# Heat kernel and graph distance for Liouville Brownian motion 

Ofer Zeitouni

May, 2018

## Short time heat kernels estimates for diffusions

- Brownian motion $W_{t}$ in $\mathbb{R}^{d}$, generator $\Delta / 2$.
$p_{t}(x, y)=\frac{1}{\sqrt{2 \pi t}} e^{-|x-y|^{2} / 2 t}$.


## Short time heat kernels estimates for diffusions

- Brownian motion $W_{t}$ in $\mathbb{R}^{d}$, generator $\Delta / 2$.
$p_{t}(x, y)=\frac{1}{\sqrt{2 \pi t} d} e^{-|x-y|^{2} / 2 t}$. Thus...

$$
t \log p_{t}(x, y) \rightarrow_{t \rightarrow 0}-\frac{|x-y|^{2}}{2}
$$

## Short time heat kernels estimates for diffusions

- Brownian motion $W_{t}$ in $\mathbb{R}^{d}$, generator $\Delta / 2$.
$p_{t}(x, y)=\frac{1}{\sqrt{2 \pi t}} e^{-|x-y|^{2} / 2 t}$.
Thus...

$$
t \log p_{t}(x, y) \rightarrow_{t \rightarrow 0}-\frac{|x-y|^{2}}{2}
$$

- For general diffusions:


## Theorem (Varadhan '67)

With uniformly eliptic generator $\frac{1}{2} \sum_{i, j} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$, heat kernel satisfies

$$
t \log p_{t}(x, y) \rightarrow_{t \rightarrow 0}-\frac{d(x, y)^{2}}{2}
$$

where $d$ is geodesic distance determined by a.

## Short time heat kernels estimates for diffusions

- Brownian motion $W_{t}$ in $\mathbb{R}^{d}$, generator $\Delta / 2$.
$p_{t}(x, y)=\frac{1}{\sqrt{2 \pi t}{ }^{d}} e^{-|x-y|^{2} / 2 t}$.
Thus...

$$
t \log p_{t}(x, y) \rightarrow_{t \rightarrow 0}-\frac{|x-y|^{2}}{2}
$$

- For general diffusions:


## Theorem (Varadhan '67)

With uniformly eliptic generator $\frac{1}{2} \sum_{i, j} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}$, heat kernel satisfies

$$
t \log p_{t}(x, y) \rightarrow_{t \rightarrow 0}-\frac{d(x, y)^{2}}{2}
$$

where $d$ is geodesic distance determined by a.
Many generalizations (hypoelliptic, on diagonal), using large deviation theory and refinements: Azencott, Stroock, Kusuoka, Ben Arous, Leandre,

## Time change

- A particularly simple case: $a(x)=\sigma^{2}(x)$ scalar, strictly positive.

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}
$$

## Time change

- A particularly simple case: $a(x)=\sigma^{2}(x)$ scalar, strictly positive.

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}
$$

. From time change, $X_{t}=B_{F^{-1}(t)}$, where

$$
F(t)=\int_{0}^{t} \frac{1}{a\left(B_{S}\right)} d s \quad \text { is strictly increasing }(P C A F)
$$

## Time change

- A particularly simple case: $a(x)=\sigma^{2}(x)$ scalar, strictly positive.

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}
$$

. From time change, $X_{t}=B_{F^{-1}(t)}$, where

$$
F(t)=\int_{0}^{t} \frac{1}{a\left(B_{s}\right)} d s \quad \text { is strictly increasing }(P C A F)
$$

Still,

$$
t \log p_{t}(x, y) \rightarrow_{t \rightarrow 0}-\frac{d(x, y)^{2}}{2}
$$

## Time change

- A particularly simple case: $a(x)=\sigma^{2}(x)$ scalar, strictly positive.

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}
$$

. From time change, $X_{t}=B_{F^{-1}(t)}$, where

$$
F(t)=\int_{0}^{t} \frac{1}{a\left(B_{s}\right)} d s \text { is strictly increasing }(P C A F)
$$

Still,

$$
t \log p_{t}(x, y) \rightarrow_{t \rightarrow 0}-\frac{d(x, y)^{2}}{2}
$$

- Take $a(x)=e^{-V(x)+\frac{1}{2} E V^{2}(x)}$ where $V$ is a centered Gaussian field, then

$$
F(t)=\int_{0}^{t} e^{V\left(B_{s}\right)-\frac{1}{2} \mathbb{E} V^{2}\left(B_{s}\right)} d s .
$$

## Time change

- A particularly simple case: $a(x)=\sigma^{2}(x)$ scalar, strictly positive.

$$
d X_{t}=\sigma\left(X_{t}\right) d B_{t}
$$

. From time change, $X_{t}=B_{F^{-1}(t)}$, where

$$
F(t)=\int_{0}^{t} \frac{1}{a\left(B_{s}\right)} d s \text { is strictly increasing }(P C A F)
$$

Still,

$$
t \log p_{t}(x, y) \rightarrow_{t \rightarrow 0}-\frac{d(x, y)^{2}}{2}
$$

- Take $a(x)=e^{-V(x)+\frac{1}{2} E V^{2}(x)}$ where $V$ is a centered Gaussian field, then

$$
F(t)=\int_{0}^{t} e^{V\left(B_{s}\right)-\frac{1}{2} \mathbb{E} V^{2}\left(B_{s}\right)} d s
$$

Equilibrium measure $\mu_{V}(d x)=\frac{1}{a(x)} d x=e^{V(x)-\frac{1}{2} \mathbb{E} V^{2}(x)} d x$

## Log correlated fields

- Focus on 2D torus.

$$
\mu_{V}(d x)=e^{V(x)-\frac{1}{2} \mathbb{E} V^{2}(x)} d x
$$

## Log correlated fields

- Focus on 2D torus.

$$
\mu_{V}(d x)=e^{V(x)-\frac{1}{2} \mathbb{E} V^{2}(x)} d x
$$

Interest in cases where $V(\cdot)$ is not smooth, not even pointwise defined:

$$
\mathbb{E} V(x) V(y)=\log \frac{1}{|x-y|}+g(x, y)
$$

where $g$ is bounded, continuous off the diagonal.

