Heat kernel and graph distance for Liouville Brownian motion

Ofer Zeitouni

May, 2018

0		7.0	touni	
U	er	zei	touni	

< D > < A </p>

• Brownian motion W_t in \mathbb{R}^d , generator $\Delta/2$. $p_t(x, y) = \frac{1}{\sqrt{2\pi t^d}} e^{-|x-y|^2/2t}$.

• For general diffusions:

Theorem (Varadhan '67)

With uniformly eliptic generator $\frac{1}{2} \sum_{i,j} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_i}$, heat kernel satisfies

$$t\log p_t(x,y) \rightarrow_{t \rightarrow 0} - \frac{d(x,y)^2}{2}$$

where d is geodesic distance determined by a.

Many generalizations (hypoelliptic, on diagonal), using large deviation theory and refinements: Azencott, Stroock, Kusuoka, Ben Arous, Leagdree, ... a on

Ofer Zeitouni

• Brownian motion W_t in \mathbb{R}^d , generator $\Delta/2$.

 $p_t(x,y) = rac{1}{\sqrt{2\pi t}^d} e^{-|x-y|^2/2t}.$ Thus...

$$t\log p_t(x,y) \rightarrow_{t\rightarrow 0} - \frac{|x-y|^2}{2}.$$

For general diffusions:

Theorem (Varadhan '67)

With uniformly eliptic generator $\frac{1}{2}\sum_{i,j}a_{ij}(x)\frac{\partial^2}{\partial x_i\partial x_i}$, heat kernel satisfies

$$t\log p_t(x,y) \rightarrow_{t \rightarrow 0} - \frac{d(x,y)^2}{2}$$

where d is geodesic distance determined by a.

Ofer Zeitouni

• Brownian motion W_t in \mathbb{R}^d , generator $\Delta/2$.

 $p_t(x,y) = rac{1}{\sqrt{2\pi t^d}} e^{-|x-y|^2/2t}.$ Thus...

$$t\log p_t(x,y) \rightarrow_{t\rightarrow 0} - \frac{|x-y|^2}{2}.$$

• For general diffusions:

Theorem (Varadhan '67)

With uniformly eliptic generator $\frac{1}{2}\sum_{i,j}a_{ij}(x)\frac{\partial^2}{\partial x_i\partial x_j}$, heat kernel satisfies

$$t\log p_t(x,y) \rightarrow_{t \rightarrow 0} - \frac{d(x,y)^2}{2},$$

where d is geodesic distance determined by a.

Many generalizations (hypoelliptic, on diagonal), using large deviation theory

• Brownian motion W_t in \mathbb{R}^d , generator $\Delta/2$.

 $p_t(x, y) = \frac{1}{\sqrt{2\pi t^d}} e^{-|x-y|^2/2t}.$ Thus...

$$t\log p_t(x,y) \rightarrow_{t\rightarrow 0} - \frac{|x-y|^2}{2}.$$

• For general diffusions:

Theorem (Varadhan '67)

With uniformly eliptic generator $\frac{1}{2}\sum_{i,j} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j}$, heat kernel satisfies

$$t\log p_t(x,y) \rightarrow_{t \rightarrow 0} - \frac{d(x,y)^2}{2},$$

where d is geodesic distance determined by a.

Many generalizations (hypoelliptic, on diagonal), using large deviation theory and refinements: Azencott, Stroock, Kusuoka, Ben Arous, Leandre, ...

	Ze	

• A particularly simple case: $a(x) = \sigma^2(x)$ scalar, strictly positive.

 $dX_t = \sigma(X_t) dB_t$

. From time change, $X_t = B_{F^{-1}(t)}$, where

 $F(t) = \int_0^t \frac{1}{a(B_s)} ds \quad \text{is strictly increasing}(PCAF).$

Still,

$$t\log p_t(x,y) \rightarrow_{t \rightarrow 0} - \frac{d(x,y)^2}{2}.$$

• Take $a(x) = e^{-V(x) + \frac{1}{2}\mathbb{E}V^2(x)}$ where V is a centered Gaussian field, then

$$F(t) = \int_{-\infty}^{\infty} e^{V(B_s) - \frac{1}{2}\mathbb{E}V^2(B_s)} ds$$

Ofer Zeitouni

< ロ > < 同 > < 回 > < 回 >

• A particularly simple case: $a(x) = \sigma^2(x)$ scalar, strictly positive.

$$dX_t = \sigma(X_t) dB_t$$

. From time change, $X_t = B_{F^{-1}(t)}$, where

$$F(t) = \int_0^t \frac{1}{a(B_s)} ds$$
 is strictly increasing(PCAF).

Still,

$$t \log p_t(x,y) \rightarrow_{t \rightarrow 0} - \frac{d(x,y)^2}{2}.$$

• Take $a(x) = e^{-V(x) + \frac{1}{2}\mathbb{E}V^2(x)}$ where V is a centered Gaussian field, then

$$F(t) = \int^t e^{V(B_s) - \frac{1}{2}\mathbb{E}V^2(B_s)} ds.$$

< D > < A > < B >

• A particularly simple case: $a(x) = \sigma^2(x)$ scalar, strictly positive.

$$dX_t = \sigma(X_t) dB_t$$

. From time change, $X_t = B_{F^{-1}(t)}$, where

$$F(t) = \int_0^t \frac{1}{a(B_s)} ds$$
 is strictly increasing(*PCAF*).

Still,

$$t\log p_t(x,y) \rightarrow_{t\rightarrow 0} - \frac{d(x,y)^2}{2}.$$

• Take $a(x) = e^{-V(x) + \frac{1}{2}\mathbb{E}V^2(x)}$ where V is a centered Gaussian field, then

$$F(t) = \int^t e^{V(B_s) - \frac{1}{2}\mathbb{E}V^2(B_s)} ds.$$

< D > < A > < B >

• A particularly simple case: $a(x) = \sigma^2(x)$ scalar, strictly positive.

$$dX_t = \sigma(X_t) dB_t$$

. From time change, $X_t = B_{F^{-1}(t)}$, where

$$F(t) = \int_0^t \frac{1}{a(B_s)} ds$$
 is strictly increasing(*PCAF*).

Still,

$$t\log p_t(x,y) \rightarrow_{t\rightarrow 0} - \frac{d(x,y)^2}{2}.$$

• Take $a(x) = e^{-V(x) + \frac{1}{2}\mathbb{E}V^2(x)}$ where V is a centered Gaussian field, then

$$\mathcal{F}(t)=\int_0^t e^{V(B_s)-rac{1}{2}\mathbb{E}V^2(B_s)}ds.$$

• A particularly simple case: $a(x) = \sigma^2(x)$ scalar, strictly positive.

$$dX_t = \sigma(X_t) dB_t$$

. From time change, $X_t = B_{F^{-1}(t)}$, where

$$F(t) = \int_0^t \frac{1}{a(B_s)} ds$$
 is strictly increasing(*PCAF*).

Still,

$$t\log p_t(x,y) \rightarrow_{t\rightarrow 0} - \frac{d(x,y)^2}{2}.$$

• Take $a(x) = e^{-V(x) + \frac{1}{2}\mathbb{E}V^2(x)}$ where *V* is a centered Gaussian field, then

$$F(t)=\int_0^t e^{V(B_s)-\frac{1}{2}\mathbb{E}V^2(B_s)}ds.$$

Equilibrium measure $\mu_V(dx) = \frac{1}{a(x)} dx = e^{V(x) - \frac{1}{2}\mathbb{E}V^2(x)} dx$

Focus on 2D torus.

$$\mu_V(dx) = e^{V(x) - \frac{1}{2}\mathbb{E}V^2(x)} dx$$

Interest in cases where $V(\cdot)$ is not smooth, not even pointwise defined:

$$\mathbb{E}V(x)V(y) = \log\frac{1}{|x-y|} + g(x,y)$$

where g is bounded, continuous off the diagonal. Defined as distribution. Particular case - the Gaussian free field. Formal limit of $V_{\epsilon}(x) = \int \phi_{\epsilon}(x - y) V(y) dy$.

