plished by numerical means based on the Newtonian iteration for
conditions where kF , ko. For example, for ko ¼ 24π=L with
L ¼ 5, an approximation finds sn � 0:01(0:0505n2 þ 2:3648nþ
0:2249) to 2% accuracy.

By numerical means, sn is found accurately and kn constructed
from Eq. (36). The wave function is then

ψn(x , 0) ¼ �2ieiπsn sin πsn � knx½ �,
ψn(x . 0) ¼ �2ie�iknL=2 sin (Lkn=2)

� sinh κnx � Lκn=2½ �
sinh(κnL=2)

:

(38)

The normalization Nn is such that

N2
n ¼ 1

L

ðL=2
�L=2

jψn(x)j2 dx ¼ N2
l þ N2

r (39)

and makes use of separate integrations over the left (x , 0) and
right (x . 0) regions such that

N2
l ¼ 1þ sin (2πsn)

knL
, (40)

N2
r ¼ [sinh(κnL)� κnL]

4κnL
sin (knL=2)
sinh(κnL=2)

� 	2
: (41)

The effects of penetration of ψn(x) into the barrier are then seen
by comparison to the densities of Fig. 1 in Fig. 8, for which the
barriers are infinite, using the generalization of Eq. (21) and
xjnh i ¼ ψn(x) but now with kn dictated by Eq. (36). The impact on
the tunneling trajectories for a tunneling barrier of finite magnitude
does not admit of an analytic solution of a simplicity comparable
to Eq. (27), and so shall be considered by numerical means in a
separate study.

B. Evolution after abrupt potential change

The temporal response of the wave function after an abrupt
change is possible after the eigenstates of the initial and final condi-
tions are established. If ψoj i is the initial wave function, then
after an abrupt change, the wave function ψ(t)j i after a time t is
given by

ψ(t)j i ¼
X1
j¼1

e�iωj tCj jj i, (42)

where Cj ; jjψoh i, �hωj ¼ �h2k2j =2m, and jj i are the eigenstates of
the system after the change. The initial state ψoj i is a combination
of initial eigenstates noj i encountered in Eq. (22), but now with an
“o”-subscript to distinguish them from jj i. Specification of the final
states xjnh i by ψn(x) of Eq. (38) after the determination of the
values of sn is numerically possible (and shall be considered in a
separate study), but for the present, consider instead a final
state that allows for an analytic form without the need to search for
sn. Let the initial state before a sudden change be eigenstates of
V(�L=2 , x , 0) ¼ 0 and infinite otherwise, and the final state to
be eigenstates of V(�L=2 , x , L=2) ¼ 0 and infinite otherwise:
such a circumstance would correspond to either a single Dirac delta
potential at the origin with only the left cell occupied followed by
the removal of the Dirac delta potential, or a sudden reduction of

FIG. 8. ρ(x)=ρo for N ¼ 6 for an infinite barrier at x ¼ 0 (ko ¼ 1, gray), a
high barrier (ko ¼ 2kF , blue), and a low barrier (ko ¼ 1:1kF , red), where
kF ¼ kN .
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the right barrier to zero in the region 0 , x , L=2: the eigenfunc-
tions for the initial states of both are the same.

More importantly, for the model, the final states over the
entire region of size L are analytic and characterized by having
twice as many possible energy levels compared to the initial state:
in addition to the sin wave functions of the initial state, now the
cosine wave functions [corresponding to kn ¼ π(2n� 1)=L] are
allowed. The overlap between the initial and final state wave func-
tions then enables finding Cj. Clearly, ψoj i can be constructed as a
weighted sum of noj i [see Eq. (22)], by

ψoj i ¼
XN
n¼1

ffiffiffiffiffi
fn

p
noj i: (43)

Consequently, the factors Cjn ; jjnoh i are needed and straightfor-
ward to evaluate. Using

xjnoh i ¼ 2 sin (2πnx=L)Θ(x þ L=2)Θ(�x),

xj2jh i ¼
ffiffiffi
2

p
sin (2πjx=L)Θ[(L=2)2 � x2],

xj2j� 1h i ¼
ffiffiffi
2

p
cos [π(2j� 1)x=L]Θ[(L=2)2 � x2],

(44)

then

C2j,n ¼ 1ffiffiffi
2

p δ jn, (45)

