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Short time heat kernels estimates for diffusions

e Brownian motion W; in RY, generator A /2.

— 1 _e-Ix—yP/2t
pt(X7y) \/rﬂ_tde "
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¢ For general diffusions:

Theorem (Varadhan ’67)

With uniformly eliptic generator % Do a,j(x)%ng, heat kernel satisfies

d(x,y)?
HOgPt(X’J/) —7t—0 _%7

where d is geodesic distance determined by a.
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Short time heat kernels estimates for diffusions

e Brownian motion W; in RY, generator A /2.

— 1 o—lx—y?/2t
pt(X7y) \/2771'tde .
Thus... »
X —_
tlog pt(X, y) =0 _| 2y! ~

¢ For general diffusions:
Theorem (Varadhan ’67)

With uniformly eliptic generator % Do a,j(x)%ng, heat kernel satisfies

d(x,y)?
tlog pe(X,y) —t-0 _%7

where d is geodesic distance determined by a.

Many generalizations (hypoelliptic, on diagonal), using large deviation theory
and refinements: Azencott, Stroock, Kusuoka, Ben Arous, Leandre,-. ..
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e A particularly simple case: a(x) = 02(x) scalar, strictly positive.

dXt = O'(Xt)dBt
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1 o .
F(t) = /0 a(By) ds is strictly increasing( PCAF).
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e A particularly simple case: a(x) = 02(x) scalar, strictly positive.
dXt = O'(Xt)dBt

. From time change, X; = Bg-1(;), where

t
1 o .
F(t) = /0 a(By) ds is strictly increasing( PCAF).

Still,
d(x,y)?
2

o Take a(x) = e~ V()+2EV(X) where V is a centered Gaussian field,
then

tlog pt(X,¥) =0 —

t
F(t):/ eV(Bs)—2EVZ(Bs) g
0
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e A particularly simple case: a(x) = 02(x) scalar, strictly positive.
dXt = O'(Xt)dBt

. From time change, X; = Bg-1(;), where

t
1 o .
F(t) = /0 a(By) ds is strictly increasing( PCAF).

Still,
d(x,y)?
2

o Take a(x) = e~ V()+2EV(X) where V is a centered Gaussian field,
then

tlog pt(X,¥) =0 —

t
F(t):/ eV(Bs)—2EVZ(Bs) g
0

Equilibrium measure 1y (dx) = zl50x = eV()—2EVZ() gy
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Log correlated fields

e Focus on 2D torus.

py(dx) = eV~ W gy
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Log correlated fields

e Focus on 2D torus.
pv(dx) = gV (0)—3EVA(x) gy

Interest in cases where V/(-) is not smooth, not even pointwise defined:

EV(OV(Y) = o8 o=+ 9(x.)

where g is bounded, continuous off the diagonal.
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Interest in cases where V/(-) is not smooth, not even pointwise defined:

EV(x)V(y) = log

+ g(X,
0 a(x,y)

where g is bounded, continuous off the diagonal.
Defined as distribution. Particular case - the Gaussian free field.
Formal limit of V.(x) = [ ¢<(x — y)V(y)dy.
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Log correlated fields

e Focus on 2D torus.
pv(dx) = gV (0)—3EVA(x) gy

Interest in cases where V/(-) is not smooth, not even pointwise defined:

EV(x)V(y) = log

+ g(x,
x—y TIX%Y)

where g is bounded, continuous off the diagonal.
Defined as distribution. Particular case - the Gaussian free field.
Formal limit of V.(x) = [ ¢<(x — y)V(y)dy.

2
o The measures p(dx) = e7VW~ZEVZ () gx converge, if v < 2, to a
limit formally given by
Ly = V(- FEVA(x) gy

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, . . .)
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Log correlated fields

e Focus on 2D torus.
pv(dx) = gV (0)—3EVA(x) gy

Interest in cases where V/(-) is not smooth, not even pointwise defined:

EV(x)V(y) = log

+ g(X,
0 a(x,y)
where g is bounded, continuous off the diagonal.
Defined as distribution. Particular case - the Gaussian free field.
Formal limit of V.(x) = [ ¢<(x — y)V(y)dy.