• The measures $\mu_{\epsilon}^{\gamma}(dx) = e^{\gamma V_{\epsilon}(x) - \frac{\gamma}{2} \mathbb{E} V_{\epsilon}^2(x)} dx$ converge, if $\gamma < 2$, to a limit formally given by

$$\mu_V = e^{\gamma V(x) dx - \frac{\gamma^2}{2} \mathbb{E} V^2(x)} dx$$

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, .

Focus on 2D torus.

$$\mu_V(dx) = e^{V(x) - \frac{1}{2}\mathbb{E}V^2(x)} dx$$

Interest in cases where $V(\cdot)$ is not smooth, not even pointwise defined:

$$\mathbb{E}V(x)V(y) = \log\frac{1}{|x-y|} + g(x,y)$$

where *g* is bounded, continuous off the diagonal.

Defined as distribution. Particular case - the Gaussian free field. Formal limit of $V_{\epsilon}(x) = \int \phi_{\epsilon}(x - y)V(y)dy$.

• The measures $\mu_{\epsilon}^{\gamma}(dx) = e^{\gamma V_{\epsilon}(x) - \frac{\gamma}{2} \mathbb{E} V_{\epsilon}^{2}(x)} dx$ converge, if $\gamma < 2$, to a limit formally given by

$$\mu_V = e^{\gamma V(x) dx - rac{\gamma^2}{2} \mathbb{E} V^2(x)} dx$$

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, .

Focus on 2D torus.

$$\mu_V(dx) = e^{V(x) - \frac{1}{2}\mathbb{E}V^2(x)} dx$$

Interest in cases where $V(\cdot)$ is not smooth, not even pointwise defined:

$$\mathbb{E}V(x)V(y) = \log\frac{1}{|x-y|} + g(x,y)$$

where *g* is bounded, continuous off the diagonal. Defined as distribution. Particular case - the Gaussian free field. Formal limit of $V_{\epsilon}(x) = \int \phi_{\epsilon}(x - y) V(y) dy$.

• The measures $\mu_{\epsilon}^{\gamma}(dx) = e^{\gamma V_{\epsilon}(x) - \frac{\gamma}{2} \mathbb{E} V_{\epsilon}^{e}(x)} dx$ converge, if $\gamma < 2$, to a limit formally given by

$$\iota_V = e^{\gamma V(x) dx - rac{\gamma^2}{2} \mathbb{E} V^2(x)} dx$$

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, .

<ロ> (四) (四) (三) (三) (三)

Focus on 2D torus.

$$\mu_V(dx) = e^{V(x) - \frac{1}{2}\mathbb{E}V^2(x)} dx$$

Interest in cases where $V(\cdot)$ is not smooth, not even pointwise defined:

$$\mathbb{E}V(x)V(y) = \log\frac{1}{|x-y|} + g(x,y)$$

where *g* is bounded, continuous off the diagonal. Defined as distribution. Particular case - the Gaussian free field. Formal limit of $V_{\epsilon}(x) = \int \phi_{\epsilon}(x - y) V(y) dy$.

• The measures $\mu_{\epsilon}^{\gamma}(dx) = e^{\gamma V_{\epsilon}(x) - \frac{\gamma^2}{2} \mathbb{E} V_{\epsilon}^2(x)} dx$ converge, if $\gamma < 2$, to a limit formally given by

$$\mu_{V} = \boldsymbol{e}^{\gamma V(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x} - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(\boldsymbol{x})} \boldsymbol{d} \boldsymbol{x}$$

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, ...)

Focus on 2D torus.

$$\mu_V(dx) = e^{V(x) - \frac{1}{2}\mathbb{E}V^2(x)} dx$$

Interest in cases where $V(\cdot)$ is not smooth, not even pointwise defined:

$$\mathbb{E}V(x)V(y) = \log\frac{1}{|x-y|} + g(x,y)$$

where *g* is bounded, continuous off the diagonal. Defined as distribution. Particular case - the Gaussian free field. Formal limit of $V_{\epsilon}(x) = \int \phi_{\epsilon}(x - y) V(y) dy$.

• The measures $\mu_{\epsilon}^{\gamma}(dx) = e^{\gamma V_{\epsilon}(x) - \frac{\gamma^2}{2} \mathbb{E} V_{\epsilon}^2(x)} dx$ converge, if $\gamma < 2$, to a limit formally given by

$$\mu_{V} = \boldsymbol{e}^{\gamma V(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x} - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(\boldsymbol{x})} \boldsymbol{d} \boldsymbol{x}$$

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, ...) Gaussian Multiplicative chaos

Ofer Zeitouni

GMC-properties

$$\mu_{V} = \boldsymbol{e}^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx, I = \mu_{V}(\mathbb{T}^{2})$$

and approximations

$$\mu_{V}^{\epsilon} = \boldsymbol{e}^{\gamma V_{\epsilon}(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} dx, I_{\epsilon} = \mu_{V}^{\epsilon}(\mathbb{T}^{2})$$

• For γ < 2, I_{ϵ} is uniformly integrable.

- μ_V is supported on γ -thick points, i.e. on $\{x : V_{\epsilon}(x) / \log(1/\epsilon) \rightarrow_{\epsilon \to 0} \gamma\}.$
- μ_V does not depend on particular mollifiers.
- For $\gamma < \sqrt{2}$, I_{ϵ} is in L^2 , analysis simpler.
- Many universal (independent of g) features: dimensions of thick points, ε-maximizers, law of maximizers, ...

< ロ > < 同 > < 回 > < 回 > < 回 > <

GMC-properties

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx, I = \mu_{V}(\mathbb{T}^{2})$$

and approximations

$$\mu_{V}^{\epsilon} = \boldsymbol{e}^{\gamma V_{\epsilon}(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} dx, I_{\epsilon} = \mu_{V}^{\epsilon}(\mathbb{T}^{2})$$

- For $\gamma < 2$, I_{ϵ} is uniformly integrable.
- μ_V is supported on γ -thick points, i.e. on $\{x : V_{\epsilon}(x) / \log(1/\epsilon) \rightarrow_{\epsilon \to 0} \gamma\}.$
- μ_V does not depend on particular mollifiers.
- For $\gamma < \sqrt{2}$, I_{ϵ} is in L^2 , analysis simpler.
- Many universal (independent of g) features: dimensions of thick points, ε-maximizers, law of maximizers, ...

< □ > < □ > < □ > < □ > < □ >

GMC-properties

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx, I = \mu_{V}(\mathbb{T}^{2})$$

and approximations

$$\mu_{V}^{\epsilon} = \boldsymbol{e}^{\gamma V_{\epsilon}(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} dx, I_{\epsilon} = \mu_{V}^{\epsilon}(\mathbb{T}^{2})$$

- For $\gamma < 2$, I_{ϵ} is uniformly integrable.
- μ_V is supported on γ -thick points, i.e. on $\{x : V_{\epsilon}(x) / \log(1/\epsilon) \rightarrow_{\epsilon \to 0} \gamma\}.$
- μ_V does not depend on particular mollifiers.
- For $\gamma < \sqrt{2}$, l_{ϵ} is in L^2 , analysis simpler.
- Many universal (independent of g) features: dimensions of thick points, ε-maximizers, law of maximizers, ...

《口》《聞》《臣》《臣》

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx, I = \mu_{V}(\mathbb{T}^{2})$$

$$\mu_{V}^{\epsilon} = \boldsymbol{e}^{\gamma V_{\epsilon}(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} dx, I_{\epsilon} = \mu_{V}^{\epsilon}(\mathbb{T}^{2})$$

- For γ < 2, I_{ϵ} is uniformly integrable.
- μ_V is supported on γ -thick points, i.e. on $\{x : V_{\epsilon}(x) / \log(1/\epsilon) \rightarrow_{\epsilon \to 0} \gamma\}.$
- μ_V does not depend on particular mollifiers.
- For $\gamma < \sqrt{2}$, I_{ϵ} is in L^2 , analysis simpler.
- Many universal (independent of g) features: dimensions of thick points, ε-maximizers, law of maximizers, ...