C2j�1,n ¼ 4
ffiffiffi
2

p
n

π (2j� 1)2 � 4n2
� � , (46)

where δ jn is the Kronecker delta function. Observe, first, thatP1
j¼1 C

2
j,n ¼ 1, and second, that after the sudden change in the

potential, 50% of the state remains in the initial state noj i (that is,
C2
2n,n ¼ 1=2) and � 40% in the nearest adjacent states

(C2
2n�1,n þ C2

2nþ1,n � (4=π2)(1þ (3=16(πn)2) . 0:41) that become
available after the potential change.

The time evolution of ψo(t) for N ¼ 6 as per Eq. (43)
is shown after a sudden change in potential V(x) ¼ 1 ! 0 for
(0 , x , L=2) in Fig. 9. The units are chosen such that
Δx ¼ L=128 and Δt ¼ mL2=256π�h. As expected, the density moves

FIG. 9. First six steps in time evolution of ψoj i after a sudden change in poten-
tial V (0 , x , L=2) ! 0 for N ¼ 6, in units where ωnΔt ¼ n2π=128.

FIG. 10. Behavior of ρ(x, t) from ωt ¼ 0 to ωt ¼ π for N ¼ 6. The initial state
is shown for t ¼ 0 along the x̂-axis. The accumulation apparent in Fig. 9 is
evident on the right-most corner.

FIG. 11. Left-side and right-side densities based on ρl and ρr (see text)
showing a preponderance or decline in density as a consequence of the migrat-
ing depletion and accumulation regions in Fig. 10.
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into the unoccupied space for x . 0, but perhaps surprisingly, an
accumulation builds rapidly near x � L=2. The rapidity with which
this accumulation appears increases with increasing N . If each
time slice is stacked, a three dimensional representation of
ρ(x, t) ¼ jψ(x, t)j2 can be created to further examine the behavior
of the accumulation. A representation for N ¼ 6 is shown in
Fig. 10. The perspective reveals that just as an accumulation
appears near x � L=2 for short times, so too does a depletion
appear near x � �L=2, with both the depletion center and the
accumulation center migrating to the middle over time.

The behavior can also be considered by looking at the left side

density ρl ¼ L�1
Ð 0
�L=2 ρ(x, t)dx compared to the right side density

ρr ¼ L�1
Ð L=2
0 ρ(x, t)dx, as shown in Fig. 11: the net positive or neg-

ative values of density away from ωt ¼ 0 and ωt ¼ π are a reflec-
tion of where the accumulation peak and depletion trough appear
in Fig. 10. After a time t ¼ 2π=ω, the initial conditions would be
recovered: in physical systems, however, scattering processes will
act to thermalize the distribution. Modeling those effects, and the
consequences for the trajectory model, will be taken up separately.

IV. SUMMARY

The evaluation of Wigner trajectories is made possible using
analytic wave functions associated with 1D wells with infinite barri-
ers and delta function barriers. For such simple systems, the
Wigner function is analytic and the trajectories easily associated
with the contour lines of f (x, k), thereby allowing tunneling times
to be evaluated from _x and _k on the trajectory lines. Modifications
to the wave functions associated with multiple delta function barri-
ers, and with a finite rightmost barrier, are given. The effects on
density ρ(x) are shown. The analytical model allowed for the con-
sideration of the consequences of a sudden potential change
wherein the region between 0 , x , L=2 becomes accessible: the
behavior of ρ(x, t) was shown and gave rise to accumulation and
depletion ridges that migrated symmetrically over the course of
time; the analytic nature of the model will allow trajectories for the
time dependent conditions to be undertaken. The methods are to
be used on more realistic barriers associated with field and photo-
emission using TMA methods.
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APPENDIX A: DENSITY

The zero temperature supply function f (kx) is obtained from
the zero-temperature Fermi-Dirac distribution fFD(E) ¼ Θ( μ� E),

where Θ(s) is the Heaviside step function, via

f (kx) ;
2

(2π)2

ð
dkydkzfFD(Ek)

