
Digital Object Identifier (DOI) 10.1007/s00220-016-2631-x
Commun. Math. Phys. Communications in

Mathematical
Physics

Steady States and Universal Conductance in a Quenched
Luttinger Model

Edwin Langmann1, Joel L. Lebowitz2, Vieri Mastropietro3, Per Moosavi1

1 Department of Theoretical Physics, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden.
E-mail: pmoosavi@kth.se

2 Departments of Mathematics and Physics, Rutgers University, Piscataway, NJ 08854, USA
3 Dipartimento di Matematica, Università degli Studi di Milano, 20133 Milan, Italy

Received: 25 November 2015 / Accepted: 8 February 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract: We obtain exact analytical results for the evolution of a 1+1-dimensional
Luttingermodel prepared in a domainwall initial state, i.e., a statewith different densities
on its left and right sides. Such an initial state is modeled as the ground state of a
translation invariant Luttinger Hamiltonian Hλ with short range non-local interaction
and different chemical potentials to the left and right of the origin. The system evolves
for time t > 0 via a Hamiltonian Hλ′ which differs from Hλ by the strength of the
interaction. Asymptotically in time, as t → ∞, after taking the thermodynamic limit,
the system approaches a translation invariant steady state. This final steady state carries
a current I and has an effective chemical potential differenceμ+−μ− between right- (+)
and left- (−) moving fermions obtained from the two-point correlation function. Both I
and μ+ −μ− depend on λ and λ′. Only for the case λ = λ′ = 0 does μ+ −μ− equal the
difference in the initial left and right chemical potentials. Nevertheless, the Landauer
conductance for the final state, G = I/(μ+ − μ−), has a universal value equal to the
conductance quantum e2/h for the spinless case.

1. Introduction

The transport properties of a mesoscopic system are manifested in the evolution of its
locally conserved quantities, such as particle and energy densities, following a quench
from a non-uniform state. In its simplest form, one prepares an isolated system in an
initial state at time t = 0 with different density or temperature profiles to the left and
right of the system, and then lets it evolve according to its internal translation invariant
Hamiltonian. The state of the system at a time t > 0 will then depend on the initial state
and on the nature of the Hamiltonian. After a long time, a system with “good” ergodic
properties will forget the details of its initial state and come to thermal equilibrium
depending only on the total energy and on the number of particles of the initial state.
This is what is expected to be true for typical quantum systems. The exceptions are
integrable systems, in which there are many conserved quantities, and systems with
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many-body localization; see, e.g., [1–5]. For such systems there will still be an approach
to some form of steady state, and this is sometimes called equilibration or stabilization.
(While we would prefer the latter terminology to distinguish from thermal equilibration,
also known as thermalization, the former is used for reasons of convention.)

The time of approach to a steady statewill depend on the size of the system.Moreover,
if one considers the entire system, there can never be a full loss of memory of the initial
state. After all, the evolution of an isolated quantum system is reversible, and for a finite
quantum system the evolution is even quasi-periodic. The approach to a steady state
is therefore to be taken in a weak sense, i.e., one has to look at local (coarse-grained)
quantities and wait a long time but not too long. This should be equivalent to start with
a finite system, say a one-dimensional system on the interval [−L/2, L/2] for L > 0
prepared in an initial state which is different to the left and right of the origin, evolve the
system for a time t , and consider its state projected on a subsystem taken as the interval
[−�, �] for L > � > 0, followed by first letting L → ∞ and then t → ∞while keeping
� fixed but arbitrary. In this way we can expect to obtain a steady state, described by a
density matrix on the interval [−�, �], and then ask for the density profile and the current
in this final steady state [6–9].

To anticipate the properties of a final steady state in this set-up we consider first a
system of length L > 0 in contact with infinite reservoirs at its left and right boundaries
with different fixed chemical potentials or temperatures (μL , TL) and (μR, TR), respec-
tively. The coupling between system and reservoirs is done stochastically for classical
systems [10–15], and for quantum systems one uses Lindblad-type operators [7–9,16].
Such a system will in general approach a steady state for fixed L . We can then define
the electrical conductivity σ as the ratio of the steady particle current I to the average
gradient (μL − μR)/L:

σ = I

(μL − μR)/L
. (1)

In the same way the thermal conductivity is defined as the ratio of the steady heat current
to (TL −TR)/L . In general, σ ∼ Lα as L → ∞, with α depending on the type of system
[9–15,17,18]. Several cases can be distinguished:

1. α = 0 (normal conductivity). In this case the system obeys Fourier’s law. This
has been shown, so far, only for classical systems with non-momentum conserving
stochasticity in the bulk dynamics [13,14].