## Log correlated fields

- Focus on 2D torus.

$$
\mu_{V}(d x)=e^{V(x)-\frac{1}{2} \mathbb{E} V^{2}(x)} d x
$$

Interest in cases where $V(\cdot)$ is not smooth, not even pointwise defined:

$$
\mathbb{E} V(x) V(y)=\log \frac{1}{|x-y|}+g(x, y)
$$

where $g$ is bounded, continuous off the diagonal.
Defined as distribution. Particular case - the Gaussian free field.
Formal limit of $V_{\epsilon}(x)=\int \phi_{\epsilon}(x-y) V(y) d y$.

## Log correlated fields

- Focus on 2D torus.

$$
\mu_{V}(d x)=e^{V(x)-\frac{1}{2} \mathbb{E} V^{2}(x)} d x
$$

Interest in cases where $V(\cdot)$ is not smooth, not even pointwise defined:

$$
\mathbb{E} V(x) V(y)=\log \frac{1}{|x-y|}+g(x, y)
$$

where $g$ is bounded, continuous off the diagonal.
Defined as distribution. Particular case - the Gaussian free field.
Formal limit of $V_{\epsilon}(x)=\int \phi_{\epsilon}(x-y) V(y) d y$.

- The measures $\mu_{\epsilon}^{\gamma}(d x)=e^{\gamma V_{\epsilon}(x)-\frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} d x$ converge, if $\gamma<2$, to a limit formally given by

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x
$$

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, ...)

## Log correlated fields

- Focus on 2D torus.

$$
\mu_{V}(d x)=e^{V(x)-\frac{1}{2} \mathbb{E} V^{2}(x)} d x
$$

Interest in cases where $V(\cdot)$ is not smooth, not even pointwise defined:

$$
\mathbb{E} V(x) V(y)=\log \frac{1}{|x-y|}+g(x, y)
$$

where $g$ is bounded, continuous off the diagonal.
Defined as distribution. Particular case - the Gaussian free field.
Formal limit of $V_{\epsilon}(x)=\int \phi_{\epsilon}(x-y) V(y) d y$.

- The measures $\mu_{\epsilon}^{\gamma}(d x)=e^{\gamma V_{\epsilon}(x)-\frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} d x$ converge, if $\gamma<2$, to a limit formally given by

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x
$$

(Kahane, Duplantier-Sheffield, Rhodes-Vargas, Shamov, N. Berestycki, ...) Gaussian Multiplicative chaos

## GMC-properties

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x, I=\mu_{V}\left(\mathbb{T}^{2}\right)
$$

and approximations

$$
\mu_{V}^{\epsilon}=e^{\gamma V_{\epsilon}(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} d x, I_{\epsilon}=\mu_{V}^{\epsilon}\left(\mathbb{T}^{2}\right)
$$

## GMC-properties

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x, I=\mu_{V}\left(\mathbb{T}^{2}\right)
$$

and approximations

$$
\mu_{V}^{\epsilon}=e^{\gamma V_{\epsilon}(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} d x, I_{\epsilon}=\mu_{V}^{\epsilon}\left(\mathbb{T}^{2}\right)
$$

- For $\gamma<2, I_{\epsilon}$ is uniformly integrable.


## GMC-properties

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x, I=\mu_{V}\left(\mathbb{T}^{2}\right)
$$

and approximations

$$
\mu_{V}^{\epsilon}=e^{\gamma V_{\epsilon}(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} d x, I_{\epsilon}=\mu_{V}^{\epsilon}\left(\mathbb{T}^{2}\right)
$$

- For $\gamma<2, I_{\epsilon}$ is uniformly integrable.
- $\mu_{V}$ is supported on $\gamma$-thick points, i.e. on $\left\{x: V_{\epsilon}(x) / \log (1 / \epsilon) \rightarrow_{\epsilon \rightarrow 0} \gamma\right\}$.


## GMC-properties

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x, I=\mu_{V}\left(\mathbb{T}^{2}\right)
$$

and approximations

$$
\mu_{V}^{\epsilon}=e^{\gamma V_{\epsilon}(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} d x, I_{\epsilon}=\mu_{V}^{\epsilon}\left(\mathbb{T}^{2}\right)
$$

- For $\gamma<2, I_{\epsilon}$ is uniformly integrable.
- $\mu_{V}$ is supported on $\gamma$-thick points, i.e. on $\left\{x: V_{\epsilon}(x) / \log (1 / \epsilon) \rightarrow_{\epsilon \rightarrow 0} \gamma\right\}$.
- $\mu_{V}$ does not depend on particular mollifiers.


## GMC-properties

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x, I=\mu_{V}\left(\mathbb{T}^{2}\right)
$$

and approximations

$$
\mu_{V}^{\epsilon}=e^{\gamma V_{\epsilon}(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} d x, I_{\epsilon}=\mu_{V}^{\epsilon}\left(\mathbb{T}^{2}\right)
$$

- For $\gamma<2, I_{\epsilon}$ is uniformly integrable.
- $\mu_{V}$ is supported on $\gamma$-thick points, i.e. on $\left\{x: V_{\epsilon}(x) / \log (1 / \epsilon) \rightarrow_{\epsilon \rightarrow 0} \gamma\right\}$.
- $\mu_{V}$ does not depend on particular mollifiers.
- For $\gamma<\sqrt{2}, I_{\epsilon}$ is in $L^{2}$, analysis simpler.


