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Abstract

We investigate enhanced field emission due to a continuous or pulsed
oscillating field added to a constant electric field E at the emitter surface.
When the frequency of oscillation, field strength, and property of the
emitter material satisfy the Keldysh condition γ < 1/2 one can use the
adiabatic approximation for treating the oscillating field, i.e. consider
the tunneling through the instantaneous Fowler-Nordheim barrier created
by both fields. Due to the great sensitivity of the emission to the field
strength the average tunneling current can be much larger than the current
produced by only the constant field.

We carry out the computations for arbitrary strong constant electric
fields, beyond the commonly used Fowler-Nordheim approximation which
exhibit in particular an important property of the wave function inside the
potential barrier where it is found to be monotonically decreasing without
oscillations.

PACS: 03.65.Ge; 79.70.+q; 85.45.Db; 85.45.Bz

In a constant electric field the current due to electron tunneling from a metal
is described by the commonly used Fowler-Nordheim (FN) equations [1]. They
are modified to include arbitrary strong fields, see e.g. [2] and [3], though for
practical needs the low field approximation made in [1] are usually sufficient.
The triangular potential barrier used in these articles was corrected for image
forces by Schottky [4]. They are important in constant electric fields, but an
adequate method for treating them is not clear under laser radiation. Their
physical origin is based on the rearrangement of the electron distribution inside
the emitters; a time dependent process whose duration is not known well. To
simplify the problem (and losing some precision) the Schottky term will not be
included here.

In experiments the constant electric fields are often supplemented by short
laser pulses with electric component of amplitude F orthogonal to the metal
surface. Here we carry out computations for a simple one-dimensional model of
the emitting surface in order to explore a practically important [5], [6] situation
when F can be treated adiabatically. This is possible under suitable conditions
on the strengths of the constant field E and laser field F , frequency ω of the
electromagnetic oscillations, and the emitter properties. A pulse of duration T is
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applied at t = 0. The pulse shape is assumed smooth enough and its amplitude
F significantly lower than E. Our goal is to find the current gain in the interval
0 < t < T .

Principal approximation

The laser assisted field emission is an important method to increase tunneling
current and have flexible easily manipulated electron sources. The theoretical
treatment of this effect is quite difficult because in involves interplay of different
processes, such as multi-photon and above barrier emission, FN tunneling, and
emitter heating, see for example [5].

Our simple theory disregards emitter heating, the photofield ionization caused
by photon absorption from the oscillating field. This can be justified only when
the laser field is not strong and/or the photon frequency is relatively low for
significant contribution of multi-photon processes. Nevertheless the optical field
changes the shape of the potential barrier and therefore [6] the rate of tunneling.
Such situation was studied 50 years ago by Keldysh in [7] who introduced the
parameter γ which separates the regions where the time of change of the exter-
nal electric field is longer or shorter than the transition time τ of crossing the
potential barrier by electrons, see [7], [8]. The adiabatic regime can be realized
when the Keldysh parameter γ = ωτ < 0.5 where ω is the angular frequency of
radiation. In the Keldysh derivation this barrier is rectangular. The parameter
γ has been refined and specified [8] and we modify its form taking into account
that it is triangular in the FN case. A reasonable expression for the time τ of
crossing the potential barrier [9], [10] in the presence of a constant field E is
given by the integral

√

m

2

∫ q

0

dx√
V − eEx

=

√
2m(

√
V −

√
W )

eE
, (1)

where V is the total height of the potential barrier, W is the location of the
Fermi level at x < 0, 0 and q = (V −W )/eE are turning points of tunneling
electrons.

Thus the modified Keldysh parameter has the form

γ = ω

√
2m(

√
V −

√
W )

eE
. (2)

We assume that F (t) = 0 for t < 0, i.e. the electromagnetic radiation starts at
t = 0 when an electron enters the potential barrier, it goes out of it at x = q,
therefore 0 and q are the limits of integration. When γ < 0.5 the tunneling can
be safely approximated as an adiabatic process, i.e. by taking for E in (2) its
instantaneous value of the time dependent sum E(t) = E + F (t). q = V/eE is
evaluated by Eq(8A) in Appendix for a constant E.