2. α = 1 (perfect conductivity). This is the case, e.g., for fully integrable systems such
as the harmonic crystal [15] or free fermions [9]. These systems have freely moving
particles that carry the current.

3. 0 < α < 1 (enhanced conductivity). This is expected to be the case for anharmonic
one-dimensional systems with momentum conserving interactions as, e.g., in the
Fermi-Pasta-Ulam system. The only case where this has been proven rigorously, with
α = 1/2, is for a classical harmonic chain with momentum conserving stochastic
interactions [17].

4. α = −∞ (zero conductivity). More precisely, σ → 0 exponentially in L . This is the
case when one has localization as in a harmonic chain with random pinnings [18].
Here too the result is for a classical system coupled to the reservoirs via Langevin
terms. We expect, however, this to be the same for quantum systems.

Wenote that in cases 1 and 3 it is not clear a priori how tomodel the stochastic interactions
for a quantum system. This is an important open problem.
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Going back to the isolated system of interest here, we expect the behavior of the
subsystem on [−�, �] in the limit L → ∞ followed by the limit t → ∞ to be as follows.
In case 1, the subsystem will be in a thermal equilibrium state with vanishing current.
In case 2, it will be in a steady state that is translation invariant and has a non-vanishing
current. In case 3, it will again be in a translation invariant steady state but without
any current. In case 4, it will be in a steady state that maintains the initial profile, or
something close to this, and thus will not be translation invariant or have a current.

Case 2 in the above general classification can be checked in concrete quantummodels,
simple enough to be accessible by analytical or numerical methods. Examples include
quantumXX spin chains [5,19] describing free fermions; see also [20] for closely related
work. In this case, the absence of interaction makes the system solvable, and, starting
from a domain wall density profile, one gets a final steady state carrying a non-vanishing
current. TheXXZmodel is an extensionof theXXmodel describing interacting fermions,
which is exactly solvable by Bethe ansatz. However, despite interesting recent progress
[21], it still seems unclear if this solution can be used to acquire full information on the
evolution of domain walls. Indeed, existing results on the evolution of quantum XXZ
spins chains from a domain wall state are mostly numerical or based on approximations
[22,23].

Here we shall consider a model for interacting (spinless) fermions that is more acces-
sible to an analytical investigation, namely the Luttinger model [24–26] with a non-local
interaction. The first correct solution of this model and its ground state two-point correla-
tion function were obtained in [26], and the evolution after a quench from a homogenous
state was studied in [27,28] for a local interaction and in [29] for a non-local interaction.
We also note that, concerning its equilibrium properties, the Luttinger model is a proto-
type for a larger equivalence class of one-dimensional systems called Luttinger liquids
[30].

The Luttinger Hamiltonian

Hλ =
∑

r=±

ˆ L/2

−L/2
dx :ψ̃+

r (x)

(
−irvF∂x − μ0

(
1 +

2λ

πvF

ˆ L/2

−L/2
dyV (y)

))
ψ̃−

r (x):

+ λ
∑

r,r ′=±

ˆ L/2

−L/2
dx dy V (x−y)

(
:ψ̃+

r (x)ψ̃−
r (x)::ψ̃+

r ′(y)ψ̃−
r ′ (y): −

(
μ0

2πvF

)2
)

(2)

describes right- and left-moving fermions on a line for r = + and r = −, respectively,
given by fields ψ̃−

r (x) and ψ̃+
r (x) = ψ̃−

r (x)† satisfying antiperiodic boundary conditions
and the canonical anticommutation relations

{
ψ̃−

r (x), ψ̃+
r ′(x ′)

}
= δr,r ′δ(x − x ′),

{
ψ̃±

r (x), ψ̃±
r ′ (x ′)

