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Short time heat kernels estimates for diffusions

e Brownian motion W; in RY, generator A /2.

— 1 _e-Ix—yP/2t
pt(X7y) \/rﬂ_tde "
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¢ For general diffusions:

Theorem (Varadhan ’67)

With uniformly eliptic generator % Do a,j(x)%ng, heat kernel satisfies

d(x,y)?
HOgPt(X’J/) —7t—0 _%7

where d is geodesic distance determined by a.
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Short time heat kernels estimates for diffusions

e Brownian motion W; in RY, generator A /2.

— 1 o—lx—y?/2t
pt(X7y) \/2771'tde .
Thus... »
X —_
tlog pt(X, y) =0 _| 2y! ~

¢ For general diffusions:
Theorem (Varadhan ’67)

With uniformly eliptic generator % Do a,j(x)%ng, heat kernel satisfies

d(x,y)?
tlog pe(X,y) —t-0 _%7

where d is geodesic distance determined by a.

Many generalizations (hypoelliptic, on diagonal), using large deviation theory
and refinements: Azencott, Stroock, Kusuoka, Ben Arous, Leandre,-. ..
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e A particularly simple case: a(x) = 02(x) scalar, strictly positive.

dXt = O'(Xt)dBt
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1 o .
F(t) = /0 a(By) ds is strictly increasing( PCAF).
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e A particularly simple case: a(x) = 02(x) scalar, strictly positive.
dXt = O'(Xt)dBt

. From time change, X; = Bg-1(;), where

t
1 o .
F(t) = /0 a(By) ds is strictly increasing( PCAF).

Still,
d(x,y)?
2

o Take a(x) = e~ V()+2EV(X) where V is a centered Gaussian field,
then

tlog pt(X,¥) =0 —

t
F(t):/ eV(Bs)—2EVZ(Bs) g
0
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e A particularly simple case: a(x) = 02(x) scalar, strictly positive.
dXt = O'(Xt)dBt

. From time change, X; = Bg-1(;), where

t
1 o .
F(t) = /0 a(By) ds is strictly increasing( PCAF).

Still,
d(x,y)?
2

o Take a(x) = e~ V()+2EV(X) where V is a centered Gaussian field,
then

tlog pt(X,¥) =0 —

t
F(t):/ eV(Bs)—2EVZ(Bs) g
0

Equilibrium measure 1y (dx) = zl50x = eV()—2EVZ() gy
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Log correlated fields

e Focus on 2D torus.

py(dx) = eV~ W gy
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Log correlated fields

e Focus on 2D torus.
pv(dx) = gV (0)—3EVA(x) gy

Interest in cases where V/(-) is not smooth, not even pointwise defined:

EV(OV(Y) = o8 o=+ 9(x.)

where g is bounded, continuous off the diagonal.
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Interest in cases where V/(-) is not smooth, not even pointwise defined:

EV(x)V(y) = log

+ g(X,
0 a(x,y)

where g is bounded, continuous off the diagonal.
Defined as distribution. Particular case - the Gaussian free field.
Formal limit of V.(x) = [ ¢<(x — y)V(y)dy.
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Log correlated fields

e Focus on 2D torus.
pv(dx) = gV (0)—3EVA(x) gy

Interest in cases where V/(-) is not smooth, not even pointwise defined:

EV(x)V(y) = log

+ g(x,
x—y TIX%Y)

where g is bounded, continuous off the diagonal.
Defined as distribution. Particular case - the Gaussian free field.
Formal limit of V.(x) = [ ¢<(x — y)V(y)dy.

2
o The measures p(dx) = e7VW~ZEVZ () gx converge, if v < 2, to a
limit formally given by
Ly = V(- FEVA(x) gy

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, . . .)
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Log correlated fields

e Focus on 2D torus.
pv(dx) = gV (0)—3EVA(x) gy

Interest in cases where V/(-) is not smooth, not even pointwise defined:

EV(x)V(y) = log

+ g(X,
0 a(x,y)
where g is bounded, continuous off the diagonal.
Defined as distribution. Particular case - the Gaussian free field.
Formal limit of V.(x) = [ ¢<(x — y)V(y)dy.