2
o The measures p(dx) = e7VW~ZEVZ () gx converge, if v < 2, to a
limit formally given by

Ly = V(- FEVA(x) gy

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, . . .)
Gaussian Multiplicative chaos
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GMC-properties

2
Ly = e'yV(X)dX—%IEVZ(X)dX’ | — ,MV(T2)

and approximations

:U'e\/ _ e’yVe(X)dX—"’z—z]EVEZ(X)dX, [ = Mev(TZ)
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and approximations
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@ For v < 2, I is uniformly integrable.

@ uy is supported on ~v-thick points, i.e. on
{x: Ve(x)/ log(1/€) =cs0 7}
@ uy does not depend on particular mollifiers.
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Liouville BM

Given puy, can inquire on “geometry” associated with 1\, taken as
“Riemannian volume” (Sheffield, Miller).
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Liouville BM

Given puy, can inquire on “geometry” associated with 1\, taken as
“Riemannian volume” (Sheffield, Miller).

One possible approach: use Brownian motion.
t
Ft :/ e’yV(BS)fé%Evz(Bs)dS, Xt = Bg-1. (1)
0 t

Of course, not defined as written. But using approximations, one has:
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Liouville BM

Given puy, can inquire on “geometry” associated with 1\, taken as
“Riemannian volume” (Sheffield, Miller).
One possible approach: use Brownian motion.

t
i [ eV@rime@s -5, . ()
0 t

Of course, not defined as written. But using approximations, one has:

Theorem (Garban,Rhodes,Vargas ’13; N. Berestycki ’13)

There exists a diffusion process X; with continuous paths
corresponding to (1).

The corresponding Dirichlet form is the usual one, but with domain
L2(uy) N H} , not L2(dx) N H]

loc? loc*
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Heat kernel and geometry

Can we use LBM to study geometry?

Ofer Zeitouni Heat kernels May, 2018 7117



Heat kernel and geometry

Can we use LBM to study geometry?

A general paradigm (verified for BM on many fractals, etc.) is that heat
kernel should behave, for short time, as

_(dxp)\ /=1

1
Pt(Xd’) ~ We ( e

dy- Hausdorff dimension, 2dy/b - spectral dimension.
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A general paradigm (verified for BM on many fractals, etc.) is that heat
kernel should behave, for short time, as

1 d(x.y)\ /(=1
~ ——a \ /b
pt(X,}/) th/be L
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Heat kernel and geometry

Can we use LBM to study geometry?
A general paradigm (verified for BM on many fractals, etc.) is that heat
kernel should behave, for short time, as

1 _(d(x,y))b/ &=y
~ /b
pt(X,}/) th/be tl/

dy- Hausdorff dimension, 2dy/b - spectral dimension.
For BM, 2dy/b=d, b = 2.

Theorem (Rhodes-Vargas '14)
dy/b =1 in the sense that log pi(x, x)/ log t —¢_0 —1.

(Logarithmic corrections, improved by Andres-Kajino ’14).
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Heat kernel and geometry

Can we use LBM to study geometry?
A general paradigm (verified for BM on many fractals, etc.) is that heat
kernel should behave, for short time, as

1 _ d(x,y))b/ (b=1)
~ /b
pt(X,}/) th/be L

dy- Hausdorff dimension, 2dy/b - spectral dimension.
For BM, 2dy/b=d, b = 2.

Theorem (Rhodes-Vargas '14)
dy/b =1 in the sense that log pt(x, x)/ logt —t_o —1.

(Logarithmic corrections, improved by Andres-Kajino ’14).
To have any hope of identifying distances, we thus need to find dy!
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Some speculations

Watabiki ('93):
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Some speculations

Watabiki ('93):

,yz ~2 2
=1+ 1 2
dy +4—|— ( +4> +y

e For v small, dy( Watabiki) ~ 2 + ~2.
e Remarkable: for v = /8/3, dy(Watabiki) = 4, consistent with
convergence to Brownian map results of Miller-Sheffield.