## GMC-properties

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x, I=\mu_{V}\left(\mathbb{T}^{2}\right)
$$

and approximations

$$
\mu_{V}^{\epsilon}=e^{\gamma V_{\epsilon}(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} d x, I_{\epsilon}=\mu_{V}^{\epsilon}\left(\mathbb{T}^{2}\right)
$$

- For $\gamma<2, I_{\epsilon}$ is uniformly integrable.
- $\mu_{V}$ is supported on $\gamma$-thick points, i.e. on $\left\{x: V_{\epsilon}(x) / \log (1 / \epsilon) \rightarrow_{\epsilon \rightarrow 0} \gamma\right\}$.
- $\mu_{V}$ does not depend on particular mollifiers.
- For $\gamma<\sqrt{2}, I_{\epsilon}$ is in $L^{2}$, analysis simpler.
- Many universal (independent of $g$ ) features: dimensions of thick points, $\epsilon$-maximizers, law of maximizers, ...


## GMC-properties

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x, I=\mu_{V}\left(\mathbb{T}^{2}\right)
$$

and approximations

$$
\mu_{V}^{\epsilon}=e^{\gamma V_{\epsilon}(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V_{\epsilon}^{2}(x)} d x, I_{\epsilon}=\mu_{V}^{\epsilon}\left(\mathbb{T}^{2}\right)
$$

- For $\gamma<2, I_{\epsilon}$ is uniformly integrable.
- $\mu_{V}$ is supported on $\gamma$-thick points, i.e. on $\left\{x: V_{\epsilon}(x) / \log (1 / \epsilon) \rightarrow_{\epsilon \rightarrow 0} \gamma\right\}$.
- $\mu_{V}$ does not depend on particular mollifiers.
- For $\gamma<\sqrt{2}, I_{\epsilon}$ is in $L^{2}$, analysis simpler.
- Many universal (independent of $g$ ) features: dimensions of thick points, $\epsilon$-maximizers, law of maximizers, ...


## Liouville BM

Given $\mu_{V}$, can inquire on "geometry" associated with $\mu_{V}$, taken as "Riemannian volume" (Sheffield, Miller).

## Liouville BM

Given $\mu_{V}$, can inquire on "geometry" associated with $\mu_{V}$, taken as "Riemannian volume" (Sheffield, Miller).
One possible approach: use Brownian motion.

## Liouville BM

Given $\mu_{V}$, can inquire on "geometry" associated with $\mu_{V}$, taken as "Riemannian volume" (Sheffield, Miller).
One possible approach: use Brownian motion.

$$
\begin{equation*}
F_{t}=\int_{0}^{t} e^{\gamma V\left(B_{s}\right)-\frac{1}{2} \gamma^{2} \mathbb{E} V^{2}\left(B_{s}\right)} d s, \quad X_{t}=B_{F_{t}^{-1}} \tag{1}
\end{equation*}
$$

## Liouville BM

Given $\mu_{V}$, can inquire on "geometry" associated with $\mu_{V}$, taken as "Riemannian volume" (Sheffield, Miller).
One possible approach: use Brownian motion.

$$
\begin{equation*}
F_{t}=\int_{0}^{t} e^{\gamma V\left(B_{s}\right)-\frac{1}{2} \gamma^{2} \mathbb{E} V^{2}\left(B_{s}\right)} d s, \quad X_{t}=B_{F_{t}^{-1}} \tag{1}
\end{equation*}
$$

Of course, not defined as written. But using approximations, one has:

## Liouville BM

Given $\mu_{V}$, can inquire on "geometry" associated with $\mu_{V}$, taken as "Riemannian volume" (Sheffield, Miller).
One possible approach: use Brownian motion.

$$
\begin{equation*}
F_{t}=\int_{0}^{t} e^{\gamma V\left(B_{s}\right)-\frac{1}{2} \gamma^{2} \mathbb{E} V^{2}\left(B_{s}\right)} d s, \quad X_{t}=B_{F_{t}^{-1}} \tag{1}
\end{equation*}
$$

Of course, not defined as written. But using approximations, one has:

## Theorem (Garban,Rhodes, Vargas '13; N. Berestycki '13)

There exists a diffusion process $X_{t}$ with continuous paths corresponding to (1).

The corresponding Dirichlet form is the usual one, but with domain $L^{2}(\mu v) \cap H_{l o c}^{1}, \operatorname{not} L^{2}(d x) \cap H_{l o c}^{1}$.

## Heat kernel and geometry

## Can we use LBM to study geometry?

## Heat kernel and geometry

Can we use LBM to study geometry?
A general paradigm (verified for BM on many fractals, etc.) is that heat kernel should behave, for short time, as

$$
p_{t}(x, y) \sim \frac{1}{t^{d_{H} / b}} e^{-\left(\frac{d(x, y)}{t^{1 / b}}\right)^{b /(b-1)}}
$$

$d_{H^{-}}$Hausdorff dimension, $2 d_{H} / b-$ spectral dimension.

## Heat kernel and geometry

Can we use LBM to study geometry?
A general paradigm (verified for BM on many fractals, etc.) is that heat kernel should behave, for short time, as

$$
p_{t}(x, y) \sim \frac{1}{t^{d_{H} / b}} e^{-\left(\frac{d(x, y)}{t^{1 / b}}\right)^{b /(b-1)}}
$$

$d_{H^{-}}$Hausdorff dimension, $2 d_{H} / b-$ spectral dimension.
For BM, $2 d_{H} / b=d, b=2$.