2
o The measures p(dx) = e7VW~ZEVZ () gx converge, if v < 2, to a
limit formally given by

Ly = V(- FEVA(x) gy

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, . . .)
Gaussian Multiplicative chaos
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GMC-properties

2
Ly = e'yV(X)dX—%IEVZ(X)dX’ | — ,MV(T2)

and approximations

:U'e\/ _ e’yVe(X)dX—"’z—z]EVEZ(X)dX, [ = Mev(TZ)
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and approximations
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@ For v < 2, I is uniformly integrable.

@ uy is supported on ~v-thick points, i.e. on
{x: Ve(x)/ log(1/€) =cs0 7}
@ uy does not depend on particular mollifiers.
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Liouville BM

Given puy, can inquire on “geometry” associated with 1\, taken as
“Riemannian volume” (Sheffield, Miller).
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Liouville BM

Given puy, can inquire on “geometry” associated with 1\, taken as
“Riemannian volume” (Sheffield, Miller).

One possible approach: use Brownian motion.
t
Ft :/ e’yV(BS)fé%Evz(Bs)dS, Xt = Bg-1. (1)
0 t

Of course, not defined as written. But using approximations, one has:
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Liouville BM

Given puy, can inquire on “geometry” associated with 1\, taken as
“Riemannian volume” (Sheffield, Miller).
One possible approach: use Brownian motion.

t
i [ eV@rime@s -5, . ()
0 t

Of course, not defined as written. But using approximations, one has:

Theorem (Garban,Rhodes,Vargas ’13; N. Berestycki ’13)

There exists a diffusion process X; with continuous paths
corresponding to (1).

The corresponding Dirichlet form is the usual one, but with domain
L2(uy) N H} , not L2(dx) N H]

loc? loc*
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Heat kernel and geometry

Can we use LBM to study geometry?

Ofer Zeitouni Heat kernels May, 2018 7117



Heat kernel and geometry

Can we use LBM to study geometry?

A general paradigm (verified for BM on many fractals, etc.) is that heat
kernel should behave, for short time, as

_(dxp)\ /=1

1
Pt(Xd’) ~ We ( e

dy- Hausdorff dimension, 2dy/b - spectral dimension.
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Can we use LBM to study geometry?

A general paradigm (verified for BM on many fractals, etc.) is that heat
kernel should behave, for short time, as

1 d(x.y)\ /(=1
~ ——a \ /b
pt(X,}/) th/be L

dy- Hausdorff dimension, 2dy/b - spectral dimension.
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Heat kernel and geometry

Can we use LBM to study geometry?
A general paradigm (verified for BM on many fractals, etc.) is that heat
kernel should behave, for short time, as

1 _(d(x,y))b/ &=y
~ /b
pt(X,}/) th/be tl/

dy- Hausdorff dimension, 2dy/b - spectral dimension.
For BM, 2dy/b=d, b = 2.

Theorem (Rhodes-Vargas '14)
dy/b =1 in the sense that log pi(x, x)/ log t —¢_0 —1.

(Logarithmic corrections, improved by Andres-Kajino ’14).
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Heat kernel and geometry

Can we use LBM to study geometry?
A general paradigm (verified for BM on many fractals, etc.) is that heat
kernel should behave, for short time, as

1 _ d(x,y))b/ (b=1)
~ /b
pt(X,}/) th/be L

dy- Hausdorff dimension, 2dy/b - spectral dimension.
For BM, 2dy/b=d, b = 2.

Theorem (Rhodes-Vargas '14)
dy/b =1 in the sense that log pt(x, x)/ logt —t_o —1.

(Logarithmic corrections, improved by Andres-Kajino ’14).
To have any hope of identifying distances, we thus need to find dy!
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Some speculations

Watabiki ('93):
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Some speculations

Watabiki ('93):

,yz ~2 2
=1+ 1 2
dy +4—|— ( +4> +y

e For v small, dy( Watabiki) ~ 2 + ~2.
e Remarkable: for v = /8/3, dy(Watabiki) = 4, consistent with
convergence to Brownian map results of Miller-Sheffield.