Ofer Zeitouni Heat kernels May, 2018 8/17



Some speculations

Watabiki ('93):

,yz 722 )
=1+ L 14+ L
=1+ + (+4> + v

e For v small, dy( Watabiki) ~ 2 + ~2.

e Remarkable: for v = /8/3, dy(Watabiki) = 4, consistent with
convergence to Brownian map results of Miller-Sheffield.

e Maybe correct in general? (not so clear what correst statement is).
For heat kernel, would translate to off-diagonal estimate

log | log pr(x, y)| 1

~

log [ “a—1 X7V
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GFF results

Take covariance corresponding to GFF on torus:

G(x.y) = 3 s-en0enly)

where (A, e,) are eigenvalues and eigenfunctions of the (minus) standard
Laplacian.
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GFF results

Take covariance corresponding to GFF on torus:
1
G(X, y) - Z Ten(x)en(y)
n>1 n

where (A, e,) are eigenvalues and eigenfunctions of the (minus) standard
Laplacian.

Theorem (Maillard,Rhodes,Vargas, Z.’14)
Upper bound: 3 (explicit,deterministic) Sys so that

CV <0de (x,¥) > Bus/(Bus—1)
~ \/Bus
pe(X,y) < 5rs€ \!
t1+6
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GFF results

Take covariance corresponding to GFF on torus:

=> )\—en(x en(y
n

n>1

where (A, e,) are eigenvalues and eigenfunctions of the (minus) standard
Laplacian.

Theorem (Maillard,Rhodes,Vargas, Z.’14)
Upper bound: 3 (explicit,deterministic) Syg so that

cy <ch2 (x.) > Bus/(Bug—1)
1/Bus
Pi(x,y) < 5€ N

Lower bound: for all n > 0 there exists Cy = Cy(n) so that fort < 1,

_1/( 142 /4—m)

pt«(x,y) > Cve

Bus ~ 2 + 2. Improved by Andres-Kajino.
Be ~ 2+ ~?/4. Compare with Bwaapiki ~ 2 + 7.
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Some caution

Many results for GFF are universal, depend only on log-correlation
EV(x)V(y) = —log|x — y| + 9(x, y), g bounded.
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Some caution

Many results for GFF are universal, depend only on log-correlation
EV(x)V(y) = —log|x — y| + 9(x, y), g bounded.

Theorem (Ding-Zhang-Z. '17)

For any e > 0 there exists a log-correlated field on T? so that, for all
t < To(x,y,v.€ K),

ot/ o1 _~1/(Bo—1+¢)

)Spt(X,y)Se

where By = 2 +72/2.
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t < To(x,y,v.€ K),
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where By = 2 +72/2.

In particular, this is not compatible with the ansatz that Watabiki’s
formula is universal, since Buatapiki ~ 2 + 7°.
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Some caution

Many results for GFF are universal, depend only on log-correlation
EV(x)V(y) = —log|x — y| + 9(x, y), g bounded.

Theorem (Ding-Zhang-Z. '17)

For any € > 0 there exists a log-correlated field on T? so that, for all
t < To(x,y,v.€ K),

9_1—1/(%—1—6 _t—1/(Bg—1+¢)

)Spt(X,y)Se

where By = 2 +72/2.

In particular, this is not compatible with the ansatz that Watabiki’s
formula is universal, since Buatapiki ~ 2 + 7°.
Even before: does the heat kernel exponent exist?

limsup log | log p/ (X, ¥)|/ log t = liminflog | log p] (X, y)|/ log t??
t—0 t—=0
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Relation to geometry

Recall the GMC ,
iy = g7 V(x)a 7"’7]EV2(X)dX

with V the GFF in 2D.
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Relation to geometry
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iy = eyV(x)dxf"’T]Evz(x)dX

with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.
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Relation to geometry

Recall the GMC ,
iy = g7 V()= EV(x) gy

with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)
Fix u,v.
o log D, 5(u, v)/|log | =50 X-
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iy = g7 V()= EV(x) gy

with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)
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Relation to geometry

Recall the GMC ,
iy = g7 V()= EV(x) gy

with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)
Fix u,v.

o log D, 5(u, v)/|log d| =50 X-
o log |log p/ (u, v)|/[log t| =0 X/(2 — X)-

00 < y < MO8 on in particular x < 1 + 7~2/8, implying that
for v small, x/(2 — X) <1 +772/4
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Relation to geometry

Recall the GMC ,
iy = g7 V()= EV(x) gy

with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)

Fix u,v.