## Heat kernel and geometry

Can we use LBM to study geometry?
A general paradigm (verified for BM on many fractals, etc.) is that heat kernel should behave, for short time, as

$$
p_{t}(x, y) \sim \frac{1}{t^{d_{H} / b}} e^{-\left(\frac{d(x, y)}{t^{\prime / b}}\right)^{b /(b-1)}}
$$

$d_{H^{-}}$Hausdorff dimension, $2 d_{H} / b-$ spectral dimension.
For BM, $2 d_{H} / b=d, b=2$.
Theorem (Rhodes-Vargas '14)
$d_{H} / b=1$ in the sense that $\log p_{t}(x, x) / \log t \rightarrow_{t \rightarrow 0}-1$.
(Logarithmic corrections, improved by Andres-Kajino '14).

## Heat kernel and geometry

Can we use LBM to study geometry?
A general paradigm (verified for BM on many fractals, etc.) is that heat kernel should behave, for short time, as

$$
p_{t}(x, y) \sim \frac{1}{t^{d_{H} / b}} e^{-\left(\frac{d(x, y)}{t^{1 / b}}\right)^{b /(b-1)}}
$$

$d_{H^{-}}$Hausdorff dimension, $2 d_{H} / b-$ spectral dimension.
For BM, $2 d_{H} / b=d, b=2$.
Theorem (Rhodes-Vargas '14)
$d_{H} / b=1$ in the sense that $\log p_{t}(x, x) / \log t \rightarrow_{t \rightarrow 0}-1$.
(Logarithmic corrections, improved by Andres-Kajino '14).
To have any hope of identifying distances, we thus need to find $d_{H}$ !

## Some speculations

Watabiki ('93):

$$
d_{H}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}
$$

## Some speculations

Watabiki ('93):

$$
d_{H}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}
$$

- For $\gamma$ small, $d_{H}($ Watabiki $) \sim 2+\gamma^{2}$.


## Some speculations

Watabiki ('93):

$$
d_{H}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}
$$

- For $\gamma$ small, $d_{H}($ Watabiki $) \sim 2+\gamma^{2}$.
- Remarkable: for $\gamma=\sqrt{8 / 3}, d_{H}($ Watabiki $)=4$, consistent with convergence to Brownian map results of Miller-Sheffield.


## Some speculations

Watabiki ('93):

$$
d_{H}=1+\frac{\gamma^{2}}{4}+\sqrt{\left(1+\frac{\gamma^{2}}{4}\right)^{2}+\gamma^{2}}
$$

- For $\gamma$ small, $d_{H}$ (Watabiki) $\sim 2+\gamma^{2}$.
- Remarkable: for $\gamma=\sqrt{8 / 3}, d_{H}($ Watabiki $)=4$, consistent with convergence to Brownian map results of Miller-Sheffield.
- Maybe correct in general? (not so clear what correst statement is). For heat kernel, would translate to off-diagonal estimate

$$
\frac{\log \left|\log p_{t}(x, y)\right|}{\log t} \sim-\frac{1}{d_{H}-1}, \quad x \neq y
$$

## GFF results

Take covariance corresponding to GFF on torus:

$$
G(x, y)=\sum_{n \geq 1} \frac{1}{\lambda_{n}} e_{n}(x) e_{n}(y)
$$

where ( $\lambda_{n}, \boldsymbol{e}_{n}$ ) are eigenvalues and eigenfunctions of the (minus) standard Laplacian.

Lower bound: for all $\eta>0$ there exists $C_{V}=C_{V}(\eta)$ so that for $t<1$,

## GFF results

Take covariance corresponding to GFF on torus:

$$
G(x, y)=\sum_{n \geq 1} \frac{1}{\lambda_{n}} e_{n}(x) e_{n}(y)
$$

where ( $\lambda_{n}, \boldsymbol{e}_{n}$ ) are eigenvalues and eigenfunctions of the (minus) standard Laplacian.

## Theorem (Maillard,Rhodes, Vargas, Z. '14)

Upper bound: $\exists$ (explicit,deterministic) $\beta_{U B}$ so that

## GFF results

Take covariance corresponding to GFF on torus:

$$
G(x, y)=\sum_{n \geq 1} \frac{1}{\lambda_{n}} e_{n}(x) e_{n}(y)
$$

where ( $\lambda_{n}, e_{n}$ ) are eigenvalues and eigenfunctions of the (minus) standard Laplacian.

## Theorem (Maillard,Rhodes, Vargas, Z. '14)

Upper bound: $\exists$ (explicit,deterministic) $\beta_{U B}$ so that

$$
p_{t}(x, y) \leq \frac{C_{V}}{t^{1+\delta}} e^{-\left(\frac{c d_{\mathrm{T}} 2(x, y)}{\left.t^{1 / \beta}\right)^{1 / B}}\right)^{\beta U B /(\beta U B-1)}}
$$

Lower bound: for all $\eta>0$ there exists $C_{V}=C_{V}(\eta)$ so that for $t<1$,

$$
p_{t}(x, y) \geq C_{V} e^{-t^{1 /\left(1+\gamma^{2} / 4-\eta\right)}}
$$

$\beta_{U B} \sim 2+2 \gamma$. Improved by Andres-Kajino.
$\beta_{L B} \sim 2+\gamma^{2} / 4$. Compare with $\beta_{\text {Watabiki }} \sim 2+\gamma^{2}$.