Ofer Zeitouni Heat kernels May, 2018 8/17



Some speculations

Watabiki ('93):

,yz 722 )
=1+ L 14+ L
=1+ + (+4> + v

e For v small, dy( Watabiki) ~ 2 + ~2.

e Remarkable: for v = /8/3, dy(Watabiki) = 4, consistent with
convergence to Brownian map results of Miller-Sheffield.

e Maybe correct in general? (not so clear what correst statement is).
For heat kernel, would translate to off-diagonal estimate

log | log pr(x, y)| 1

~

log [ “a—1 X7V
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GFF results

Take covariance corresponding to GFF on torus:

G(x.y) = 3 s-en0enly)

where (A, e,) are eigenvalues and eigenfunctions of the (minus) standard
Laplacian.
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GFF results

Take covariance corresponding to GFF on torus:
1
G(X, y) - Z Ten(x)en(y)
n>1 n

where (A, e,) are eigenvalues and eigenfunctions of the (minus) standard
Laplacian.

Theorem (Maillard,Rhodes,Vargas, Z.’14)
Upper bound: 3 (explicit,deterministic) Sys so that

CV <0de (x,¥) > Bus/(Bus—1)
~ \/Bus
pe(X,y) < 5rs€ \!
t1+6
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GFF results

Take covariance corresponding to GFF on torus:

=> )\—en(x en(y
n

n>1

where (A, e,) are eigenvalues and eigenfunctions of the (minus) standard
Laplacian.

Theorem (Maillard,Rhodes,Vargas, Z.’14)
Upper bound: 3 (explicit,deterministic) Syg so that

cy <ch2 (x.) > Bus/(Bug—1)
1/Bus
Pi(x,y) < 5€ N

Lower bound: for all n > 0 there exists Cy = Cy(n) so that fort < 1,

_1/( 142 /4—m)

pt«(x,y) > Cve

Bus ~ 2 + 2. Improved by Andres-Kajino.
Be ~ 2+ ~?/4. Compare with Bwaapiki ~ 2 + 7.
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Some caution

Many results for GFF are universal, depend only on log-correlation
EV(x)V(y) = —log|x — y| + 9(x, y), g bounded.
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Some caution

Many results for GFF are universal, depend only on log-correlation
EV(x)V(y) = —log|x — y| + 9(x, y), g bounded.

Theorem (Ding-Zhang-Z. '17)

For any e > 0 there exists a log-correlated field on T? so that, for all
t < To(x,y,v.€ K),

ot/ o1 _~1/(Bo—1+¢)

)Spt(X,y)Se

where By = 2 +72/2.
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t < To(x,y,v.€ K),
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where By = 2 +72/2.

In particular, this is not compatible with the ansatz that Watabiki’s
formula is universal, since Buatapiki ~ 2 + 7°.
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Some caution

Many results for GFF are universal, depend only on log-correlation
EV(x)V(y) = —log|x — y| + 9(x, y), g bounded.

Theorem (Ding-Zhang-Z. '17)

For any € > 0 there exists a log-correlated field on T? so that, for all
t < To(x,y,v.€ K),

9_1—1/(%—1—6 _t—1/(Bg—1+¢)

)Spt(X,y)Se

where By = 2 +72/2.

In particular, this is not compatible with the ansatz that Watabiki’s
formula is universal, since Buatapiki ~ 2 + 7°.
Even before: does the heat kernel exponent exist?

limsup log | log p/ (X, ¥)|/ log t = liminflog | log p] (X, y)|/ log t??
t—0 t—=0
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Relation to geometry

Recall the GMC ,
iy = g7 V(x)a 7"’7]EV2(X)dX

with V the GFF in 2D.
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Relation to geometry
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iy = eyV(x)dxf"’T]Evz(x)dX

with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.
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Relation to geometry

Recall the GMC ,
iy = g7 V()= EV(x) gy

with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)
Fix u,v.
o log D, 5(u, v)/|log | =50 X-
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with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)
Fix u,v.

o log D, 5(u, v)/|log d| =50 X-
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Relation to geometry

Recall the GMC ,
iy = g7 V()= EV(x) gy

with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)
Fix u,v.

o log D, 5(u, v)/|log d| =50 X-
o log |log p/ (u, v)|/[log t| =0 X/(2 — X)-

00 < y < MO8 on in particular x < 1 + 7~2/8, implying that
for v small, x/(2 — X) <1 +772/4
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Relation to geometry

Recall the GMC ,
iy = g7 V()= EV(x) gy

with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)

Fix u,v.