}
= 0, (3)

with :· · ·: indicating Wick (normal) ordering, Fermi velocity vF , chemical potential μ0,
coupling constant λ, and a short range non-local interaction potential V (x − y); see,
e.g., [31–33] and references therein. The chemical potential μ0 corresponds to the filled
Dirac sea, and we adopt the description where this is taken as the ground state. This,
however, means that there can be both positive and negative densities, which should be
interpreted as relative densities to a large constant ground state density. We consider an
initial state with different density profiles to the left and right of the system, modeled as
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μL − μ0

μR − μ0

−1 −1/2 1/2 1
x/�

μW (x)

Fig. 1. Domain wall initial state, with the left chemical potential μL − μ0 larger than the right chemical
potential μR − μ0, produced by an external field W (x) with a smooth transition between the two sides of the
system

the ground state |
λ,μ〉 of the Hamiltonian

Hλ,μ = Hλ −
∑

r=±

ˆ L/2

−L/2
dx (μLθ(−x) + μRθ(x) − μ0)

(
:ψ̃+

r (x)ψ̃−
r (x): − μ0

2πvF

)

(4)

with different chemical potentials to the left,μL = μ0 +μ/2, and right,μR = μ0−μ/2,
assuming for definiteness μL > μR , i.e., μ > 0 as illustrated in Fig. 1. We consider the
evolution of this state under a LuttingerHamiltonian Hλ′ with a new coupling constantλ′,
i.e., we consider the state |
λ′

λ,μ(t)〉 = e−i Hλ′ t |
λ,μ〉. In the case λ = λ′ this corresponds
to an experiment in which one switches off an external field producing an excess of
density on one side of the system compared to the other at time t = 0 and considers the
evolution of the system under the translation invariant Hamiltonian Hλ for time t > 0.
On the other hand, if λ �= λ′, there is in addition an interaction quench, i.e., at t = 0
there is also a change from λ to λ′.

Let us first consider the non-interacting case λ = λ′ = 0. By taking the limit L → ∞
followed by the limit t → ∞, the system reaches a final steady state that is translation
invariant and has a non-vanishing current that is linear in μL − μR . The steady state
has the same two-point correlation function as the ground state of a system of non-
interacting fermions with different chemical potentials μ± = μ0 ± μ/2 for right- (+)
and left- (−) moving fermions, as illustrated in Fig. 2. Thus, at t = 0 there is an excess
of density on the left side compared to the right, and, asymptotically in time, there is
a steady current corresponding to more right-moving fermions (coming from the left)
than left-moving fermions (coming from the right). The current satisfies the following
relation in the non-interacting case:

I = e2

h
(μL − μR) = e2

h
(μ+ − μ−), (5)

where e2/h is the conductance quantum for the spinless case. The conductivity defined
in (1) is therefore diverging linearly with L (corresponding to case 2 in our general
classification).

In this paper we address the question of how the interaction modifies the above
picture. The results are presented in detail in Sect. 2. As before, the system reaches a
steady state that is translation invariant and has a non-vanishing current that is still linear
inμL −μR but depends on the Hamiltonian driving the evolution and on the initial state.
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−μ0 −μ− μ0 μ+
vF k

ε±(k)

Fig. 2. Fermi sea for the final state given by the linear dispersion relations ε±(k) = ±vF k − μ± for right-
(+) and left- (−) moving fermions starting from a domain wall state, μ > 0 (solid lines), and from a uniform
state, μ = 0 (dashed lines)

However, the final steady state obtained as t → ∞ has different chemical potentials μ+
and μ− for right- and left-moving fermions, respectively, obtained from the two-point
correlation function. While μL − μR = μ+ − μ− without interaction, this is not true in
the interacting case:

I = Gλ,λ′(μL − μR) = e2

h
(μ+ − μ−), (6)

where Gλ,λ′ is independent of μL − μR but is a non-trivial function of the microscopic
parameters λ and λ′. The approach to this steady state is somewhat similar to the non-
interacting case: we will show that the system evolves ballistically but that the non-
local interaction produces dispersion effects, similar to what is observed in numerical
simulations for quantumXXZ spin chains in [22]. When λ = λ′, the ratio Gλ,λ′ between
I and μL − μR reduces to the value computed at equilibrium in linear response theory,
Gλ,λ = Kλe2/h [34], where Kλ is the so-called Luttinger parameter; this was also found
by numerical simulations in [22].