《口》《聞》《臣》《臣》

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx, I = \mu_{V}(\mathbb{T}^{2})$$

$$\mu_{V}^{\epsilon} = \boldsymbol{e}^{\gamma V_{\epsilon}(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} dx, I_{\epsilon} = \mu_{V}^{\epsilon}(\mathbb{T}^{2})$$

- For γ < 2, I_{ϵ} is uniformly integrable.
- μ_V is supported on γ -thick points, i.e. on $\{x : V_{\epsilon}(x) / \log(1/\epsilon) \rightarrow_{\epsilon \to 0} \gamma\}.$
- μ_V does not depend on particular mollifiers.
- For $\gamma < \sqrt{2}$, I_{ϵ} is in L^2 , analysis simpler.
- Many universal (independent of g) features: dimensions of thick points, ε-maximizers, law of maximizers, ...

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx, I = \mu_{V}(\mathbb{T}^{2})$$

$$\mu_{V}^{\epsilon} = \boldsymbol{e}^{\gamma V_{\epsilon}(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} dx, I_{\epsilon} = \mu_{V}^{\epsilon}(\mathbb{T}^{2})$$

- For $\gamma < 2$, I_{ϵ} is uniformly integrable.
- μ_V is supported on γ -thick points, i.e. on $\{x : V_{\epsilon}(x) / \log(1/\epsilon) \rightarrow_{\epsilon \to 0} \gamma\}.$
- μ_V does not depend on particular mollifiers.
- For $\gamma < \sqrt{2}$, I_{ϵ} is in L^2 , analysis simpler.
- Many universal (independent of g) features: dimensions of thick points, ε-maximizers, law of maximizers, ...

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx, I = \mu_{V}(\mathbb{T}^{2})$$

$$\mu_{V}^{\epsilon} = \boldsymbol{e}^{\gamma V_{\epsilon}(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} dx, I_{\epsilon} = \mu_{V}^{\epsilon}(\mathbb{T}^{2})$$

- For $\gamma < 2$, I_{ϵ} is uniformly integrable.
- μ_V is supported on γ -thick points, i.e. on $\{x : V_{\epsilon}(x) / \log(1/\epsilon) \rightarrow_{\epsilon \to 0} \gamma\}.$
- μ_V does not depend on particular mollifiers.
- For $\gamma < \sqrt{2}$, I_{ϵ} is in L^2 , analysis simpler.
- Many universal (independent of g) features: dimensions of thick points, ε-maximizers, law of maximizers, ...

Given μ_V , can inquire on "geometry" associated with μ_V , taken as "Riemannian volume" (Sheffield, Miller).

One possible approach: use Brownian motion.

$$F_t = \int_0^t e^{\gamma V(B_s) - \frac{1}{2}\gamma^2 \mathbb{E} V^2(B_s)} ds, \quad X_t = B_{F_t^{-1}}.$$
 (1)

Of course, not defined as written. But using approximations, one has:

Theorem (Garban, Rhodes, Vargas '13; N. Berestycki '13 There exists a diffusion process X_t with continuous paths corresponding to (1).

The corresponding Dirichlet form is the usual one, but with domain $L^2(\mu_V) \cap H^1_{loc}$, not $L^2(dx) \cap H^1_{loc}$.

< ロ > < 同 > < 回 > < 回 > .

$$F_t = \int_0^t e^{\gamma V(B_s) - \frac{1}{2}\gamma^2 \mathbb{E}V^2(B_s)} ds, \quad X_t = B_{F_t^{-1}}.$$
 (1)

Of course, not defined as written. But using approximations, one has:

Theorem (Garban, Rhodes, Vargas '13; N. Berestycki '13) There exists a diffusion process X_t with continuous paths

The corresponding Dirichlet form is the usual one, but with domain $L^2(\mu_V) \cap H^1_{loc}$, not $L^2(dx) \cap H^1_{loc}$.

< ロ > < 同 > < 回 > < 回 > .

$$F_{t} = \int_{0}^{t} e^{\gamma V(B_{s}) - \frac{1}{2}\gamma^{2} \mathbb{E}V^{2}(B_{s})} ds, \quad X_{t} = B_{F_{t}^{-1}}.$$
 (1)

Of course, not defined as written. But using approximations, one has:

Theorem (Garban, Rhodes, Vargas '13; N. Berestycki '13) There exists a diffusion process X_t with continuous paths corresponding to (1).

The corresponding Dirichlet form is the usual one, but with domain $L^2(\mu_V) \cap H^1_{loc}$, not $L^2(dx) \cap H^1_{loc}$.

< ロ > < 同 > < 回 > < 回 > .

$$F_{t} = \int_{0}^{t} e^{\gamma V(B_{s}) - \frac{1}{2}\gamma^{2} \mathbb{E}V^{2}(B_{s})} ds, \quad X_{t} = B_{F_{t}^{-1}}.$$
 (1)

Of course, not defined as written. But using approximations, one has:

Theorem (Garban,Rhodes,Vargas '13; N. Berestycki '13 *There exists a diffusion process X_t with continuous paths corresponding to* (1).

The corresponding Dirichlet form is the usual one, but with domain $L^2(\mu_V) \cap H^1_{loc}$, not $L^2(dx) \cap H^1_{loc}$.

<ロ> <同> <同> < 同> < 同> < 同> < 同> <

$$F_{t} = \int_{0}^{t} e^{\gamma V(B_{s}) - \frac{1}{2}\gamma^{2} \mathbb{E}V^{2}(B_{s})} ds, \quad X_{t} = B_{F_{t}^{-1}}.$$
 (1)

Of course, not defined as written. But using approximations, one has:

Theorem (Garban, Rhodes, Vargas '13; N. Berestycki '13)

There exists a diffusion process X_t with continuous paths corresponding to (1).

The corresponding Dirichlet form is the usual one, but with domain $L^2(\mu_V) \cap H^1_{loc}$, not $L^2(dx) \cap H^1_{loc}$.

< ロ > < 同 > < 三 > < 三 > -

Heat kernel and geometry

Can we use LBM to study geometry?

A general paradigm (verified for BM on many fractals, etc.) is that heat kernel *should* behave, for short time, as

$$p_t(x,y) \sim \frac{1}{t^{d_H/b}} e^{-\left(\frac{d(x,y)}{t^{1/b}}\right)^{b/(b-1)}}$$

 d_{H} - Hausdorff dimension, $2d_{H}/b$ - spectral dimension. For BM, $2d_{H}/b = d$, b = 2.

Theorem (Rhodes-Vargas '14)

 $d_H/b = 1$ in the sense that $\log p_t(x, x) / \log t \rightarrow_{t \rightarrow 0} -1$.

(Logarithmic corrections, improved by Andres-Kajino '14). To have any hope of identifying distances, we thus need to find $d_{H}!$

0	6 m m	Zei		
U	Ier	zei	ιοι	

Can we use LBM to study geometry? A general paradigm (verified for BM on many fractals, etc.) is that heat kernel *should* behave, for short time, as

$$p_t(x,y) \sim rac{1}{t^{d_H/b}} e^{-\left(rac{d(x,y)}{t^{1/b}}
ight)^{b/(b-1)}}$$

 d_{H} - Hausdorff dimension, $2d_{H}/b$ - spectral dimension. For BM, $2d_{H}/b = d$, b = 2.

Theorem (Rhodes-Vargas '14)

 $d_H/b = 1$ in the sense that $\log p_t(x, x) / \log t \rightarrow_{t \to 0} -1$.

(Logarithmic corrections, improved by Andres-Kajino '14). To have any hope of identifying distances, we thus need to find $d_{H}!$

~			
Ofe	r /	OII	m
0.0		.00	

Can we use LBM to study geometry?