## Some caution

Many results for GFF are universal, depend only on log-correlation $\mathbb{E} V(x) V(y)=-\log |x-y|+g(x, y), g$ bounded.

## Some caution

Many results for GFF are universal, depend only on log-correlation $\mathbb{E} V(x) V(y)=-\log |x-y|+g(x, y), g$ bounded.

## Theorem (Ding-Zhang-Z. '17)

For any $\epsilon>0$ there exists a log-correlated field on $\mathbb{T}^{2}$ so that, for all $t<T_{0}(x, y, \gamma, \epsilon, K)$,

$$
e^{-t^{-1 /\left(\beta_{0}-1-\epsilon\right)}} \leq p_{t}(x, y) \leq e^{-t^{-1 /\left(\beta_{0}-1+\epsilon\right)}}
$$

where $\beta_{0}=2+\gamma^{2} / 2$.

## Some caution

Many results for GFF are universal, depend only on log-correlation $\mathbb{E} V(x) V(y)=-\log |x-y|+g(x, y), g$ bounded.

## Theorem (Ding-Zhang-Z. '17)

For any $\epsilon>0$ there exists a log-correlated field on $\mathbb{T}^{2}$ so that, for all $t<T_{0}(x, y, \gamma, \epsilon, K)$,

$$
e^{-t^{-1 /\left(\beta_{0}-1-\epsilon\right)}} \leq p_{t}(x, y) \leq e^{-t^{-1 /\left(\beta_{0}-1+\epsilon\right)}}
$$

where $\beta_{0}=2+\gamma^{2} / 2$.
In particular, this is not compatible with the ansatz that Watabiki's formula is universal, since $\beta_{\text {Watabiki }} \sim 2+\gamma^{2}$.

## Some caution

Many results for GFF are universal, depend only on log-correlation $\mathbb{E} V(x) V(y)=-\log |x-y|+g(x, y), g$ bounded.

## Theorem (Ding-Zhang-Z. '17)

For any $\epsilon>0$ there exists a log-correlated field on $\mathbb{T}^{2}$ so that, for all $t<T_{0}(x, y, \gamma, \epsilon, K)$,

$$
e^{-t^{-1 /\left(\beta_{0}-1-\epsilon\right)}} \leq p_{t}(x, y) \leq e^{-t^{-1 /\left(\beta_{0}-1+\epsilon\right)}}
$$

where $\beta_{0}=2+\gamma^{2} / 2$.
In particular, this is not compatible with the ansatz that Watabiki's formula is universal, since $\beta_{\text {Watabiki }} \sim 2+\gamma^{2}$.
Even before: does the heat kernel exponent exist?

$$
\underset{t \rightarrow 0}{\limsup } \log \left|\log p_{t}^{\gamma}(x, y)\right| / \log t=\liminf _{t \rightarrow 0} \log \left|\log p_{t}^{\gamma}(x, y)\right| / \log t ? ?
$$

## Relation to geometry

Recall the GMC

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x
$$

with $V$ the GFF in 2D.

## Relation to geometry

Recall the GMC

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x
$$

with $V$ the GFF in 2D.
Can define the Liouville graph distance $D_{\gamma, \delta}(u, v)$ as the minimal number of balls of $\gamma$-Liouville mass at most $\delta$ needed to create a path connecting $u, v$.

## Relation to geometry

Recall the GMC

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x
$$

with $V$ the GFF in 2D.
Can define the Liouville graph distance $D_{\gamma, \delta}(u, v)$ as the minimal number of balls of $\gamma$-Liouville mass at most $\delta$ needed to create a path connecting $u, v$.

## Theorem (Ding,Zhang,Z. '18)

Fix $u, v$.

- $\log D_{\gamma, \delta}(u, v) /|\log \delta| \rightarrow_{\delta \rightarrow 0} \chi$.


## Relation to geometry

Recall the GMC

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x
$$

with $V$ the GFF in 2D.
Can define the Liouville graph distance $D_{\gamma, \delta}(u, v)$ as the minimal number of balls of $\gamma$-Liouville mass at most $\delta$ needed to create a path connecting $u, v$.

## Theorem (Ding,Zhang,Z. '18)

Fix $u, v$.

- $\log D_{\gamma, \delta}(u, v) /|\log \delta| \rightarrow_{\delta \rightarrow 0} \chi$.
- $\log \left|\log p_{t}^{\gamma}(u, v)\right| /|\log t| \rightarrow_{t \rightarrow 0} \chi /(2-\chi)$.


## Relation to geometry

Recall the GMC

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x
$$

with $V$ the GFF in 2D.
Can define the Liouville graph distance $D_{\gamma, \delta}(u, v)$ as the minimal number of balls of $\gamma$-Liouville mass at most $\delta$ needed to create a path connecting $u, v$.

## Theorem (Ding,Zhang,Z. '18)

Fix $u, v$.

- $\log D_{\gamma, \delta}(u, v) /|\log \delta| \rightarrow_{\delta \rightarrow 0} \chi$.
- $\log \left|\log p_{t}^{\gamma}(u, v)\right| /|\log t| \rightarrow_{t \rightarrow 0} \chi /(2-\chi)$.
- $0<\chi \leq \frac{4\left[\left(1+\gamma^{2} / 4\right)-\sqrt{\left.1+\gamma^{4} / 16\right]}\right.}{\gamma^{2}}$, and in particular $\chi<1+7 \gamma^{2} / 8$, implying that for $\gamma$ small, $\chi /(2-\chi)<1+7 \gamma^{2} / 4$


## Relation to geometry

Recall the GMC

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x
$$

with $V$ the GFF in 2D.
Can define the Liouville graph distance $D_{\gamma, \delta}(u, v)$ as the minimal number of balls of $\gamma$-Liouville mass at most $\delta$ needed to create a path connecting $u, v$.