We find the relation in (6) remarkable for the following reasons. It says that the ratio
of the steady current to the difference between left and right chemical potentials is highly
non-universal (since it depends on the details of the initial state and the Hamiltonian
driving the evolution). On the other hand, the ratio of the steady current to the difference
between chemical potentials of right- and left-moving fermions for the final state is
perfectly universal. The reason is that both I andμ+−μ− are renormalized – a quantum
many-body effect due to the interaction between the particles – but with the property
that the renormalizations precisely cancel if one takes their ratio. This means that the
Landauer conductance [35,36] for the final state is universal, which confirms previous
results obtained in near-to-equilibriumapproaches; see, e.g., [36–39].However,we stress
that we show this universality in a dynamical model of interacting fermions by a fully
non-equilibrium approach.

Further understanding of the final steady state can be gained by studying the corre-
lation functions. When λ = λ′ this state has the same two-point correlation function as
the ground state of a Luttinger Hamiltonian similar to Hλ but with different chemical
potentials μ± for right- and left-moving fermions. This suggests that it corresponds to
a generalized canonical ensemble [5]. However, this is very different if λ �= λ′ �= 0,
where a different steady state is reached which cannot be described as the ground state
of some Luttinger Hamiltonian (this can be seen by, e.g., studying non-equal-time cor-
relation functions; cf. also [28]). This steady state, which has to be a function of the
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constants of motion of Hλ′ , has peculiar properties: its two-point correlation function
has exponents which are non-trivial functions of λ and λ′ and thus different from the
equilibrium exponents. These non-equilibrium exponents reduce to the equilibrium ones
computed in [26] when λ = λ′ and to the ones in [28] when λ = 0 or λ′ = 0, but the
general expressions are to our knowledge new. Whether this state also corresponds to a
generalized canonical ensemble is left open.

The paper is organized as follows. In Sect. 2 we formulate the model and state the
results. In Sect. 3 we review the solution of the Luttinger model in [26]. In Sects. 4–6
we prove our results by, first, solving the Luttinger model with an external field, second,
quenching the system, and third, studying the approach to a steady state; for the latter
we use a mathematical result stated and proved in Appendix A. In Sect. 7 we prove that,
for λ = λ′, the two-point correlation function for the final steady state is the same as that
of a Luttinger model at equilibrium with different constant chemical potentials for right-
and left-moving fermions; this is extended in Appendix B to more general interactions.
Section 8 contains concluding remarks, including a discussion of the conductance in the
Luttinger model.

2. Formulation and Results

We study the evolution and approach to steady state of a system of right- and left-moving
interacting (spinless) fermions on a line with length L > 0 described by the Luttinger
model with a short range non-local interaction potential V (x). The system is put out
of equilibrium by switching off an external field producing an excess of density on one
side compared to the other. The time evolution is given by the Hamiltonian in (2) with
fields ψ̃±

r (x), which is equivalent to

Hλ =
∑

r=±

ˆ L/2

−L/2
dx :ψ+

r (x) (−irvF∂x ) ψ−
r (x):

+ λ
∑

r,r ′=±

ˆ L/2

−L/2
dx dy V (x − y) :ψ+

r (x)ψ−
r (x)::ψ+

r ′(y)ψ−
r ′ (y): (7)

with fields ψ±
r (x) = L−1/2∑

k a±
r,ke∓ikx for r = ± and k = π(2n + 1)/L with n ∈ Z

(corresponding to antiperiodic boundary conditions) describing right- (r = +) and left-
(r = −) moving fermions, where a±

r,k are fermion creation and annihilation operators;
this follows from the identities

ψ̃±
r (x) = e∓irv−1

F μ0xψ±
r (x), :ψ̃+

r (x)ψ̃−
r (x): = :ψ+

r (x)ψ−
r (x): + μ0

2πvF
(8)