A general paradigm (verified for BM on many fractals, etc.) is that heat kernel *should* behave, for short time, as

$$p_t(x,y) \sim rac{1}{t^{d_H/b}} e^{-\left(rac{d(x,y)}{t^{1/b}}
ight)^{b/(b-1)}}$$

 d_{H} - Hausdorff dimension, $2d_{H}/b$ - spectral dimension. For BM, $2d_{H}/b = d$, b = 2.

Theorem (Rhodes-Vargas '14)

 $d_H/b = 1$ in the sense that $\log p_t(x, x) / \log t \rightarrow_{t \rightarrow 0} -1$.

(Logarithmic corrections, improved by Andres-Kajino '14). To have any hope of identifying distances, we thus need to find d_{H} !

0	6 m m	Zei		
U	Ier	zei	ιοι	

Can we use LBM to study geometry?

A general paradigm (verified for BM on many fractals, etc.) is that heat kernel *should* behave, for short time, as

$$p_t(x,y) \sim rac{1}{t^{d_H/b}} e^{-\left(rac{d(x,y)}{t^{1/b}}
ight)^{b/(b-1)}}$$

 d_{H} - Hausdorff dimension, $2d_{H}/b$ - spectral dimension. For BM, $2d_{H}/b = d$, b = 2.

Theorem (Rhodes-Vargas '14)

 $d_H/b = 1$ in the sense that $\log p_t(x, x) / \log t \rightarrow_{t \rightarrow 0} -1$.

(Logarithmic corrections, improved by Andres-Kajino '14).

To have any hope of identifying distances, we thus need to find $d_{H}!$

	itοι	

◆ロ > ◆聞 > ◆臣 > ◆臣 > ─ 臣

Can we use LBM to study geometry?

A general paradigm (verified for BM on many fractals, etc.) is that heat kernel *should* behave, for short time, as

$$p_t(x,y) \sim rac{1}{t^{d_H/b}} e^{-\left(rac{d(x,y)}{t^{1/b}}
ight)^{b/(b-1)}}$$

 d_{H} - Hausdorff dimension, $2d_{H}/b$ - spectral dimension. For BM, $2d_{H}/b = d$, b = 2.

Theorem (Rhodes-Vargas '14)

 $d_H/b = 1$ in the sense that $\log p_t(x, x) / \log t \rightarrow_{t \rightarrow 0} -1$.

(Logarithmic corrections, improved by Andres-Kajino '14). To have any hope of identifying distances, we thus need to find d_H !

0	fer	Zei	tou	ıni

< ロ > < 同 > < 回 > < 回 > < 回 > <

Watabiki ('93):

$$d_H = 1 + rac{\gamma^2}{4} + \sqrt{\left(1 + rac{\gamma^2}{4}
ight)^2 + \gamma^2}$$

• For γ small, $d_H(Watabiki) \sim 2 + \gamma^2$

• Remarkable: for $\gamma = \sqrt{8/3}$, $d_H(Watabiki) = 4$, consistent with convergence to Brownian map results of Miller-Sheffield. • Maybe correct in general? (not so clear what correst statement is) For heat kernel, would translate to off-diagonal estimate

$$\frac{\log|\log p_t(x,y)|}{\log t} \sim -\frac{1}{d_H - 1}, \quad x \neq y$$

Watabiki ('93):

$$d_H = 1 + rac{\gamma^2}{4} + \sqrt{\left(1 + rac{\gamma^2}{4}
ight)^2 + \gamma^2}$$

• For γ small, $d_H(Watabiki) \sim 2 + \gamma^2$.

• Remarkable: for $\gamma = \sqrt{8/3}$, $d_H(Watabiki) = 4$, consistent with convergence to Brownian map results of Miller-Sheffield. • Maybe correct in general? (not so clear what correst statement is). For heat kernel, would translate to off-diagonal estimate

$$\frac{\log|\log p_t(x,y)|}{\log t} \sim -\frac{1}{d_H - 1}, \quad x \neq y$$

< ロ > < 同 > < 三 >

Watabiki ('93):

$$d_H = 1 + rac{\gamma^2}{4} + \sqrt{\left(1 + rac{\gamma^2}{4}
ight)^2 + \gamma^2}$$

• For γ small, $d_H(Watabiki) \sim 2 + \gamma^2$.

• Remarkable: for $\gamma = \sqrt{8/3}$, $d_H(Watabiki) = 4$, consistent with convergence to Brownian map results of Miller-Sheffield.

Maybe correct in general? (not so clear what correst statement is).
 For heat kernel, would translate to off-diagonal estimate

$$\frac{\log |\log p_t(x,y)|}{\log t} \sim -\frac{1}{d_H - 1}, \quad x \neq y$$

< D > < A > < B >

Watabiki ('93):

$$d_H = 1 + rac{\gamma^2}{4} + \sqrt{\left(1 + rac{\gamma^2}{4}
ight)^2 + \gamma^2}$$

• For γ small, $d_H(Watabiki) \sim 2 + \gamma^2$.

- Remarkable: for $\gamma = \sqrt{8/3}$, $d_H(Watabiki) = 4$, consistent with convergence to Brownian map results of Miller-Sheffield.
- Maybe correct in general? (not so clear what correst statement is). For heat kernel, would translate to off-diagonal estimate

$$\frac{\log |\log p_t(x,y)|}{\log t} \sim -\frac{1}{d_H - 1}, \quad x \neq y$$

GFF results

Take covariance corresponding to GFF on torus:

$$G(x,y) = \sum_{n\geq 1} \frac{1}{\lambda_n} e_n(x) e_n(y)$$

where (λ_n, e_n) are eigenvalues and eigenfunctions of the (minus) standard Laplacian.

Theorem (Maillard,Rhodes,Vargas, Z. '14

Upper bound: \exists (explicit, deterministic) β_{UB} so that

$$p_t(x,y) \leq \frac{C_V}{t^{1+\delta}} e^{-\left(\frac{cd_{t^2}(x,y)}{t^{1/\beta_{UB}}}\right)^{\beta_{UB}/(\beta_{UB}-1)}}$$

Lower bound: for all $\eta > 0$ there exists $C_V = C_V(\eta)$ so that for t < 1,

$$p_t(x,y) \ge C_V e^{-t^{1/(1+\gamma^2/4-\eta)}}$$

 $\beta_{UB} \sim 2 + 2\gamma$. Improved by Andres-Kajino.

イロン 人間 とくほ とくほ とうほ

GFF results

Take covariance corresponding to GFF on torus:

$$G(x,y) = \sum_{n\geq 1} \frac{1}{\lambda_n} e_n(x) e_n(y)$$

where (λ_n, e_n) are eigenvalues and eigenfunctions of the (minus) standard Laplacian.

Theorem (Maillard, Rhodes, Vargas, Z. '14)

Upper bound: \exists (explicit, deterministic) β_{UB} so that

$$p_t(x,y) \leq rac{C_V}{t^{1+\delta}} e^{-\left(rac{cd_{\mathbb{T}^2}(x,y)}{t^{1/eta_{UB}}}
ight)^{eta_{UB}/(eta_{UB}-1)}}$$

Lower bound: for all $\eta > 0$ there exists $C_V = C_V(\eta)$ so that for t < 1,

$$p_t(x,y) \ge C_V e^{-t^{1/(1+\gamma^2/4-\eta)}}$$

 $eta_{\it UB}\sim$ 2 + 2 $\gamma.$ Improved by Andres-Kajino.

◆□ > ◆□ > ◆目 > ◆目

GFF results

Take covariance corresponding to GFF on torus:

$$G(x,y) = \sum_{n\geq 1} \frac{1}{\lambda_n} e_n(x) e_n(y)$$

where (λ_n, e_n) are eigenvalues and eigenfunctions of the (minus) standard Laplacian.

