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Short time heat kernels estimates for diffusions

• Brownian motion Wt in Rd , generator ∆/2.
pt (x , y) = 1√

2πt
d e−|x−y |2/2t .

Thus...

t log pt (x , y)→t→0 −
|x − y |2

2
.

• For general diffusions:

Theorem (Varadhan ’67)

With uniformly eliptic generator 1
2
∑

i,j aij(x) ∂2

∂xi∂xj
, heat kernel satisfies

t log pt (x , y)→t→0 −
d(x , y)2

2
,

where d is geodesic distance determined by a.

Many generalizations (hypoelliptic, on diagonal), using large deviation theory
and refinements: Azencott, Stroock, Kusuoka, Ben Arous, Leandre, . . .
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Time change

• A particularly simple case: a(x) = σ2(x) scalar, strictly positive.

dXt = σ(Xt )dBt

. From time change, Xt = BF−1(t), where

F (t) =

∫ t

0

1
a(Bs)

ds is strictly increasing(PCAF ).

Still,

t log pt (x , y)→t→0 −
d(x , y)2

2
.

• Take a(x) = e−V (x)+ 1
2EV 2(x) where V is a centered Gaussian field,

then

F (t) =

∫ t

0
eV (Bs)− 1

2EV 2(Bs)ds.

Equilibrium measure µV (dx) = 1
a(x)dx = eV (x)− 1

2EV 2(x)dx
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Log correlated fields

• Focus on 2D torus.

µV (dx) = eV (x)− 1
2EV 2(x)dx

Interest in cases where V (·) is not smooth, not even pointwise defined:

EV (x)V (y) = log
1

|x − y |
+ g(x , y)

where g is bounded, continuous off the diagonal.
Defined as distribution. Particular case - the Gaussian free field.
Formal limit of Vε(x) =

∫
φε(x − y)V (y)dy .

• The measures µγε (dx) = eγVε(x)− γ
2

2 EV 2
ε (x)dx converge, if γ < 2, to a

limit formally given by

µV = eγV (x)dx− γ
2

2 EV 2(x)dx

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, . . .)
Gaussian Multiplicative chaos
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GMC-properties

µV = eγV (x)dx− γ
2

2 EV 2(x)dx , I = µV (T2)

and approximations

µεV = eγVε(x)dx− γ
2

2 EV 2
ε (x)dx , Iε = µεV (T2)

For γ < 2, Iε is uniformly integrable.
µV is supported on γ-thick points, i.e. on
{x : Vε(x)/ log(1/ε)→ε→0 γ}.
µV does not depend on particular mollifiers.
For γ <

√
2, Iε is in L2, analysis simpler.

Many universal (independent of g) features: dimensions of thick
points, ε-maximizers, law of maximizers, . . .
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Liouville BM

Given µV , can inquire on “geometry” associated with µV , taken as
“Riemannian volume” (Sheffield, Miller).
One possible approach: use Brownian motion.

Ft =

∫ t

0
eγV (Bs)− 1

2γ
2EV 2(Bs)ds, Xt = BF−1

t
. (1)

Of course, not defined as written. But using approximations, one has:

Theorem (Garban,Rhodes,Vargas ’13; N. Berestycki ’13)
There exists a diffusion process Xt with continuous paths
corresponding to (1).

The corresponding Dirichlet form is the usual one, but with domain
L2(µV ) ∩ H1

loc, not L2(dx) ∩ H1
loc.
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Heat kernel and geometry

Can we use LBM to study geometry?
A general paradigm (verified for BM on many fractals, etc.) is that heat
kernel should behave, for short time, as

pt (x , y) ∼ 1
tdH/b e−

(
d(x,y)
t1/b

)b/(b−1)

dH - Hausdorff dimension, 2dH/b - spectral dimension.
For BM, 2dH/b = d , b = 2.

Theorem (Rhodes-Vargas ’14)
dH/b = 1 in the sense that log pt (x , x)/ log t →t→0 −1.