(the proof is given at the end of Sect. 7). Important (local) observables we consider
are the densities ρ±(x) = :ψ+±(x)ψ−± (x): , which satisfy periodic boundary conditions
if L is finite. We define the total density as ρ(x) = ρ+(x) + ρ−(x) and the current as
j (x) = vF (ρ+(x)−ρ−(x)). In Appendix Bwe show that these definitions are consistent
with the continuity equation ∂tρ(x, t)+∂x j (x, t) = 0 where ρ(x, t) = ei Hλtρ(x)e−i Hλt

and similarly for j (x, t). We note that the second identity in (8) makes clear how the
densities should be interpreted, namely as relative densities around the large ground
state density of the filled Dirac sea determined by the Fermi momentum μ0/vF . This
explains why both positive and negative densities are allowed.
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We require the following conditions on the Fourier transform V̂ (p) = ´ L/2
−L/2 dx V (x)

e−i px of the interaction potential to be satisfied:

1. V̂ (p) = V̂ (−p) ∀p,

2. λV̂ (p) > −πvF/2 ∀p,

3. V̂ (p)|p|1+ε → 0 as p → ±∞ for some ε > 0. (9)

We will show that the second condition (cf. [26]) ensures that the system is stable and
that the third is needed for the interacting and non-interacting fermion Fock spaces to
be unitarily equivalent.

In Sect. 3 we make the Luttinger model mathematically precise by defining it in
Fourier space (cf. Remark 2.2). In particular, as is well-known, there is a unique Hilbert
space, the fermion Fock spaceF , defined by the canonical anticommutation relations and
with vacuum |
0〉 given by the ground state of H0 [the relations determiningF are given
in (39) and (40)]. Moreover, the Luttinger Hamiltonian Hλ is a well-defined self-adjoint
operator onF bounded from below, with pure point spectrum, andwith a non-degenerate
ground state; see, e.g., [33] for a recent review of the pertinent mathematical results.

The equilibrium properties of the Luttinger model are well known and the ground
state correlation functions can be exactly computed [26]. If we let |
λ〉 denote the ground
state of Hλ, then, in the thermodynamic limit L → ∞, the two-point correlation function
is

〈
λ|ψ+
r (x)ψ−

r (y)|
λ〉 = i

2πr(x − y) + i0+
exp

(ˆ ∞

0
dp

ηλ(p)

p
(cos p(x − y)−1)

)

(10)

with ηλ(p) = (1 − [λV̂ (p)/(πvF + λV̂ (p))]2)−1/2 − 1. As emphasized, this result
(derived in [26] for a different interaction) is in the thermodynamic limit; this ismotivated
by our interest in length scales much smaller than the system size as discussed in Sect. 1.
For later reference we also note that (8) implies

〈
λ|ψ̃+
r (x)ψ̃−

r (y)|
λ〉 = e−irv−1
F μ0(x−y)〈
λ|ψ+

r (x)ψ−
r (y)|
λ〉. (11)

The interaction produces a dramatic modification in the long distance decay of the
correlation functions,with the appearance of an anomalous exponent ηλ = ηλ(0), where,
for large |x − y|, the two-point correlation function decays as O(|x − y|−1−ηλ).

We investigate the non-equilibrium properties of this system when the initial state
has an excess of density on one side compared to the other. We choose as initial state
the ground state of the Hamiltonian in (4), which, using (8), is equivalent to

Hλ,μ = Hλ − μ

ˆ L/2

−L/2
dx W (x)ρ(x), (12)

where W (x) is an external field taken as a regularized version of 1/2 − θ(x) (with the
Heaviside function θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0) as depicted in Fig. 1.
For finite L , we need to take the periodic boundary conditions into account, and for this
we use

W (x) = −1

2
(tanh(x/δ) − tanh((2x + L)/2δ) − tanh((2x − L)/2δ)) (13)
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for some small δ > 0. In Sect. 4 we make this model well-defined by again work-
ing in Fourier space. By explicitly constructing all eigenstates and the corresponding
eigenvalues of Hλ,μ we show the following:

Theorem 2.1. For finite L, the Hamiltonian Hλ,μ in (12), with V (x) satisfying the con-
ditions in (9) and W (x) in (13), defines a self-adjoint operator on the fermion Fock space
F . This operator is bounded from below, has pure point spectrum, and a non-degenerate
ground state.