## Theorem (Ding,Zhang,Z. '18)

Fix $u, v$.

- $\log D_{\gamma, \delta}(u, v) /|\log \delta| \rightarrow_{\delta \rightarrow 0} \chi$.
- $\log \left|\log p_{t}^{\gamma}(u, v)\right| /|\log t| \rightarrow_{t \rightarrow 0} \chi /(2-\chi)$.
- $0<\chi \leq \frac{4\left[\left(1+\gamma^{2} / 4\right)-\sqrt{\left.1+\gamma^{4} / 16\right]}\right.}{\gamma^{2}}$, and in particular $\chi<1+7 \gamma^{2} / 8$, implying that for $\gamma$ small, $\chi /(2-\chi)<1+7 \gamma^{2} / 4$

Compare to Watabiki's conjecture $\chi /(2-\chi)=1+\gamma^{2}$ and the Andres-Kajino upper bound $<1+2 \gamma^{2}$.

## Relation to geometry

Recall the GMC

$$
\mu_{V}=e^{\gamma V(x) d x-\frac{\gamma^{2}}{2} \mathbb{E} V^{2}(x)} d x
$$

with $V$ the GFF in 2D.
Can define the Liouville graph distance $D_{\gamma, \delta}(u, v)$ as the minimal number of balls of $\gamma$-Liouville mass at most $\delta$ needed to create a path connecting $u, v$.

## Theorem (Ding,Zhang,Z. '18)

Fix $u, v$.

- $\log D_{\gamma, \delta}(u, v) /|\log \delta| \rightarrow_{\delta \rightarrow 0} \chi$.
- $\log \left|\log p_{t}^{\gamma}(u, v)\right| /|\log t| \rightarrow_{t \rightarrow 0} \chi /(2-\chi)$.
- $0<\chi \leq \frac{4\left[\left(1+\gamma^{2} / 4\right)-\sqrt{\left.1+\gamma^{4} / 16\right]}\right.}{\gamma^{2}}$, and in particular $\chi<1+7 \gamma^{2} / 8$, implying that for $\gamma$ small, $\chi /(2-\chi)<1+7 \gamma^{2} / 4$

Compare to Watabiki's conjecture $\chi /(2-\chi)=1+\gamma^{2}$ and the Andres-Kajino upper bound $<1+2 \gamma^{2}$.
The upper bound follows from a result of Duplantier-Sheffield (KPZ relations).

## Selected proof ideas

- Upper bound (both in MRVZ and AK) is based on uniform bound on exit times from balls, i.e. on $F\left(\tau_{B(x, r)}\right)$. As such, can't hope it is tight.


## Selected proof ideas

- Upper bound (both in MRVZ and AK) is based on uniform bound on exit times from balls, i.e. on $F\left(\tau_{B(x, r)}\right)$. As such, can't hope it is tight. - Off diagonal lower bound (MRVZ): use bridge formula

$$
\int_{0}^{\infty} \psi(t) p_{t}^{\gamma}(x, y) d t=\int_{0}^{\infty} p_{t}^{0}(x, y) E_{B}^{x \xrightarrow{t} y}(\psi(F(t))) d t
$$

## Selected proof ideas

- Upper bound (both in MRVZ and AK) is based on uniform bound on exit times from balls, i.e. on $F\left(\tau_{B(x, r)}\right)$. As such, can't hope it is tight.
- Off diagonal lower bound (MRVZ): use bridge formula

$$
\int_{0}^{\infty} \psi(t) p_{t}^{\gamma}(x, y) d t=\int_{0}^{\infty} p_{t}^{0}(x, y) E_{B}^{x \stackrel{t}{t} y}(\psi(F(t))) d t
$$

Gives handle on resolvent

$$
r_{\lambda}(x, y)=\int_{0}^{\infty} E_{B}^{x \rightarrow t}\left(e^{-\lambda F(t)}\right) p_{t}(x, y) d t
$$

and need $\lambda \rightarrow \infty$ asymptotics of resolvent (+some Harnack inequalities to get to pointwise bounds).

## Selected proof ideas

- Upper bound (both in MRVZ and AK) is based on uniform bound on exit times from balls, i.e. on $F\left(\tau_{B(x, r)}\right)$. As such, can't hope it is tight.
- Off diagonal lower bound (MRVZ): use bridge formula

$$
\int_{0}^{\infty} \psi(t) p_{t}^{\gamma}(x, y) d t=\int_{0}^{\infty} p_{t}^{0}(x, y) E_{B}^{x \stackrel{t}{t} y}(\psi(F(t))) d t
$$

Gives handle on resolvent

$$
r_{\lambda}(x, y)=\int_{0}^{\infty} E_{B}^{x \rightarrow t}\left(e^{-\lambda F(t)}\right) p_{t}(x, y) d t
$$

and need $\lambda \rightarrow \infty$ asymptotics of resolvent (+some Harnack inequalities to get to pointwise bounds).

## Selected proof ideas

Key estimate:

$$
\int_{w \in B_{t / 2}(x)} \inf _{z \in B_{t / 2}(y)} E_{B}^{W \xrightarrow{t} z}\left(e^{-\lambda F(t)}\right) \geq e^{-c\left(\frac{1}{t}+\lambda t^{\left.1+\gamma^{2} / 4-\eta\right)}\right.}
$$

## Selected proof ideas

Key estimate:

$$
\int_{w \in B_{t / 2}(x)} \inf _{z \in B_{t / 2}(y)} E_{B}^{w \xrightarrow{t} z}\left(e^{-\lambda F(t)}\right) \geq e^{-c\left(\frac{1}{t}+\lambda t^{\left.1+\gamma^{2} / 4-\eta\right)}\right.}
$$

Strategy: force BM to stay in tube of width $t$ connecting $w$ to $z$.