Theorem (Maillard, Rhodes, Vargas, Z. '14)

Upper bound: \exists (explicit, deterministic) β_{UB} so that

$$p_t(x,y) \leq \frac{C_V}{t^{1+\delta}} e^{-\left(\frac{cd_{\mathbb{T}^2}(x,y)}{t^{1/\beta} UB}\right)^{\beta} UB^{/(\beta} UB^{-1)}}$$

Lower bound: for all $\eta > 0$ there exists $C_V = C_V(\eta)$ so that for t < 1,

$$p_t(x,y) \geq C_V e^{-t^{1/(1+\gamma^2/4-\eta)}}$$

 $\beta_{UB} \sim 2 + 2\gamma$. Improved by Andres-Kajino. $\beta_{LB} \sim 2 + \gamma^2/4$. Compare with $\beta_{Watabiki} \sim 2 + \gamma^2$.

Many results for GFF are universal, depend only on log-correlation $\mathbb{E}V(x)V(y) = -\log |x - y| + g(x, y)$, *g* bounded.

Theorem (Ding-Zhang-Z. '17

For any $\epsilon > 0$ there exists a log-correlated field on \mathbb{T}^2 so that, for all $t < T_0(x, y, \gamma, \epsilon, K)$,

$$e^{-t^{-1/(\beta_0-1-\epsilon)}} \le p_t(x,y) \le e^{-t^{-1/(\beta_0-1+\epsilon)}}$$

where $\beta_0 = 2 + \gamma^2/2$.

In particular, this is not compatible with the ansatz that Watabiki's formula is universal, since $\beta_{Watabiki} \sim 2 + \gamma^2$. Even before: does the heat kernel exponent exist?

 $\limsup_{t \to 0} \log |\log p_t^{\gamma}(x, y)| / \log t = \liminf_{t \to 0} \log |\log p_t^{\gamma}(x, y)| / \log t??$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

Many results for GFF are universal, depend only on log-correlation $\mathbb{E}V(x)V(y) = -\log |x - y| + g(x, y)$, *g* bounded.

Theorem (Ding-Zhang-Z. '17)

For any $\epsilon > 0$ there exists a log-correlated field on \mathbb{T}^2 so that, for all $t < T_0(x, y, \gamma, \epsilon, K)$,

$$e^{-t^{-1/(eta_0-1-\epsilon)}} \leq p_t(x,y) \leq e^{-t^{-1/(eta_0-1+\epsilon)}}$$

where $\beta_0 = 2 + \gamma^2/2$.

In particular, this is not compatible with the ansatz that Watabiki's formula is universal, since $\beta_{Watabiki} \sim 2 + \gamma^2$. Even before: does the heat kernel exponent exist?

 $\limsup_{t \to 0} \log |\log p_t^{\gamma}(x, y)| / \log t = \liminf_{t \to 0} \log |\log p_t^{\gamma}(x, y)| / \log t??$

<ロ> <部> <部> <き> <き> = き

Many results for GFF are universal, depend only on log-correlation $\mathbb{E}V(x)V(y) = -\log |x - y| + g(x, y)$, *g* bounded.

Theorem (Ding-Zhang-Z. '17)

For any $\epsilon > 0$ there exists a log-correlated field on \mathbb{T}^2 so that, for all $t < T_0(x, y, \gamma, \epsilon, K)$,

$$e^{-t^{-1/(eta_0-1-\epsilon)}} \leq p_t(x,y) \leq e^{-t^{-1/(eta_0-1+\epsilon)}}$$

where $\beta_0 = 2 + \gamma^2/2$.

In particular, this is not compatible with the ansatz that Watabiki's formula is universal, since $\beta_{Watabiki} \sim 2 + \gamma^2$.

 $\limsup_{t\to 0} \log |\log p_t^{\gamma}(x, y)| / \log t = \liminf_{t\to 0} \log |\log p_t^{\gamma}(x, y)| / \log t?$

<ロ> <部> <部> <き> <き> = き

Many results for GFF are universal, depend only on log-correlation $\mathbb{E}V(x)V(y) = -\log |x - y| + g(x, y)$, *g* bounded.

Theorem (Ding-Zhang-Z. '17)

For any $\epsilon > 0$ there exists a log-correlated field on \mathbb{T}^2 so that, for all $t < T_0(x, y, \gamma, \epsilon, K)$,

$$e^{-t^{-1/(eta_0-1-\epsilon)}} \leq p_t(x,y) \leq e^{-t^{-1/(eta_0-1+\epsilon)}}$$

where $\beta_0 = 2 + \gamma^2/2$.

In particular, this is not compatible with the ansatz that Watabiki's formula is universal, since $\beta_{Watabiki} \sim 2 + \gamma^2$. Even before: does the heat kernel exponent exist?

 $\limsup_{t\to 0} \log |\log p_t^{\gamma}(x, y)| / \log t = \liminf_{t\to 0} \log |\log p_t^{\gamma}(x, y)| / \log t??$

・ロン・(型)・ (目)・(目)・ 目

Recall the GMC

$$\mu_{V} = e^{\gamma V(x)dx - \frac{\gamma^{2}}{2}\mathbb{E}V^{2}(x)}dx$$

with V the GFF in 2D.

Can define the Liouville graph distance $D_{\gamma,\delta}(u, v)$ as the minimal number of balls of γ -Liouville mass at most δ needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18) Fix u, v. • $\log D_{\gamma,\delta}(u, v) / |\log \delta| \rightarrow_{\delta \rightarrow 0} \chi$. • $\log |\log p_t^{\gamma}(u, v)| / |\log t| \rightarrow_{t \rightarrow 0} \chi / (2 - \chi)$. • $0 < \chi \leq \frac{4[(1+\gamma^2/4) - \sqrt{1+\gamma^4/16}]}{\gamma^2}$, and in particular $\chi < 1 + 7\gamma^2/8$, implying that for γ small, $\chi/(2 - \chi) < 1 + 7\gamma^2/4$

Compare to Watabiki's conjecture $\chi/(2 - \chi) = 1 + \gamma^2$ and the Andres-Kajino upper bound $< 1 + 2\gamma^2$. The upper bound follows from a result of Duplantier-Sheffield (KPZ relations).

Ofer Zeitouni

< ロ > < 同 > < 回 > < 回 > < 回 > <

Recall the GMC

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx$$

with V the GFF in 2D.

Can define the Liouville graph distance $D_{\gamma,\delta}(u, v)$ as the minimal number of balls of γ -Liouville mass at most δ needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18) Fix u, v. • $\log D_{\gamma,\delta}(u, v) / |\log \delta| \rightarrow_{\delta \rightarrow 0} \chi$. • $\log |\log p_t^{\gamma}(u, v)| / |\log t| \rightarrow_{t \rightarrow 0} \chi / (2 - \chi)$. • $0 < \chi \leq \frac{4[(1+\gamma^2/4) - \sqrt{1+\gamma^4/16}]}{\gamma^2}$, and in particular $\chi < 1 + 7\gamma^2/8$, implying that for γ small, $\chi/(2 - \chi) < 1 + 7\gamma^2/4$

Compare to Watabiki's conjecture $\chi/(2 - \chi) = 1 + \gamma^2$ and the Andres-Kajino upper bound $< 1 + 2\gamma^2$. The upper bound follows from a result of Duplantier-Sheffield (KPZ relations).

Recall the GMC

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx$$

with V the GFF in 2D.

Can define the Liouville graph distance $D_{\gamma,\delta}(u, v)$ as the minimal number of balls of γ -Liouville mass at most δ needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)

Fix u, v.

•
$$\log D_{\gamma,\delta}(u,v)/|\log \delta| \rightarrow_{\delta \to 0} \chi.$$

• $\log |\log p_t^{\gamma}(u,v)|/|\log t| \rightarrow_{t \rightarrow 0} \chi/(2-\chi).$

• $0 < \chi \leq \frac{4[(1+\gamma^{\epsilon}/4)-\sqrt{1+\gamma^{4}/16}]}{\gamma^{2}}$, and in particular $\chi < 1+7\gamma^{2}/8$, implying that for γ small, $\chi/(2-\chi) < 1+7\gamma^{2}/4$

Compare to Watabiki's conjecture $\chi/(2 - \chi) = 1 + \gamma^2$ and the Andres-Kajino upper bound $< 1 + 2\gamma^2$.

The upper bound follows from a result of Duplantier-Sheffield (KPZ relations).