Disregarding the relatively small F (compared with E) we finally consider
here only the regime when

ω <
eE

2
√
2m(

√
V −

√
W )

. (3)

As an illustration we show the results assuming V = 2W and study two cases
for the work function χ = 5, χ = 2.1 eV [9]. By denoting F/E = β < 1 and
treating β as a small quantity Eq.(3) can be presented in two forms

ω < p · 1014E, or λ > h · 103
E

, (4)
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where ω, is in sec−1, λ in nm, and E in V/nm. Shown in Fig.1 are two curves
of laser wavelengths λ(E) (β = 0 in Fig.4 for simplification). For λ above
the curves the adiabatic approximation is valid. The parameters are p ≈ 1.6,
h ≈ 1.18 for Au, Cu, Ni, W, and p ≈ 2.5, h ≈ 0.75 for Cs.

FIG.1. Laser wavelengths λ above corresponding curves can be treated adiabatically

Results in Fig.1 are approximate because the work functions are not the same
for different crystal orientations. Nevertheless Fig.1 gives a general picture
of permissible regions for treating tunneling by the adiabatic method when
emitters are irradiated by lasers of frequencies estimated in our work.

The wavelength of short laser pulses [10], [11], [12] frequently used in ex-
periments and theory is around λ = 800 − 900 nm, see Fig.1. Note also that
in strong fields E about 50 − 100 V/nm the FN approximate Eq.(9A) for the
tunneling probability P becomes incorrect [2].

Results of calculations

1. Rectangular laser pulse

On the interval 0 < t < T the total field has the form

E(t) = E + F cos(ωt), E, F > 0, 0 < t < T, (5)

we simplify our computations by evaluating the tunneling probability P (t) =
P (E(t)) and treating E(t) as a fixed field in (5) in spirit of adiabatic approxi-
mation. Then we evaluate P̃ as the average of P (t) on (0, T ) when both fields
E and F (t) are turned on

P̃ =
ω

2π

∫ 2π/ω

0

P (t)dt. (6)

We use here the Eq.(5) which allows to compute P̃ on a shorter time interval of
a single period of laser field when the pulse is rectangular. The entries in Table
1 are P̃ /PE , where PE is the exact tunneling probability in the constant field
E given in Eq.(8A). Note that E is equal to the time average of E(t). The gain
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of electron tunneling flow during the pulse period is multiplied by the number
of oscillations in a single pulse which will correspond to the rectangular laser
pulse of duration T . In the case of other pulse shapes such calculation is longer
because it should be extended on the whole pulse duration.

Fig.3 in Appendix implies that for the adiabatic treatment we always are
quite far from the maximum point of P (t), i.e. the same results can be found
using Fowler-Nordheim formula (9A). In Table 1 are shown the results for Tung-
sten and Cesium in the electric fields permissible for the adiabatic regimes. The
entries in Table 1 exhibit the average current gain in time of the pulse action
compared with the case when β and F are zero. Note that we use everywhere
in this work the CGS unit system.

TABLE 1

Tungsten E = 1.5 E = 2.0 E = 3 E = 5 E = 8
β = 0.1 20.50 7.468 2.917 1.542 1.183
β = 0.2 745.7 102.6 14.99 3.550 1.750

Cesium E = 1.0 E = 1.5 E = 2.0 E = 3.0 E = 5.0
β = 0.1 2.137 1.432 1.223 1.086 1.021
β = 0.2 7.612 2.948 1.926 1.341 1.083

One can see that the lower is the constant background electric field the
stronger is the effect of laser radiation caused by its negative half-waves. This
can be easily justified by using Eq.(9A) for weaker electric fields and evaluating
the ratio

1

PFN

dPFN

dE
=

4
√
2m

3eE2h̄
χ3/2, (7)

which grows rapidly when E is relatively small and decreasing. This property
depends strongly on the shape of the pulses.