e log D, s(u,Vv)/|logd| =50 X-

o log | log p/ (u, v)|/|log t] —t—0 X/(2 — X)-
00 < y < MO8 on in particular x < 1 + 7~2/8, implying that
for v small, x/(2 — X) <1 +772/4

Compare to Watabiki’'s conjecture x/(2 — x) = 1 +~? and the Andres-Kajino
upper bound < 1 + 242,
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Relation to geometry

Recall the GMC ,
iy = g7 V()= EV(x) gy

with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)

Fix u,v.

e log D, s(u,Vv)/|logd| =50 X-

o log | log p/ (u, v)|/|log t] —t—0 X/(2 — X)-
00 < y < MO8 on in particular x < 1 + 7~2/8, implying that
for v small, x/(2 — X) <1 +772/4

Compare to Watabiki’'s conjecture x/(2 — x) = 1 +~? and the Andres-Kajino
upper bound < 1 + 242,
The upper bound follows from a result of Duplantier-Sheffield (KPZ relations).
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Selected proof ideas

e Upper bound (both in MRVZ and AK) is based on uniform bound on
exit times from balls, i.e. on F(7p(4 ). As such, can’t hope it is tight.

Ofer Zeitouni Heat kernels May, 2018 12/17



Selected proof ideas

e Upper bound (both in MRVZ and AK) is based on uniform bound on
exit times from balls, i.e. on F(7p(4 ). As such, can’t hope it is tight.
¢ Off diagonal lower bound (MRVZ): use bridge formula

/0 "yt (x, y)at = /0 " R0 )EL Y (R ()t

Ofer Zeitouni Heat kernels May, 2018 12/17



Selected proof ideas

e Upper bound (both in MRVZ and AK) is based on uniform bound on
exit times from balls, i.e. on F(7p(4 ). As such, can’t hope it is tight.
¢ Off diagonal lower bound (MRVZ): use bridge formula

/0 (03 (x, y)olt = /0 PO(x, ) ES Y ((F (1))t
Gives handle on resolvent

0 t
n(x.y) = /0 EX™ (e FO)py(x, y)e,

and need A — oo asymptotics of resolvent (+some Harnack
inequalities to get to pointwise bounds).
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Selected proof ideas

Key estimate:

t 1 2,4
/ inf ERT7(e M) > g oAt/
weBy (x) 2€Bi/2(y)
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Key estimate:
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weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.

| R R S T
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Selected proof ideas

Key estimate:

t 1 472 /4—
weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.

| R R S T

o Probability of this event is ~ e=°/1.
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Selected proof ideas

Key estimate:

t 1 472 /4—
weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.
l
| PR T T

o Probability of this event is ~ e=°/1.
e Fix § < v/2. Call a box Sy &-thick if 11y/(Sk) ~ t277°/2=7%_ Then

#0-thick boxes ~ 19/2-1,
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Selected proof ideas

Key estimate:

t 24—
/ inf EN7Z(e () > g oA/
weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.

1
esnme — mesuuey - SDd

e Probability of this event is ~ e~¢/!.

e Fix § < v/2. Call a box Sy &-thick if 11y/(Sk) ~ t277°/2=7%_ Then

#0-thick boxes ~ 19/2-1,

« Contribution of é-thick boxes to F(t) is roughly T - t7*/2=%7, where T;
is crossing time.
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Selected proof ideas

Key estimate:

t 24—
/ inf Ef7F(e7 D) > oA
weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.

R TR A T

o Probability of this event is ~ e=°/1.
e Fix § < v/2. Call a box Sy &-thick if 11y/(Sk) ~ t277°/2=7%_ Then
#0-thick boxes ~ 19/2-1,

« Contribution of é-thick boxes to F(t) is roughly T - t7*/2=%7, where T;
is crossing time.
e now accelerate: force BM to have velocity v; (instead of 1/t) in

2
5-thick boxes. Cost is e~ vat* /2,
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Selected proof ideas

Key estimate:

t 24—
/ inf EN7Z(e () > g oA/
weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.

R TR A T

o Probability of this event is ~ e=°/1.
e Fix § < v/2. Call a box Sy &-thick if 11y/(Sk) ~ t277°/2=7%_ Then

#0-thick boxes ~ 19/2-1,

« Contribution of é-thick boxes to F(t) is roughly T - t7*/2=%7, where T;
is crossing time.
e now accelerate: force BM to have velocity v; (instead of 1/t) in
2
5-thick boxes. Cost is e~ %! %,
o optimize: vs = t~(116%/2) 5 — 4 /2. get main estimate.