<ロ> <同> <同> < 同> < 同>

Recall the GMC

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx$$

with V the GFF in 2D.

Can define the Liouville graph distance $D_{\gamma,\delta}(u, v)$ as the minimal number of balls of γ -Liouville mass at most δ needed to create a path connecting u, v.

Theorem (Ding,Zhang,Z. '18)

Fix u, v.

•
$$\log D_{\gamma,\delta}(\boldsymbol{u},\boldsymbol{v})/|\log \delta| \rightarrow_{\delta \to 0} \chi.$$

•
$$\log |\log p_t^{\gamma}(u, v)| / |\log t| \rightarrow_{t \rightarrow 0} \chi / (2 - \chi).$$

• $0 < \chi \leq \frac{4((1+\gamma^2/4)-\sqrt{1+\gamma^2/16})}{\gamma^2}$, and in particular $\chi < 1+7\gamma^2/8$, implying that for γ small, $\chi/(2-\chi) < 1+7\gamma^2/4$

Compare to Watabiki's conjecture $\chi/(2-\chi) = 1 + \gamma^2$ and the Andres-Kajino upper bound $< 1 + 2\gamma^2$.

The upper bound follows from a result of Duplantier-Sheffield (KPZ relations).

<ロ> <同> <同> < 同> < 同>

Recall the GMC

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx$$

with V the GFF in 2D.

Can define the Liouville graph distance $D_{\gamma,\delta}(u, v)$ as the minimal number of balls of γ -Liouville mass at most δ needed to create a path connecting u, v.

Theorem (Ding, Zhang, Z. '18)

Fix u, v. • $\log D_{\gamma,\delta}(u, v)/|\log \delta| \rightarrow_{\delta \rightarrow 0} \chi$. • $\log |\log p_t^{\gamma}(u, v)|/|\log t| \rightarrow_{t \rightarrow 0} \chi/(2 - \chi)$. • $0 < \chi \leq \frac{4[(1+\gamma^2/4)-\sqrt{1+\gamma^4/16}]}{\gamma^2}$, and in particular $\chi < 1 + 7\gamma^2/8$, implying that for γ small, $\chi/(2 - \chi) < 1 + 7\gamma^2/4$

Compare to Watabiki's conjecture $\chi/(2-\chi) = 1 + \gamma^2$ and the Andres-Kajino upper bound $< 1 + 2\gamma^2$.

The upper bound follows from a result of Duplantier-Sheffield (KPZ relations).

Recall the GMC

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx$$

with V the GFF in 2D.

Can define the Liouville graph distance $D_{\gamma,\delta}(u, v)$ as the minimal number of balls of γ -Liouville mass at most δ needed to create a path connecting u, v.

Theorem (Ding, Zhang, Z. '18)

Fix u, v. • $\log D_{\gamma,\delta}(u, v)/|\log \delta| \rightarrow_{\delta \to 0} \chi$. • $\log |\log p_t^{\gamma}(u, v)|/|\log t| \rightarrow_{t \to 0} \chi/(2 - \chi)$. • $0 < \chi \leq \frac{4[(1+\gamma^2/4)-\sqrt{1+\gamma^4/16}]}{\gamma^2}$, and in particular $\chi < 1 + 7\gamma^2/8$, implying that for γ small, $\chi/(2 - \chi) < 1 + 7\gamma^2/4$

Compare to Watabiki's conjecture $\chi/(2-\chi) = 1 + \gamma^2$ and the Andres-Kajino upper bound $< 1 + 2\gamma^2$.

The upper bound follows from a result of Duplantier-Sheffield (KPZ relations).

Recall the GMC

$$\mu_{V} = e^{\gamma V(x) dx - \frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} dx$$

with V the GFF in 2D.

Can define the Liouville graph distance $D_{\gamma,\delta}(u, v)$ as the minimal number of balls of γ -Liouville mass at most δ needed to create a path connecting u, v.

Theorem (Ding, Zhang, Z. '18)

Fix u, v. • $\log D_{\gamma,\delta}(u, v)/|\log \delta| \rightarrow_{\delta \to 0} \chi$. • $\log |\log p_t^{\gamma}(u, v)|/|\log t| \rightarrow_{t \to 0} \chi/(2 - \chi)$. • $0 < \chi \leq \frac{4[(1+\gamma^2/4)-\sqrt{1+\gamma^4/16}]}{\gamma^2}$, and in particular $\chi < 1 + 7\gamma^2/8$, implying that for γ small, $\chi/(2 - \chi) < 1 + 7\gamma^2/4$

Compare to Watabiki's conjecture $\chi/(2-\chi) = 1 + \gamma^2$ and the Andres-Kajino upper bound $< 1 + 2\gamma^2$.

The upper bound follows from a result of Duplantier-Sheffield (KPZ relations).

• Upper bound (both in MRVZ and AK) is based on *uniform* bound on exit times from balls, i.e. on $F(\tau_{B(x,r)})$. As such, can't hope it is tight.

$$\int_0^\infty \psi(t) p_t^{\gamma}(x, y) dt = \int_0^\infty p_t^0(x, y) E_B^{x \stackrel{l}{\to} y}(\psi(F(t))) dt.$$

Gives handle on resolvent

$$r_{\lambda}(x,y) = \int_0^\infty E_B^{x \stackrel{t}{\to} y}(e^{-\lambda F(t)}) p_t(x,y) dt,$$

and need $\lambda \to \infty$ asymptotics of resolvent (+some Harnack inequalities to get to pointwise bounds).

0	fer	Zei	ito	un	
0	ier	ze	πο	un	

< ロ > < 同 > < 回 > < 回 > < 回 > <

Upper bound (both in MRVZ and AK) is based on *uniform* bound on exit times from balls, i.e. on *F*(τ_{B(x,r)}). As such, can't hope it is tight.
Off diagonal lower bound (MRVZ): use *bridge* formula

$$\int_0^\infty \psi(t) p_t^{\gamma}(x, y) dt = \int_0^\infty p_t^0(x, y) E_B^{x \stackrel{t}{\to} y}(\psi(F(t))) dt.$$

Gives handle on resolvent

$$r_{\lambda}(x,y) = \int_0^\infty E_B^{x \stackrel{t}{\to} y}(e^{-\lambda F(t)}) p_t(x,y) dt,$$

and need $\lambda \to \infty$ asymptotics of resolvent (+some Harnack inequalities to get to pointwise bounds).

0	fer	Zei	tou	ini

< ロ > < 同 > < 回 > < 回 > .

Upper bound (both in MRVZ and AK) is based on *uniform* bound on exit times from balls, i.e. on *F*(τ_{B(x,r)}). As such, can't hope it is tight.
Off diagonal lower bound (MRVZ): use *bridge* formula

$$\int_0^\infty \psi(t) p_t^{\gamma}(x, y) dt = \int_0^\infty p_t^0(x, y) E_B^{x \stackrel{t}{\to} y}(\psi(F(t))) dt.$$

Gives handle on resolvent

$$r_{\lambda}(x,y) = \int_0^\infty E_B^{x \stackrel{t}{\to} y}(e^{-\lambda F(t)}) p_t(x,y) dt,$$

and need $\lambda \to \infty$ asymptotics of resolvent (+some Harnack inequalities to get to pointwise bounds).

A D > A D > A D >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Upper bound (both in MRVZ and AK) is based on *uniform* bound on exit times from balls, i.e. on *F*(τ_{B(x,r)}). As such, can't hope it is tight.
Off diagonal lower bound (MRVZ): use *bridge* formula

$$\int_0^\infty \psi(t) p_t^{\gamma}(x, y) dt = \int_0^\infty p_t^0(x, y) E_B^{x \stackrel{t}{\to} y}(\psi(F(t))) dt.$$

Gives handle on resolvent

$$r_{\lambda}(x,y) = \int_0^\infty E_B^{x \stackrel{t}{\to} y}(e^{-\lambda F(t)}) p_t(x,y) dt,$$

and need $\lambda \to \infty$ asymptotics of resolvent (+some Harnack inequalities to get to pointwise bounds).