## Selected proof ideas

Key estimate:

$$
\int_{w \in B_{t / 2}(x)} \inf _{z \in B_{t / 2}(y)} E_{B}^{w \frac{t}{\rightarrow} z}\left(e^{-\lambda F(t)}\right) \geq e^{-c\left(\frac{1}{t}+\lambda t^{\left.1+\gamma^{2} / 4-\eta\right)}\right.}
$$

Strategy: force BM to stay in tube of width $t$ connecting $w$ to $z$.


- Probability of this event is $\sim e^{-c / t}$.


## Selected proof ideas

Key estimate:

$$
\int_{w \in B_{t / 2}(x)} \inf _{z \in B_{t / 2}(y)} E_{B}^{w \frac{t}{m} z}\left(e^{-\lambda F(t)}\right) \geq e^{-c\left(\frac{1}{t}+\lambda t^{1+} \gamma^{2} / 4-\eta\right)} .
$$

Strategy: force BM to stay in tube of width $t$ connecting $w$ to $z$.


- Probability of this event is $\sim e^{-c / t}$.
- Fix $\delta<\sqrt{2}$. Call a box $S_{k} \delta$-thick if $\mu v\left(S_{k}\right) \sim t^{2+\gamma^{2} / 2-\gamma \delta}$. Then

$$
\# \delta \text {-thick boxes } \sim t^{\delta^{2} / 2-1}
$$

## Selected proof ideas

Key estimate:

$$
\int_{w \in B_{t / 2}(x)} \inf _{z \in B_{t / 2}(y)} E_{B}^{w \xrightarrow{t} \rightarrow z}\left(e^{-\lambda F(t)}\right) \geq e^{-c\left(\frac{1}{t}+\lambda t^{\left.1+\gamma^{2} / 4-\eta\right)}\right.}
$$

Strategy: force BM to stay in tube of width $t$ connecting $w$ to $z$.


- Probability of this event is $\sim e^{-c / t}$.
- Fix $\delta<\sqrt{2}$. Call a box $S_{k} \delta$-thick if $\mu v\left(S_{k}\right) \sim t^{2+\gamma^{2} / 2-\gamma \delta}$. Then

$$
\# \delta \text {-thick boxes } \sim t^{\delta^{2} / 2-1}
$$

- Contribution of $\delta$-thick boxes to $F(t)$ is roughly $T_{\delta} \cdot t \gamma^{2} / 2-\delta \gamma$, where $T_{\delta}$ is crossing time.


## Selected proof ideas

Key estimate:

$$
\int_{w \in B_{t / 2}(x)} \inf _{z \in B_{t / 2}(y)} E_{B}^{w \frac{t}{\rightarrow} z}\left(e^{-\lambda F(t)}\right) \geq e^{-c\left(\frac{1}{t}+\lambda t^{\left.1+\gamma^{2} / 4-\eta\right)}\right.} .
$$

Strategy: force BM to stay in tube of width $t$ connecting $w$ to $z$.


- Probability of this event is $\sim e^{-c / t}$.
- Fix $\delta<\sqrt{2}$. Call a box $S_{k} \delta$-thick if $\mu_{V}\left(S_{k}\right) \sim t^{2+\gamma^{2} / 2-\gamma \delta}$. Then

$$
\# \delta \text {-thick boxes } \sim t^{\delta^{2} / 2-1}
$$

- Contribution of $\delta$-thick boxes to $F(t)$ is roughly $T_{\delta} \cdot t \gamma^{2} / 2-\delta \gamma$, where $T_{\delta}$ is crossing time.
- now accelerate: force BM to have velocity $v_{\delta}$ (instead of $1 / t$ ) in $\delta$-thick boxes. Cost is $e^{-v_{\delta} t \delta^{2} / 2}$.


## Selected proof ideas

Key estimate:

$$
\int_{w \in B_{t / 2}(x)} \inf _{z \in B_{t / 2}(y)} E_{B}^{w \frac{t}{\rightarrow} z}\left(e^{-\lambda F(t)}\right) \geq e^{-c\left(\frac{1}{t}+\lambda t^{\left.1+\gamma^{2} / 4-\eta\right)}\right.}
$$

Strategy: force BM to stay in tube of width $t$ connecting $w$ to $z$.


- Probability of this event is $\sim e^{-c / t}$.
- Fix $\delta<\sqrt{2}$. Call a box $S_{k} \delta$-thick if $\mu_{V}\left(S_{k}\right) \sim t^{2+\gamma^{2} / 2-\gamma \delta}$. Then

$$
\# \delta \text {-thick boxes } \sim t^{\delta^{2} / 2-1}
$$

- Contribution of $\delta$-thick boxes to $F(t)$ is roughly $T_{\delta} \cdot t \gamma^{2} / 2-\delta \gamma$, where $T_{\delta}$ is crossing time.
- now accelerate: force BM to have velocity $v_{\delta}$ (instead of $1 / t$ ) in $\delta$-thick boxes. Cost is $e^{-v_{\delta} t \delta^{2} / 2}$.
- optimize: $\boldsymbol{v}_{\delta}=t^{-\left(1+\delta^{2} / 2\right)}, \delta=\gamma / 2$, get main estimate.


## Improvements

Improving on LB requires (at least) to optimize over paths (instead of straight line). This is a hard percolation problem.