e log D, s(u,Vv)/|logd| =50 X-

o log | log p/ (u, v)|/|log t] —t—0 X/(2 — X)-
00 < y < MO8 on in particular x < 1 + 7~2/8, implying that
for v small, x/(2 — X) <1 +772/4

Compare to Watabiki’'s conjecture x/(2 — x) = 1 +~? and the Andres-Kajino
upper bound < 1 + 242,
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Relation to geometry

Recall the GMC ,
iy = g7 V()= EV(x) gy

with V the GFF in 2D.
Can define the Liouville graph distance D, s(u, v) as the minimal number of
balls of v-Liouville mass at most é needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)

Fix u,v.

e log D, s(u,Vv)/|logd| =50 X-

o log | log p/ (u, v)|/|log t] —t—0 X/(2 — X)-
00 < y < MO8 on in particular x < 1 + 7~2/8, implying that
for v small, x/(2 — X) <1 +772/4

Compare to Watabiki’'s conjecture x/(2 — x) = 1 +~? and the Andres-Kajino
upper bound < 1 + 242,
The upper bound follows from a result of Duplantier-Sheffield (KPZ relations).
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Selected proof ideas

e Upper bound (both in MRVZ and AK) is based on uniform bound on
exit times from balls, i.e. on F(7p(4 ). As such, can’t hope it is tight.
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Selected proof ideas

e Upper bound (both in MRVZ and AK) is based on uniform bound on
exit times from balls, i.e. on F(7p(4 ). As such, can’t hope it is tight.
¢ Off diagonal lower bound (MRVZ): use bridge formula

/0 (03 (x, y)olt = /0 PO(x, ) ES Y ((F (1))t
Gives handle on resolvent

0 t
n(x.y) = /0 EX™ (e FO)py(x, y)e,

and need A — oo asymptotics of resolvent (+some Harnack
inequalities to get to pointwise bounds).
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Selected proof ideas

Key estimate:

t 1 2,4
/ inf ERT7(e M) > g oAt/
weBy (x) 2€Bi/2(y)
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Key estimate:
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weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.

| R R S T

Ofer Zeitouni Heat kernels May, 2018 13/17



Selected proof ideas

Key estimate:

t 1 472 /4—
weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.

| R R S T

o Probability of this event is ~ e=°/1.
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Selected proof ideas

Key estimate:

t 1 472 /4—
weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.
l
| PR T T

o Probability of this event is ~ e=°/1.
e Fix § < v/2. Call a box Sy &-thick if 11y/(Sk) ~ t277°/2=7%_ Then

#0-thick boxes ~ 19/2-1,
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Selected proof ideas

Key estimate:

t 24—
/ inf EN7Z(e () > g oA/
weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.

1
esnme — mesuuey - SDd

e Probability of this event is ~ e~¢/!.

e Fix § < v/2. Call a box Sy &-thick if 11y/(Sk) ~ t277°/2=7%_ Then

#0-thick boxes ~ 19/2-1,

« Contribution of é-thick boxes to F(t) is roughly T - t7*/2=%7, where T;
is crossing time.
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Selected proof ideas

Key estimate:

t 24—
/ inf Ef7F(e7 D) > oA
weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.

R TR A T

o Probability of this event is ~ e=°/1.
e Fix § < v/2. Call a box Sy &-thick if 11y/(Sk) ~ t277°/2=7%_ Then
#0-thick boxes ~ 19/2-1,

« Contribution of é-thick boxes to F(t) is roughly T - t7*/2=%7, where T;
is crossing time.
e now accelerate: force BM to have velocity v; (instead of 1/t) in

2
5-thick boxes. Cost is e~ vat* /2,
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Selected proof ideas

Key estimate:

t 24—
/ inf EN7Z(e () > g oA/
weB, 5(x) 2€Bi/2(y)

Strategy: force BM to stay in tube of width t connecting w to z.

R TR A T

o Probability of this event is ~ e=°/1.
e Fix § < v/2. Call a box Sy &-thick if 11y/(Sk) ~ t277°/2=7%_ Then

#0-thick boxes ~ 19/2-1,

« Contribution of é-thick boxes to F(t) is roughly T - t7*/2=%7, where T;
is crossing time.
e now accelerate: force BM to have velocity v; (instead of 1/t) in
2
5-thick boxes. Cost is e~ %! %,
o optimize: vs = t~(116%/2) 5 — 4 /2. get main estimate.
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Improvements

Improving on LB requires (at least) to optimize over paths (instead of
straight line). This is a hard percolation problem.
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Improvements

Improving on LB requires (at least) to optimize over paths (instead of
straight line). This is a hard percolation problem.