¼ 1
2π

(k2F � k2x),

(A1)

where μ ¼ �h2k2F=2m. Henceforth, the subscript x is ignored so that
kx ! k and a one-dimensional treatment is recovered. Integrating
over f (k) gives the well-known zero-temperature density relation47

ρo ¼
1
2π

ðkF
�kF

f (k)dk ¼ k3F
3π2

: (A2)

Recovering ρo in a discrete formulation makes use of the length
of the enclosing box being L and normalized wave functions
ψk(x) ¼

ffiffiffiffiffiffiffiffi
2=L

p
sin (kx) such that the integral of jψk(x)j2 over that

box gives unity. Converting the integral in Eq. (A2) to a series
makes the replacements: (i) f (k) ! (k2F � k2)=(2π), (ii) k ! 2πj=L,
(iii) kF ! 2πn=L, and (iv) dk ! Δk ¼ (2π=L)Δj to obtain

dρ ¼ 1
2π

f (k)dk
ðL=2
�L=2

ψk(x)j j2dx

! 2π
L3

(n2 � j2)Δj:

(A3)

Therefore, with Δj ¼ 1,

1
ρo

ð
dρ � 3L3

8πn3
Xn
j¼�n

2π
L3

(n2 � j2) ¼ 1� 1
4n2

: (A4)

Observe that because the integrand is quadratic in k, the integral
and the series representation are identically equal if derivatives at
the endpoints of integration (the Euler-MacLauren method) are
included: that is, if g(x) is quadratic in x and g(a) ¼ g(b) ¼ 0, then

ðb
a
g(x)dx ¼ Δx

Xn
j¼1

g(xj)þ Δx2

12
g 0(a)� g 0(b)½ �, (A5)

where g 0 ¼ dg=dx, a ¼ x1, and b ¼ xn. The inclusion of the
second, or derivatives, term would eliminate the 1=4n2 in Eq. (A4).
Because energy levels are finely spaced for even micro-scale boxes,
n is large and so the 1=4n2 term is treated as negligible (e.g., for
μ ¼ 1:5 eV, then n ¼ 1000 and 1=4n2 ¼ 2:5� 10�7 for L ¼ 1 μm,
or n ¼ 10 and 1=4n2 ¼ 0:0025 for L ¼ 10 nm) .

APPENDIX B: STEP FUNCTION BARRIER

The simple problem of reflection and transmission for a step
function barrier of height Vo ¼ �h2k2o=2m beginning at x ¼ 0 has
solutions which are summarized here.35 The wave function ψk(x)
with E ¼ �h2k2=2m is

ψk(x , 0) ¼ eikx þ r(k)e�ikx , (B1)

ψk(x 
 0) ¼ t(k)ei
ffiffiffiffiffiffiffiffiffi
k2�k2o

p
x: (B2)
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When E , Vo, the coefficients r(k) and t(k) are given by

r(k) ¼ �κ þ ik
κ � ik

, (B3)

t(k) ¼ � 2ik
κ � ik

(B4)

for κ2 ¼ k2o � k2 . 0. When the barrier is infinite (Vo ! 1), then
ψk(x) ¼

ffiffiffiffiffiffiffiffi
2=L

p
sin (kx) after normalization to a box of length L. It

follows that the electron density for the infinite barrier result
behaves as

ρ(x) ¼ ρo 1þ 3
cos ξ

ξ2
� 3

sin ξ

ξ3

� �
, (B5)

where ξ ¼ 2kFx. When Vo is finite, then r(k , ko) can be
expressed as

r(k) ¼ � exp 2iw(k)½ �, (B6)

sin (2w) ¼ 2kκ
k2o

: (B7)

Letting w ¼ kxo(k), then for small k, xo � 1=ko is approximately
constant to leading order. Letting r � exp (2ikxo) with xo ¼ 1=ko
in Eq. (B1) results in the density ρ(x) being of the same form as
Eq. (B5) but with the replacement

ξ ! 2kF(x � xo): (B8)

In other words, the density acts as though it has been shifted by an
amount xo as in Fig. 12.