A D > A D > A D >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Key estimate:

$$\int_{w\in B_{t/2}(x)} \inf_{z\in B_{t/2}(y)} E_B^{w\overset{t}{\to} z}(e^{-\lambda F(t)}) \geq e^{-c(\frac{1}{t}+\lambda t^{1+\gamma^2/4-\eta})}.$$

Strategy: force BM to stay in tube of width *t* connecting *w* to *z*. • Probability of this event is $\sim e^{-c/t}$.

• Fix $\delta < \sqrt{2}$. Call a box $S_k \delta$ -thick if $\mu_V(S_k) \sim t^{2+\gamma^2/2-\gamma\delta}$. Then

δ -thick boxes ~ $t^{\delta^2/2-1}$.

• Contribution of δ -thick boxes to F(t) is roughly $T_{\delta} \cdot t^{\gamma^2/2-\delta\gamma}$, where T_{δ} is crossing time. • now accelerate: force BM to have velocity v_{δ} (instead of 1/t) in δ -thick boxes. Cost is $e^{-v_{\delta}t^{\delta^2/2}}$. • optimize: $v_{\delta} = t^{-(1+\delta^2/2)}$, $\delta = \gamma/2$, get main estimate.

< 口 > < 同 >

Key estimate:

$$\int_{w\in B_{t/2}(x)} \inf_{z\in B_{t/2}(y)} E_B^{w \xrightarrow{t} z}(e^{-\lambda F(t)}) \ge e^{-c(\frac{1}{t}+\lambda t^{1+\gamma^2/4-\eta})}$$

Strategy: force BM to stay in tube of width *t* connecting *w* to *z*.

10-121-2-22-20-1-1-1-20

Probability of this event is ~ e^{-c/t}.
Fix δ < √2. Call a box S_k δ-thick if μ_V(S_k) ~ t^{2+γ²/2-γδ}. Then #δ-thick boxes ~ t^{δ²/2-1}.

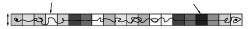
Contribution of δ-thick boxes to *F*(*t*) is roughly *T_δ* · *t*^{γ²/2−δγ}, where *T_δ* is crossing time.
 now accelerate: force BM to have velocity *v_δ* (instead of 1/*t*) in δ-thick boxes. Cost is *e*<sup>-*v_δt^{δ²/2}*.
 optimize: *v_δ* = *t*^{-(1+δ²/2)}, δ = γ/2, get main estimate, is the state of a state of the state o</sup>

Ofer Zeitouni

Key estimate:

$$\int_{w\in B_{t/2}(x)} \inf_{z\in B_{t/2}(y)} E_B^{w \xrightarrow{t} z}(e^{-\lambda F(t)}) \ge e^{-c(\frac{1}{t}+\lambda t^{1+\gamma^2/4-\eta})}$$

Strategy: force BM to stay in tube of width *t* connecting *w* to *z*.



- Probability of this event is $\sim e^{-c/t}$.
- Fix $\delta < \sqrt{2}$. Call a box $S_k \delta$ -thick if $\mu_V(S_k) \sim t^{2+\gamma^2/2-\gamma\delta}$. Then

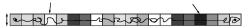
 $\#\delta$ -thick boxes $\sim t^{\delta^2/2-1}$.

• Contribution of δ -thick boxes to F(t) is roughly $T_{\delta} \cdot t^{\gamma^2/2-\delta\gamma}$, where T_{δ} is crossing time. • now accelerate: force BM to have velocity v_{δ} (instead of 1/t) in δ -thick boxes. Cost is $e^{-v_{\delta}t^{\delta^2/2}}$. • optimize: $v_{\delta} = t^{-(1+\delta^2/2)}$, $\delta = \gamma/2$, get main estimate, $t = t^{-(1+\delta^2/2)}$, $\delta = \gamma/2$, get main estimate.

Key estimate:

$$\int_{w\in B_{t/2}(x)} \inf_{z\in B_{t/2}(y)} E_B^{w \xrightarrow{t} z}(e^{-\lambda F(t)}) \ge e^{-c(\frac{1}{t}+\lambda t^{1+\gamma^2/4-\eta})}$$

Strategy: force BM to stay in tube of width t connecting w to z.



- Probability of this event is $\sim e^{-c/t}$.
- Fix $\delta < \sqrt{2}$. Call a box $S_k \delta$ -thick if $\mu_V(S_k) \sim t^{2+\gamma^2/2-\gamma\delta}$. Then

 $\#\delta$ -thick boxes $\sim t^{\delta^2/2-1}$.

• Contribution of δ -thick boxes to F(t) is roughly $T_{\delta} \cdot t^{\gamma^2/2-\delta\gamma}$, where T_{δ} is crossing time.

• now accelerate: force BM to have velocity v_{δ} (instead of 1/t) in

 δ -thick boxes. Cost is $e^{-v_{\delta}t}$

√/2 det main eştimatis < ≥ >

Key estimate:

$$\int_{w\in B_{t/2}(x)} \inf_{z\in B_{t/2}(y)} E_B^{w \xrightarrow{t} z}(e^{-\lambda F(t)}) \ge e^{-c(\frac{1}{t}+\lambda t^{1+\gamma^2/4-\eta})}$$

Strategy: force BM to stay in tube of width t connecting w to z.



- Probability of this event is $\sim e^{-c/t}$.
- Fix $\delta < \sqrt{2}$. Call a box $S_k \delta$ -thick if $\mu_V(S_k) \sim t^{2+\gamma^2/2-\gamma\delta}$. Then

 $\#\delta$ -thick boxes $\sim t^{\delta^2/2-1}$.

• Contribution of δ -thick boxes to F(t) is roughly $T_{\delta} \cdot t^{\gamma^2/2 - \delta\gamma}$, where T_{δ} is crossing time.

• now accelerate: force BM to have velocity v_{δ} (instead of 1/t) in

2 net main estil (a)

Key estimate:

$$\int_{w\in B_{t/2}(x)} \inf_{z\in B_{t/2}(y)} E_B^{w \xrightarrow{t} z}(e^{-\lambda F(t)}) \ge e^{-c(\frac{1}{t}+\lambda t^{1+\gamma^2/4-\eta})}$$

Strategy: force BM to stay in tube of width t connecting w to z.



- Probability of this event is $\sim e^{-c/t}$.
- Fix $\delta < \sqrt{2}$. Call a box $S_k \delta$ -thick if $\mu_V(S_k) \sim t^{2+\gamma^2/2-\gamma\delta}$. Then

$$\#\delta$$
-thick boxes $\sim t^{\delta^2/2-1}$.

- Contribution of δ -thick boxes to F(t) is roughly $T_{\delta} \cdot t^{\gamma^2/2 \delta\gamma}$, where T_{δ} is crossing time.
- now accelerate: force BM to have velocity v_{δ} (instead of 1/t) in

 δ -thick boxes. Cost is $e^{-v_{\delta}t^{\delta^2/2}}$

Key estimate:

$$\int_{w\in B_{t/2}(x)} \inf_{z\in B_{t/2}(y)} E_B^{w\overset{t}{\to} z}(e^{-\lambda F(t)}) \ge e^{-c(\frac{1}{t}+\lambda t^{1+\gamma^2/4-\eta})}$$

Strategy: force BM to stay in tube of width t connecting w to z.

when the the set

- Probability of this event is $\sim e^{-c/t}$.
- Fix $\delta < \sqrt{2}$. Call a box $S_k \delta$ -thick if $\mu_V(S_k) \sim t^{2+\gamma^2/2-\gamma\delta}$. Then

$$\#\delta$$
-thick boxes $\sim t^{\delta^2/2-1}$.

- Contribution of δ -thick boxes to F(t) is roughly $T_{\delta} \cdot t^{\gamma^2/2 \delta\gamma}$, where T_{δ} is crossing time.
- now accelerate: force BM to have velocity v_{δ} (instead of 1/t) in
- δ -thick boxes. Cost is $e^{-v_{\delta}t^{\delta^2/2}}$
- optimize: $v_{\delta} = t^{-(1+\delta^2/2)}$, $\delta = \gamma/2$, get main estimate.