## Improvements

Improving on LB requires (at least) to optimize over paths (instead of straight line). This is a hard percolation problem.
Can somewhat simplify percolation problem by modifying the Gaussian field. Introduce the $k$-coarse MBRW

$$
G(x, y)=k \log 2 \sum_{j=0}^{\infty} A\left(x, y, 2^{-k j}\right)
$$

where

$$
A(x, y, R)=\frac{|B(x, R) \cap B(y, R)|}{|B(x, R)|}
$$

(For $k=1$, it is continuous version of modified branching random walk introduced with Bramson to study tightness of max of discrete GFF.)

## Improvements

Improving on LB requires (at least) to optimize over paths (instead of straight line). This is a hard percolation problem.
Can somewhat simplify percolation problem by modifying the Gaussian field. Introduce the $k$-coarse MBRW

$$
G(x, y)=k \log 2 \sum_{j=0}^{\infty} A\left(x, y, 2^{-k j}\right)
$$

where

$$
A(x, y, R)=\frac{|B(x, R) \cap B(y, R)|}{|B(x, R)|}
$$

(For $k=1$, it is continuous version of modified branching random walk introduced with Bramson to study tightness of max of discrete GFF.)

$$
\left|G(x, y)-\log \left(1 / d_{\mathbb{T}^{2}}(x, y)\right)\right| \leq g_{k}(x, y)
$$

and $g_{k}$ is bounded by $6 k$ and continuous off diagonal.

## Improvements II

$$
G(x, y)=k \log 2 \sum_{j=0}^{\infty} A\left(x, y, 2^{-k j}\right)
$$

## Improvements II

$$
G(x, y)=k \log 2 \sum_{j=0}^{\infty} A\left(x, y, 2^{-k j}\right)
$$

Can write the field as $V(x)=\sum_{j=0}^{\infty} h_{j}(x)$, with $h_{j}$ fields independent.

## Improvements II

$$
G(x, y)=k \log 2 \sum_{j=0}^{\infty} A\left(x, y, 2^{-k j}\right)
$$

Can write the field as $V(x)=\sum_{j=0}^{\infty} h_{j}(x)$, with $h_{j}$ fields independent. Given $t$, define $r$ as $t \sim 2^{-k r\left(1+\gamma^{2} / 2\right)}$, $s=2^{-k r}$, and define the coarse and fine fields

$$
\varphi_{r}=\sum_{j=0}^{r-1} h_{j}, \quad \psi_{r}=\sum_{j=r}^{\infty} h_{j}
$$

## Improvements III

## Lemma (Ding-Zhang-Z. '17, based on Ding-Zhang '16)

For $k$ large enough, there exists a path of neighboring $s=2^{-k r}$-boxes connecting $x$ and $y$, of total number $2^{k r(1+\delta)}$, so that:
a) Coarse field $\varphi_{r}$ for each box is small $(\leq \delta k r \log 2)$.
b) LBM associated with fine field $\psi$ crosses each box within time $s^{2-\delta}$, with probability at least $s^{\delta}$.

## Improvements III

## Lemma (Ding-Zhang-Z. '17, based on Ding-Zhang '16)

For $k$ large enough, there exists a path of neighboring $s=2^{-k r}$-boxes connecting $x$ and $y$, of total number $2^{k r(1+\delta)}$, so that:
a) Coarse field $\varphi_{r}$ for each box is small $(\leq \delta k r \log 2)$.
b) LBM associated with fine field $\Psi$ crosses each box within time $s^{2-\delta}$, with probability at least $s^{\delta}$.

Forcing LBM through sequence, can check that total time is $\sim t$ while probability is at least $e^{-1 /\left(t^{1+\gamma^{2} / 2+\epsilon}\right)}$.

## Improvements III

## Lemma (Ding-Zhang-Z. '17, based on Ding-Zhang '16)

Fork large enough, there exists a path of neighboring $s=2^{-k r}$-boxes connecting $x$ and $y$, of total number $2^{k r(1+\delta)}$, so that:
a) Coarse field $\varphi_{r}$ for each box is small $(\leq \delta k r \log 2)$.
b) LBM associated with fine field $\psi$ crosses each box within time $s^{2-\delta}$, with probability at least $s^{\delta}$.

Forcing LBM through sequence, can check that total time is $\sim t$ while probability is at least $e^{-1 /\left(t^{1+\gamma^{2} / 2+\epsilon}\right)}$.
Upper bound uses a complementary percolation estimate: can't find a better path.

## Convergence

Main idea: exploit sub-additivity.

## Convergence

Main idea: exploit sub-additivity.

- Write GFF as integral of white noise againts Brownian heat kernel.


## Convergence

Main idea: exploit sub-additivity.

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.


## Convergence

Main idea: exploit sub-additivity.

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.
- Truncate GFF at appropriate scales by controlling variability of field.


## Convergence

Main idea: exploit sub-additivity.

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.
- Truncate GFF at appropriate scales by controlling variability of field.
- Move to diadic grid.


## Convergence

Main idea: exploit sub-additivity.

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.
- Truncate GFF at appropriate scales by controlling variability of field.
- Move to diadic grid.
- Apply sub-additivity (requires a percolation argument due to variability of end-points)


## Convergence

Main idea: exploit sub-additivity.

- Write GFF as integral of white noise againts Brownian heat kernel.
- Localize GFF.
- Truncate GFF at appropriate scales by controlling variability of field.
- Move to diadic grid.
- Apply sub-additivity (requires a percolation argument due to variability of end-points)
- Relate LBM to graph distance by controlling heat kernel on chose paths.