From Sect. 1 we recall that the ground state of Hλ,μ is denoted by |
λ,μ〉, and we
consider the evolution of this state under a different Hamiltonian Hλ′ = Hλ′,0 with
coupling constant λ′ and no external field, i.e., we quench the system and consider

|
λ′
λ,μ(t)〉 = e−i Hλ′ t |
λ,μ〉. (14)

We show that this state tends to a steady state as t → ∞ by analytically computing the
expectation values of certain observables. It is at the level of these expectation values
that we pass to the thermodynamic limit (cf. Remark 2.2), and in this limit we use the
regularized external field W (x) = −(1/2) tanh(x/δ). This external field has the Fourier
transform

Ŵ (p) = iπδ

2 sinh(πδp/2)
, (15)

and letting δ → 0+ yields Ŵ (p) = i p−1 which is the Fourier transform of 1/2 − θ(x)

(interpreted in a distributional sense as a Cauchy principal value). We also impose the
following conditions on the interaction potential in order to derive exact results for the
asymptotical behavior of the system:

1. V̂ (p) ∈ C2(R) (a.e.),

2. V̂ (p), dV̂ (p)/dp, d2V̂ (p)/dp2 ∈ L1(R),

3. λp dV̂ (p)/dp > −πvF − 2λV̂ (p) ∀p. (16)

As will be shown, the third condition means that the system evolves with a positive
group velocity [cf. (32)].

Remark 2.2. Following the approach described in Sect. 1, we only define the Luttinger
model for finite L . This allows for a simple rigorous construction of the model in Fourier
space; see, e.g., [33]. It is only for expectation values of observables, after we have
computed them for finite L , that we pass to the thermodynamic limit L → ∞. To
make this clear, we use 〈·〉L to denote expectation values for finite L and write 〈·〉 =
limL→∞〈·〉L , and similarly for other quantities.

We first consider the case without interaction between the fermions, i.e., λ = λ′ = 0.
The results follow as special cases from the proofs in Sect. 5. For the total density and
the current we show that

〈
0
0,μ(t)|ρ(x)|
0

0,μ(t)〉 = μ

2πvF
(W (x − vF t) + W (x + vF t)) , (17)

〈
0
0,μ(t)| j (x)|
0

0,μ(t)〉 = μ

2π
(W (x − vF t) − W (x + vF t)) . (18)
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If W (x) = 1/2 − θ(x), or our regularized version thereof, this means that there is a
central region (−vF t, vF t) around x = 0 with zero total density (relative to the large
constant ground state density) bounded by two fronts moving with constant velocity.
The shape of the fronts does not change with time, and, as t → ∞, the system reaches
a state with vanishing total density everywhere. Similarly, the current is non-zero in the
same region, and, as t → ∞, it tends to the non-vanishing value μ/2π everywhere.

We also show that the two-point correlation function without interaction is given by

〈
0
0,μ(t)|ψ+

r (x)ψ−
r (y)|
0

0,μ(t)〉

= i

2πr(x − y) + i0+
exp

(
−irv−1

F μ

ˆ x−rvF t

y−rvF t
dzW (z)

)
. (19)

For finite t , the two-point correlation function is not translation invariant. However,
asymptotically in time,

lim
t→∞

ˆ x−rvF t

y−rvF t
dzW (z) = r

x − y

2
, (20)

meaning that translation invariance is recovered:

lim
t→∞〈
0

0,μ(t)|ψ+
r (x)ψ−

r (y)|
0
0,μ(t)〉 = ie−irv−1

F (rμ/2)(x−y)

2πr(x − y) + i0+
. (21)

Since (21) is similar to (10) with λ = 0, this suggests that the final steady state is similar
to the ground state of free fermions with different chemical potentialsμ± −μ0 = ±μ/2
for right- and left-moving fermions, obtained from the two-point correlation function
[cf. (11)]. We can make this precise by comparing (21) with the two-point correlation
function obtained from a Hamiltonian describing such a system; this we will do below
for the case with interaction. Therefore, in absence of interaction, a very clear picture
emerges: the ground state of free fermions, with an external field producing a domain
wall, evolves as t → ∞ to a steady state which has the same two-point correlation
function as that of a ground state of free fermions with different chemical potentials for
right- and left-moving fermions.