Ofer Zeitouni Heat kernels May, 2018 13/17




Improvements

Improving on LB requires (at least) to optimize over paths (instead of
straight line). This is a hard percolation problem.
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Improvements

Improving on LB requires (at least) to optimize over paths (instead of
straight line). This is a hard percolation problem.

Can somewhat simplify percolation problem by modifying the Gaussian
field. Introduce the k-coarse MBRW

G(x,y) = klog2» A(x,y,27)
j=0
where B(x, R) N B(y. R)
X, N bly,
Alx,y,R) =
oy R =50, A

(For k =1, it is continuous version of modified branching random walk
introduced with Bramson to study tightness of max of discrete GFF.)
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Improvements

Improving on LB requires (at least) to optimize over paths (instead of
straight line). This is a hard percolation problem.

Can somewhat simplify percolation problem by modifying the Gaussian
field. Introduce the k-coarse MBRW

G(x,y) = klog2» A(x,y,27)
j=0
where B(x, R) N B(y. R)
X, N bly,
Alx,y,R) =
oy R =50, A

(For k =1, it is continuous version of modified branching random walk
introduced with Bramson to study tightness of max of discrete GFF.)

|G(x, y) — log(1/dp2(x,y))| < gk(X,y)
and g is bounded by 6k and continuous off diagonal.
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Improvements Il

G(x,y) = klog2» A(x,y,27)
j=0

Can write the field as V(x) = 3=, h;(x), with h; fields independent.
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Improvements Il

G(x,y) = klog2» A(x,y,27)
j=0
Can write the field as V(x) = 3=, h;(x), with h; fields independent.

Given t, define r as t ~ 2-k(1+7%/2) g — 2=k and define the coarse
and fine fields

r—1 )
or=>_h, ¢¥r=> h
j=0 j=r
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Improvements Il

Lemma (Ding-Zhang-Z. 17, based on Ding-Zhang '16)

For k large enough, there exists a path of neighboring s = 2-*"-boxes
connecting x and y, of total number 2K((1+9) | so that:

a) Coarse field o, for each box is small (< dkrlog?2).

b) LBM associated with fine field U crosses each box within time s=9,
with probability at least s°.

Ofer Zeitouni Heat kernels May, 2018 16/17
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Lemma (Ding-Zhang-Z. 17, based on Ding-Zhang '16)

For k large enough, there exists a path of neighboring s = 2-*"-boxes
connecting x and y, of total number 2K((1+9) | so that:

a) Coarse field o, for each box is small (< dkrlog?2).

b) LBM associated with fine field U crosses each box within time s=9,
with probability at least s°.

Forcing LBM through sequence, can check that total time is ~ t while

probability is at least 6*1/(t1+72/2+e)-
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Improvements Il

Lemma (Ding-Zhang-Z. 17, based on Ding-Zhang '16)

For k large enough, there exists a path of neighboring s = 2-*"-boxes
connecting x and y, of total number 2K((1+9) | so that:

a) Coarse field o, for each box is small (< dkrlog?2).

b) LBM associated with fine field U crosses each box within time s=9,
with probability at least s°.

Forcing LBM through sequence, can check that total time is ~ t while

probability is at least 6*1/(t1+72/2+e)-

Upper bound uses a complementary percolation estimate: can’t find a
better path.
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Convergence

Main idea: exploit sub-additivity.
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Convergence

Main idea: exploit sub-additivity.
@ Write GFF as integral of white noise againts Brownian heat kernel.

@ Localize GFF.

@ Truncate GFF at appropriate scales by controlling variability of
field.

@ Move to diadic grid.

@ Apply sub-additivity (requires a percolation argument due to
variability of end-points)
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Convergence

Main idea: exploit sub-additivity.
@ Write GFF as integral of white noise againts Brownian heat kernel.

@ Localize GFF.

@ Truncate GFF at appropriate scales by controlling variability of
field.

@ Move to diadic grid.

@ Apply sub-additivity (requires a percolation argument due to
variability of end-points)

@ Relate LBM to graph distance by controlling heat kernel on chose
paths.

Ofer Zeitouni Heat kernels May, 2018 17/17
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