(Logarithmic corrections, improved by Andres-Kajino ’14).
To have any hope of identifying distances, we thus need to find dH !
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Some speculations

Watabiki (’93):

dH = 1 +
γ2

4
+

√(
1 +

γ2

4

)2

+ γ2

• For γ small, dH(Watabiki) ∼ 2 + γ2.
• Remarkable: for γ =

√
8/3, dH(Watabiki) = 4, consistent with

convergence to Brownian map results of Miller-Sheffield.
• Maybe correct in general? (not so clear what correst statement is).
For heat kernel, would translate to off-diagonal estimate

log | log pt (x , y)|
log t

∼ − 1
dH − 1

, x 6= y
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GFF results
Take covariance corresponding to GFF on torus:

G(x , y) =
∑
n≥1

1
λn

en(x)en(y)

where (λn,en) are eigenvalues and eigenfunctions of the (minus) standard
Laplacian.

Theorem (Maillard,Rhodes,Vargas, Z. ’14)
Upper bound: ∃ (explicit,deterministic) βUB so that

pt (x , y) ≤ CV

t1+δ e
−
(

cdT2 (x,y)

t1/βUB

)βUB/(βUB−1)

Lower bound: for all η > 0 there exists CV = CV (η) so that for t < 1,
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βUB ∼ 2 + 2γ. Improved by Andres-Kajino.
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Some caution

Many results for GFF are universal, depend only on log-correlation
EV (x)V (y) = − log |x − y |+ g(x , y), g bounded.

Theorem (Ding-Zhang-Z. ’17)

For any ε > 0 there exists a log-correlated field on T2 so that, for all
t < T0(x , y , γ, ε,K ),

e−t−1/(β0−1−ε)
≤ pt (x , y) ≤ e−t−1/(β0−1+ε)

where β0 = 2 + γ2/2.

In particular, this is not compatible with the ansatz that Watabiki’s
formula is universal, since βWatabiki ∼ 2 + γ2.
Even before: does the heat kernel exponent exist?

lim sup
t→0

log | log pγt (x , y)|/ log t = lim inf
t→0

log | log pγt (x , y)|/ log t??
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Relation to geometry

Recall the GMC
µV = eγV (x)dx− γ

2
2 EV 2(x)dx

with V the GFF in 2D.
Can define the Liouville graph distance Dγ,δ(u, v) as the minimal number of
balls of γ-Liouville mass at most δ needed to create a path connecting u, v .

Theorem (Ding,Zhang,Z. ’18)
Fix u, v.
• log Dγ,δ(u, v)/| log δ| →δ→0 χ.
• log | log pγt (u, v)|/| log t | →t→0 χ/(2− χ).

• 0 < χ ≤ 4[(1+γ2/4)−
√

1+γ4/16]
γ2 , and in particular χ < 1 + 7γ2/8, implying that

for γ small, χ/(2− χ) < 1 + 7γ2/4

Compare to Watabiki’s conjecture χ/(2− χ) = 1 + γ2 and the Andres-Kajino
upper bound < 1 + 2γ2.
The upper bound follows from a result of Duplantier-Sheffield (KPZ relations).
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Selected proof ideas

• Upper bound (both in MRVZ and AK) is based on uniform bound on
exit times from balls, i.e. on F (τB(x ,r)). As such, can’t hope it is tight.
• Off diagonal lower bound (MRVZ): use bridge formula∫ ∞

0
ψ(t)pγt (x , y)dt =

∫ ∞
0

p0
t (x , y)Ex t→y

B (ψ(F (t)))dt .

Gives handle on resolvent

rλ(x , y) =

∫ ∞
0

Ex t→y
B (e−λF (t))pt (x , y)dt ,

and need λ→∞ asymptotics of resolvent (+some Harnack
inequalities to get to pointwise bounds).
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Selected proof ideas

Key estimate:∫
w∈Bt/2(x)

inf
z∈Bt/2(y)

Ew t→z
B (e−λF (t)) ≥ e−c( 1

t +λt1+γ2/4−η)
.