2. Laser pulse with envelopes sin(tπ/T ) and triangular one

We consider first the laser pulse F sin(tπ/T ) cos(ωt) for 0 < t < T where
T = 16π/ω, which means that the pulse consists of 8 periods. As the average
pulse amplitude is lower than of the rectangular one the gain is smaller too but
substantial anyway when E is low. Table 2 below is similar to Table 1 and in
both of them the tunneling current grows from 10−22 to 10−4 for Tungsten and
from 10−9 to 0.03 for Cesium when E increases, but the laser pulse effect gets
smaller.

TABLE 2

Tungsten E = 1.5 E = 2.0 E = 3 E = 5 E = 8
β = 0.1 8.733 3.811 1.899 1.263 1.089
β = 0.2 230.3 37.13 6.871 2.204 1.367

Cesium E = 1.0 E = 1.5 E = 2.0 E = 3.0 E = 5.0
β = 0.1 1.544 1.210 1.108 1.041 1.021
β = 0.2 3.943 1.931 1.452 1.167 1.010

The shape of laser pulse envelopes is often close to a triangle. In Table 3
we show the results for isosceles triangular pulses symmetric about the vertical
axis of the same maximum amplitudes as above only for a Tungsten emitter.
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TABLE 3

Tungsten E = 1.5 E = 2.0 E = 3 E = 5 E = 8
β = 0.1 5.685 2.785 1.594 1.178 1.061
β = 0.2 125.2 21.69 4.652 1.797 1.249

Similar results can be easily obtained for any envelope of electromagnetic pulses.
The electric field amplitude F0 of the laser radiation for computations [13]

can be evaluated by using the Pointing vector

~S = ~E × ~H =
1

2
cǫ0E

2
0
~k, (8)

where c is the speed of light, ǫ0 - vacuum permittivity, and ~k gives the direction
of the beam with rectangular cross section. Using the well known constants the
amplitude of the field E0 can be presented as

E0(V/m) = 27.42

√

Beam power (watt)

Beam crossection (m2)
. (9)

Here units are given in round parentheses. After adding the constant field this
equation allows to find the optical field.

When γ > 10 the main contribution to electron emission comes from mul-
tiphoton processes and emitter heating [10],[11], the case 1 < γ < 10 is more
difficult. Under conditions given here one can use the adiabatic technique, which
in our work is implemented to show that the electromagnetic radiation can very
significantly increase the emission, see Tables 1-3.

APPENDIX

We supplement the results for evaluating the time independent tunneling in
an arbitrary strong electric field derived in [1] with some additional details. Let
us consider a metallic block, which is placed to the left of x = 0, an electron with
kinetic energy corresponding the Fermi levelW = h̄2k2/2m enters the triangular
potential field whose shape is determined by the constant electric fields E on
−∞ < x <∞ and−Fx on the beam x > 0. The governing Schrödinger equation
for the electron wave function ψ(x, t) on the infinite interval −∞ < x <∞ can
be written in the following form

ih̄
∂ψ

∂t
(x, t) = − h̄2

2m

∂2ψ

∂x2
(x, t)+(V −eEx−eFx cosωt)ψ(x, t), E, F > 0. (1A)

We neglect here the Schottky term, here e, m are the electron mass and charge,
F is the amplitude of the dipole field, which assumed to be orthogonal to the
emitter surface. Heating of a bulk emitter is neglected here.

The tunneling is described by the stationary equation

− h̄2

2m

∂2ψ

∂x2
(x) + (V − eEx)ψ(x) =Wψ(x), (2A)

whose exact solution in the Bessel functions, found in [1], can be written in the
form

ψ(x) =











exp(ikx) + a1 exp(−ikx) for x < 0,

a2
√
yI1/3(2y

3/2/3) + a3
√
yK1/3(2y

3/2/3) for 0 < x < q,

a4
√
zH

(1)
1/3(2z

3/2/3) for x > q.