Improvements

Improving on LB requires (at least) to optimize over paths (instead of straight line). This is a hard percolation problem.

Can somewhat simplify percolation problem by modifying the Gaussian field. Introduce the *k-coarse MBRW*

$$G(x, y) = k \log 2 \sum_{j=0}^{\infty} A(x, y, 2^{-kj})$$

where

$$A(x, y, R) = \frac{|B(x, R) \cap B(y, R)|}{|B(x, R)|}$$

(For k = 1, it is continuous version of *modified branching random walk* introduced with Bramson to study tightness of max of discrete GFF.)

$|G(x,y) - \log(1/d_{\mathbb{T}^2}(x,y))| \leq g_k(x,y)$

and g_k is bounded by 6k and continuous off diagonal

Ofer Zeitouni

Improvements

Improving on LB requires (at least) to optimize over paths (instead of straight line). This is a hard percolation problem.

Can somewhat simplify percolation problem by modifying the Gaussian field. Introduce the *k*-coarse MBRW

$$G(x,y) = k \log 2 \sum_{j=0}^{\infty} A(x,y,2^{-kj})$$

where

$$A(x, y, R) = \frac{|B(x, R) \cap B(y, R)|}{|B(x, R)|}$$

(For k = 1, it is continuous version of *modified branching random walk* introduced with Bramson to study tightness of max of discrete GFF.)

 $|G(x,y) - \log(1/d_{\mathbb{T}^2}(x,y))| \leq g_k(x,y)$

and g_k is bounded by 6k and continuous off diagonal a_1, a_2, a_3, a_4

Improvements

Improving on LB requires (at least) to optimize over paths (instead of straight line). This is a hard percolation problem.

Can somewhat simplify percolation problem by modifying the Gaussian field. Introduce the *k*-coarse MBRW

$$G(x,y) = k \log 2 \sum_{j=0}^{\infty} A(x,y,2^{-kj})$$

where

$$A(x, y, R) = \frac{|B(x, R) \cap B(y, R)|}{|B(x, R)|}$$

(For k = 1, it is continuous version of *modified branching random walk* introduced with Bramson to study tightness of max of discrete GFF.)

$$|G(x,y) - \log(1/d_{\mathbb{T}^2}(x,y))| \leq g_k(x,y)$$

and g_k is bounded by 6k and continuous off diagonal.

6	٦f	or	70	ito	uni
		EI.	20	πo	um

$$G(x,y) = k \log 2 \sum_{j=0}^{\infty} A(x,y,2^{-kj})$$

Can write the field as $V(x) = \sum_{j=0}^{\infty} h_j(x)$, with h_j fields independent. Given *t*, define *r* as $t \sim 2^{-kr(1+\gamma^2/2)}$, $s = 2^{-kr}$, and define the coarse and fine fields

$$\varphi_r = \sum_{j=0}^{r-1} h_j, \quad \psi_r = \sum_{j=r}^{\infty} h_j.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$G(x,y) = k \log 2 \sum_{j=0}^{\infty} A(x,y,2^{-kj})$$

Can write the field as $V(x) = \sum_{j=0}^{\infty} h_j(x)$, with h_j fields independent.

Given t, define r as $t \sim 2^{-\kappa r(1+\gamma^2/2)}$, $s = 2^{-\kappa r}$, and define the coarse and fine fields

 $\varphi_r = \sum_{j=0}^{r-1} h_j, \quad \psi_r = \sum_{j=r}^{\infty} h_j.$

< ロ > < 同 > < 回 > < 回 > .

$$G(x,y) = k \log 2 \sum_{j=0}^{\infty} A(x,y,2^{-kj})$$

Can write the field as $V(x) = \sum_{j=0}^{\infty} h_j(x)$, with h_j fields independent. Given *t*, define *r* as $t \sim 2^{-kr(1+\gamma^2/2)}$, $s = 2^{-kr}$, and define the coarse and fine fields

$$\varphi_r = \sum_{j=0}^{r-1} h_j, \quad \psi_r = \sum_{j=r}^{\infty} h_j.$$

Ofer Zeitouni

Lemma (Ding-Zhang-Z. '17, based on Ding-Zhang '16)

For k large enough, there exists a path of neighboring $s = 2^{-kr}$ -boxes connecting x and y, of total number $2^{kr(1+\delta)}$, so that: a) Coarse field φ_r for each box is small ($\leq \delta kr \log 2$). b) LBM associated with fine field Ψ crosses each box within time $s^{2-\delta}$, with probability at least s^{δ} .

Forcing LBM through sequence, can check that total time is $\sim t$ while probability is at least $e^{-1/(t^{1+\gamma^2/2+\epsilon})}$. Upper bound uses a complementary percolation estimate: can't find a better path.

Lemma (Ding-Zhang-Z. '17, based on Ding-Zhang '16)

For k large enough, there exists a path of neighboring $s = 2^{-kr}$ -boxes connecting x and y, of total number $2^{kr(1+\delta)}$, so that: a) Coarse field φ_r for each box is small ($\leq \delta kr \log 2$). b) LBM associated with fine field Ψ crosses each box within time $s^{2-\delta}$, with probability at least s^{δ} .

Forcing LBM through sequence, can check that total time is $\sim t$ while probability is at least $e^{-1/(t^{1+\gamma^2/2+\epsilon})}$.

Upper bound uses a complementary percolation estimate: can't find a better path.

< ロ > < 同 > < 回 > < 回 > .

Lemma (Ding-Zhang-Z. '17, based on Ding-Zhang '16)

For k large enough, there exists a path of neighboring $s = 2^{-kr}$ -boxes connecting x and y, of total number $2^{kr(1+\delta)}$, so that: a) Coarse field φ_r for each box is small ($\leq \delta kr \log 2$). b) LBM associated with fine field Ψ crosses each box within time $s^{2-\delta}$, with probability at least s^{δ} .

Forcing LBM through sequence, can check that total time is $\sim t$ while probability is at least $e^{-1/(t^{1+\gamma^2/2+\epsilon})}$.

Upper bound uses a complementary percolation estimate: can't find a better path.

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.
- Truncate GFF at appropriate scales by controlling variability of field.
- Move to diadic grid.
- Apply sub-additivity (requires a percolation argument due to variability of end-points)
- Relate LBM to graph distance by controlling heat kernel on chose paths.

< 🗇 > < 🖻 >

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.
- Truncate GFF at appropriate scales by controlling variability of field.
- Move to diadic grid.
- Apply sub-additivity (requires a percolation argument due to variability of end-points)
- Relate LBM to graph distance by controlling heat kernel on chose paths.

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.
- Truncate GFF at appropriate scales by controlling variability of field.
- Move to diadic grid.
- Apply sub-additivity (requires a percolation argument due to variability of end-points)
- Relate LBM to graph distance by controlling heat kernel on chose paths.

< D > < P > < P > < P >

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.
- Truncate GFF at appropriate scales by controlling variability of field.
- Move to diadic grid.
- Apply sub-additivity (requires a percolation argument due to variability of end-points)
- Relate LBM to graph distance by controlling heat kernel on chose paths.

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.
- Truncate GFF at appropriate scales by controlling variability of field.
- Move to diadic grid.
- Apply sub-additivity (requires a percolation argument due to variability of end-points)
- Relate LBM to graph distance by controlling heat kernel on chose paths.

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.
- Truncate GFF at appropriate scales by controlling variability of field.
- Move to diadic grid.
- Apply sub-additivity (requires a percolation argument due to variability of end-points)
- Relate LBM to graph distance by controlling heat kernel on chose paths.

< D > < B > < E > < E</p>

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.
- Truncate GFF at appropriate scales by controlling variability of field.
- Move to diadic grid.
- Apply sub-additivity (requires a percolation argument due to variability of end-points)
- Relate LBM to graph distance by controlling heat kernel on chose paths.

< □ > < □ > < □ > < □ >