Can somewhat simplify percolation problem by modifying the Gaussian
field. Introduce the k-coarse MBRW

G(x,y) = klog2» A(x,y,27)
j=0
where B(x, R) N B(y. R)
X, N bly,
Alx,y,R) =
oy R =50, A

(For k =1, it is continuous version of modified branching random walk
introduced with Bramson to study tightness of max of discrete GFF.)
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Improvements

Improving on LB requires (at least) to optimize over paths (instead of
straight line). This is a hard percolation problem.

Can somewhat simplify percolation problem by modifying the Gaussian
field. Introduce the k-coarse MBRW

G(x,y) = klog2» A(x,y,27)
j=0
where B(x, R) N B(y. R)
X, N bly,
Alx,y,R) =
oy R =50, A

(For k =1, it is continuous version of modified branching random walk
introduced with Bramson to study tightness of max of discrete GFF.)

|G(x, y) — log(1/dp2(x,y))| < gk(X,y)
and g is bounded by 6k and continuous off diagonal.
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Improvements Il

G(x,y) = klog2» A(x,y,27)
j=0

Can write the field as V(x) = 3=, h;(x), with h; fields independent.
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Improvements Il

G(x,y) = klog2» A(x,y,27)
j=0
Can write the field as V(x) = 3=, h;(x), with h; fields independent.

Given t, define r as t ~ 2-k(1+7%/2) g — 2=k and define the coarse
and fine fields

r—1 )
or=>_h, ¢¥r=> h
j=0 j=r
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Improvements Il

Lemma (Ding-Zhang-Z. 17, based on Ding-Zhang '16)

For k large enough, there exists a path of neighboring s = 2-*"-boxes
connecting x and y, of total number 2K((1+9) | so that:

a) Coarse field o, for each box is small (< dkrlog?2).

b) LBM associated with fine field U crosses each box within time s=9,
with probability at least s°.

Ofer Zeitouni Heat kernels May, 2018 16/17
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Lemma (Ding-Zhang-Z. 17, based on Ding-Zhang '16)

For k large enough, there exists a path of neighboring s = 2-*"-boxes
connecting x and y, of total number 2K((1+9) | so that:

a) Coarse field o, for each box is small (< dkrlog?2).

b) LBM associated with fine field U crosses each box within time s=9,
with probability at least s°.

Forcing LBM through sequence, can check that total time is ~ t while

probability is at least 6*1/(t1+72/2+e)-
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Improvements Il

Lemma (Ding-Zhang-Z. 17, based on Ding-Zhang '16)

For k large enough, there exists a path of neighboring s = 2-*"-boxes
connecting x and y, of total number 2K((1+9) | so that:

a) Coarse field o, for each box is small (< dkrlog?2).

b) LBM associated with fine field U crosses each box within time s=9,
with probability at least s°.

Forcing LBM through sequence, can check that total time is ~ t while

probability is at least 6*1/(t1+72/2+e)-

Upper bound uses a complementary percolation estimate: can’t find a
better path.
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Convergence

Main idea: exploit sub-additivity.
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Convergence

Main idea: exploit sub-additivity.
@ Write GFF as integral of white noise againts Brownian heat kernel.

@ Localize GFF.

@ Truncate GFF at appropriate scales by controlling variability of
field.

@ Move to diadic grid.

@ Apply sub-additivity (requires a percolation argument due to
variability of end-points)
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Convergence

Main idea: exploit sub-additivity.
@ Write GFF as integral of white noise againts Brownian heat kernel.

@ Localize GFF.

@ Truncate GFF at appropriate scales by controlling variability of
field.

@ Move to diadic grid.

@ Apply sub-additivity (requires a percolation argument due to
variability of end-points)

@ Relate LBM to graph distance by controlling heat kernel on chose
paths.

Ofer Zeitouni Heat kernels May, 2018 17/17
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