(3A)
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where q = (V −W )/eE. The variables y and z are non-negative in their domains
and they are

y = (V −W − eEx)(2m)1/3(eEh̄)−2/3, z = (eEx+W − V )(2m)1/3(eEh̄)−2/3.
(4A)

Inside the emitter the tunneling electrons with the Fermi energy W =
(h̄k)2/2m and wave their function it is represented by the first term in Eq.(3),
where eikx creates the incoming current j

−
= h̄k/m toward the surface from its

left side. The coefficients a1, ..., a4, calculated in [2] using the continuity of ψ(x)
and its derivatives at x = 0 and x = q are:

a2 = −2a4e
πi/3, a3 =

2a4
πi

,

(5A)

a1 = a4ρ
1/3

{

−e πi

3 I1/3(ρ)− iK1/3(ρ)/π + iσ

[

e
πi

3 I2/3(ρ) +
e

πi

6

π
K2/3(ρ)

]}

,

where

a4 =
−2(2/3)1/3ρ−1/3

eπi/3I1/3(ρ) + iK1/3(ρ)/π + iσeπi/3[I2/3(ρ) + e−πi/6K2/3(ρ)/π]
. (6A)

Here

ρ =
2
√
2mχ3/2

3eEh̄
, σ =

√

χ

W
, χ = V −W. (7A)

The transversal time of crossing the potential barrier was estimated in [5], [6]
and used below, χ is the work function. We emphasize here that the wave
function inside the barrier where 0 ≤ y ≤ q is monotonically decreasing without
oscillations, as this can be seen in Fig.2.

FIG. 2. Wave function ψ(x) inside the barrier

Here the x-scale given in units proportional to the real one, the amplitude of
ψ in Fig.2 should be multiplied by 40a4 to correspond Eq.(3). The general
behavior of curves corresponding different parameters σ, ρ is similar to the ones
in Fig.2.
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The Hankel function H(1) allows to find the moving to the right current j+
of escaped electrons proportional to |a4|2. Thus using Eqs.(5-7) the stationary
tunneling probability for t < 0 when F = 0 is

P =
j+
j
−

=
2σ

πρ
∣

∣e
πi

3 I1/3(ρ) + iK1/3(ρ)/π + σ[e
5πi

6 I2/3(ρ) + e
2πi

3 K2/3(ρ)/π]
∣

∣

2 .

(8A)
In practice the usual approximate equation, derived in [1] almost a century

ago, with a constant electric field,

PFN =
4
√
Wχ

V
exp

(

−4
√
2m

3eEh̄
χ3/2

)

=
4e−2ρ

σ + σ−1
, (9A)

provides the same results for P as the exact Eq.(8) for ρ1/3 > 1, which corre-
sponds to all E < 60 V/nm for Copper with χ ≈ 5 eV and not very different for
other metals (but Cs, where χ = 2.1). It was shown in [1] that in very strong
fields E the tunneling probability P is very close to PS = 5.44σ−1ρ1/3 which
helps to construct an interpolation equation

Pint =
1

1/PFN + 1/PS
. (10A)

The results provided by Eq.(10A) give decent approximations [1] with a slightly
higher maximum than the exact Eq.(8A), including the location of the maximum
of P in a wide range of problem parameters.

Below are shown the exact tunneling probability P and its approximations
PS , PFN as functions of the dimensionless parameter r = ρ1/3 in a case when
σ = 1, i.e. V = 2W . These approximate functions become unphysical in the
region around the maximum of P , which they cannot describe.

FIG. 3. Tunneling probability P and its approximations

Parameter r depends on E and the work function χ, therefore the horizontal
scale corresponds to different electric fields for different materials.
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