APPENDIX C: TRIANGULAR BARRIER USING AIRY
FUNCTIONS

Through the introduction of F ¼ qjEj, f ¼ 2mF=�h2,
k2 ¼ 2mE=�h2, and k2o ¼ 2mVo=�h

2, Schrödinger’s equation
becomes35

�@2
xψk(x)þ k2o � k2 þ sfx

� �
ψk(x) ¼ 0, (C1)

where s ¼ +1 denotes the sign of the field (e.g., Vo � Fx
¼ (�h2=2m)(k2o þ sfx) for s ¼ �1). Keep κ strictly positive by
defining it by κ2 ; jk2o � k2j and let c2 denote the sign of k2o � k2

and (cκ)2 ¼ k2o � k2. With z(x) ; (κ2 þ sfx)=c2f 2=3 then
Schrödinger’s equation becomes

@2

@2
z
ψ � c2zψ ¼ 0, (C2)

which is Airy’s differential equation with solutions
ψ(z) ¼ aAi(c2z)þ bBi(c2z) for z . 0. The parameter c (not to be
confused with the speed of light) controls the behavior with
c2 ¼ 1 and tunneling (under the barrier) occurs, whereas for
c2 ¼ �1, flyover (over the barrier) occurs. The simplicity of the
simple triangular barrier allows for the usage of Ai(c2z) and
Bi(c2z) directly, but a more general formulation for multiple seg-
ments uses Zi(c, z) functions defined in terms of the Airy functions,
for which c ¼ +1, + i denotes the particular Zi.

Restrict attention to the tunneling regime k2 , k2o (or c2 ¼ 1)
for a triangular field emission barrier (or s ¼ �1). Matching wave
function and first derivative, the transmission and reflection coeffi-
cients for the simple triangular barrier potential on the introduc-
tion of

Si(z) ; Ai(z)� iBi(z), (C3)

jSi(z)j2 ¼ Ai(z)2 þ Bi(z)2, (C4)

and similarly for jSi0(z)j2, becomes

t(k) ¼ 2k

kSi(z)þ if 1=3Si0(z)
, (C5)

r(k) ¼ kSi(z)� if 1=3Si0(z)
kSi(z)þ if 1=3Si0(z)

: (C6)

When Ai(z)=Bi(z) ! 0, then clearly jr(k)j ! 1. It can be shown
that in the f ! 0 limit that Eq. (B3) is recovered. Alternately, the
reflection probability R(k) ¼ 1� D(k) is approximately unity when
the transmission probability is small, where

D(k) ¼ 4kf 1=3

π k2jSi(z)j2 þ f 2=3jSi0(z)j2� �þ 2kf 1=3
, (C7)

! 4kκ
k2o

exp � 4κ3

3f

� �
, (C8)

FIG. 12. Density for the infinite barrier compared to density for the finite barrier,
with ρo ¼ k3F=(3π

2). “Exact” uses Eq. (B3) for N contributing wave functions;
“Analytic” uses w ¼ kxo in Eq. (B6) for the same N wave functions; and
“Asymptotic” uses Eq. (B5) with ξ ! 2kF (x � xo) for which the summation over
wave functions is done by integration. Compare to Fig. 1.
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where the asymptotic form (second equation) is, apart from dimen-
sioned coefficients, of the form of the triangular barrier
Fowler-Nordheim equation from field emission.

Returning to the form of r(k), it can be shown from Eq. (C5)
that (Chap. 26 of Ref. 35)

r(k) � κ0 � ik
κ0 þ ik

, (C9)

κ0 ¼ κ � f =κ2
� �

, (C10)

which has the same form of Eq. (B3) but for the replacement
κ ! κ0. Therefore, results from the step-function solution can be
appropriated accordingly, particularly the approximation that the
density near the barrier acts as though it too is shifted by an
amount x0o � 1=ko in Eq. (B5), which is independent of field,
dependent only on the barrier height Vo and acts like the step func-
tion barrier encountered in Appendix B.
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