Strategy: force BM to stay in tube of width t connecting w to z.
• Probability of this event is ∼ e−c/t .
• Fix δ <

√
2. Call a box Sk δ-thick if µV (Sk ) ∼ t2+γ2/2−γδ. Then

#δ-thick boxes ∼ tδ
2/2−1.

• Contribution of δ-thick boxes to F (t) is roughly Tδ · tγ
2/2−δγ , where Tδ

is crossing time.
• now accelerate: force BM to have velocity vδ (instead of 1/t) in

δ-thick boxes. Cost is e−vδ tδ
2/2

.
• optimize: vδ = t−(1+δ

2/2), δ = γ/2, get main estimate.
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Improvements

Improving on LB requires (at least) to optimize over paths (instead of
straight line). This is a hard percolation problem.
Can somewhat simplify percolation problem by modifying the Gaussian
field. Introduce the k-coarse MBRW

G(x , y) = k log 2
∞∑

j=0

A(x , y ,2−kj)

where
A(x , y ,R) =

|B(x ,R) ∩ B(y ,R)|
|B(x ,R)|

(For k = 1, it is continuous version of modified branching random walk
introduced with Bramson to study tightness of max of discrete GFF.)

|G(x , y)− log(1/dT2(x , y))| ≤ gk (x , y)

and gk is bounded by 6k and continuous off diagonal.
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Improvements II

G(x , y) = k log 2
∞∑

j=0

A(x , y ,2−kj)

Can write the field as V (x) =
∑∞

j=0 hj(x), with hj fields independent.
Given t , define r as t ∼ 2−kr(1+γ2/2), s = 2−kr , and define the coarse
and fine fields

ϕr =
r−1∑
j=0

hj , ψr =
∞∑
j=r

hj .
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Improvements III

Lemma (Ding-Zhang-Z. ’17, based on Ding-Zhang ’16)

For k large enough, there exists a path of neighboring s = 2−kr -boxes
connecting x and y, of total number 2kr(1+δ), so that:
a) Coarse field ϕr for each box is small (≤ δkr log 2).
b) LBM associated with fine field Ψ crosses each box within time s2−δ,
with probability at least sδ.

Forcing LBM through sequence, can check that total time is ∼ t while

probability is at least e−1/(t1+γ2/2+ε).
Upper bound uses a complementary percolation estimate: can’t find a
better path.

Ofer Zeitouni Heat kernels May, 2018 16 / 17



Improvements III

Lemma (Ding-Zhang-Z. ’17, based on Ding-Zhang ’16)

For k large enough, there exists a path of neighboring s = 2−kr -boxes
connecting x and y, of total number 2kr(1+δ), so that:
a) Coarse field ϕr for each box is small (≤ δkr log 2).
b) LBM associated with fine field Ψ crosses each box within time s2−δ,
with probability at least sδ.

Forcing LBM through sequence, can check that total time is ∼ t while

probability is at least e−1/(t1+γ2/2+ε).
Upper bound uses a complementary percolation estimate: can’t find a
better path.

Ofer Zeitouni Heat kernels May, 2018 16 / 17



Improvements III

Lemma (Ding-Zhang-Z. ’17, based on Ding-Zhang ’16)

For k large enough, there exists a path of neighboring s = 2−kr -boxes
connecting x and y, of total number 2kr(1+δ), so that:
a) Coarse field ϕr for each box is small (≤ δkr log 2).
b) LBM associated with fine field Ψ crosses each box within time s2−δ,
with probability at least sδ.

Forcing LBM through sequence, can check that total time is ∼ t while

probability is at least e−1/(t1+γ2/2+ε).
Upper bound uses a complementary percolation estimate: can’t find a
better path.

Ofer Zeitouni Heat kernels May, 2018 16 / 17



Convergence

Main idea: exploit sub-additivity.

Write GFF as integral of white noise againts Brownian heat kernel.
Localize GFF.
Truncate GFF at appropriate scales by controlling variability of
field.
Move to diadic grid.
Apply sub-additivity (requires a percolation argument due to
variability of end-points)
Relate LBM to graph distance by controlling heat kernel on chose
paths.
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