Let us now consider the evolution of the domain wall initial state in the presence of
interaction, i.e., with non-zero λ and λ′. The question we try to answer is the following:
how does the interaction modify the evolution of the domain wall state? Below we
present the exact results for general λ and λ′. The proofs are given in Sect. 5.

We show that the total density and the current are given by the following exact
expressions in the thermodynamic limit:

R(x, t) = 〈
λ′
λ,μ(t)|ρ(x)|
λ′

λ,μ(t)〉
= μ

2π

ˆ ∞

−∞
dp

2π

Kλ(p)

vλ(p)
Ŵ (p)2 cos(pvλ′(p)t)eipx , (22)

I (x, t) = 〈
λ′
λ,μ(t)| j (x)|
λ′

λ,μ(t)〉
= μ

2π

ˆ ∞

−∞
dp

2π

Kλ(p)

vλ(p)
Ŵ (p)vλ′(p)(−2i sin(pvλ′(p)t))eipx (23)

with the renormalized Fermi velocity

vλ(p) = vF

√
1 + 2λV̂ (p)/πvF (24)
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and the Luttinger parameter

Kλ(p) = 1√
1 + 2λV̂ (p)/πvF

. (25)

For our particular interaction Kλ(p) and vλ(p) satisfy Kλ(p)vλ(p) = vF , but we note
that this is not true in general; see, e.g., [31] or Appendix B. For a special case, similar
to a case considered in [28], we plot the total density in Fig. 3 and the current in Fig. 4
for the subsystem on the interval [−�, �] with L > � > 0. In this case, the initial state is
the non-interacting ground state |
0,μ〉, which is evolved under Hλ′ with the non-local
interaction potential V̂ (p) = (πvF/2) sech(ap) with interaction range a > 0.

We show that the two-point correlation function is given by the following exact
expression in the thermodynamic limit:

〈
λ′
λ,μ(t)|ψ+

r (x)ψ−
r (y)|
λ′

λ,μ(t)〉 = e−irv−1
F Ar (x,y,t)(x−y)Sr (x, y, t) (26)

with

Ar (x, y, t) = μ

ˆ ∞

−∞
dp

2π

Kλ(p)

vλ(p)
Ŵ (p) (vF cos(pvλ′(p)t) − irvλ′(p) sin(pvλ′(p)t))

×eipx − eipy

i p(x − y)
(27)

and

Sr (x, y, t) = 〈
λ′
λ,0(t)|ψ+

r (x)ψ−
r (y)|
λ′

λ,0(t)〉. (28)

The latter is the two-point correlation function in the absence of external field, i.e.,
μ = 0, in which case the initial state is the ground state |
λ〉 of Hλ but the Hamiltonian
driving the evolution is Hλ′ as before. We show that

Sr (x, y, t) = i

2πr(x − y) + i0+

× exp

(ˆ ∞

0
dp

ηλ,λ′(p) − γλ,λ′(p) cos(2pvλ′(p)t)

p
(cos p(x − y) − 1)

)
(29)

with exponents

ηλ,λ′(p) = Kλ(p)(Kλ′(p)−2 + 1) + Kλ(p)−1(Kλ′(p)2 + 1)

4
− 1,

γλ,λ′(p) = Kλ(p)(Kλ′(p)−2 − 1) + Kλ(p)−1(Kλ′(p)2 − 1)

4
.

(30)

In general, these differ from the equilibrium exponents in (10). The latter are obtained
only when λ = λ′, in which case ηλ,λ(p) = ηλ(p) = (Kλ(p) + Kλ(p)−1)/2 − 1 and
γλ,λ(p) = 0, where ηλ(p) can be expressed in terms of λV̂ (p) using (25). Note also the
identity

ηλ,λ′(p) = ηλ(p) + γλ,λ′(p). (31)

This shows that the correlation function in (10) is, indeed, recovered at time t = 0.
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(e) t =2.0� vF and λ = 0.80 (solid line), λ = 0.90, λ = 0.95, and λ = 0.99 (dotted line)

Fig. 3. Total density at time t and for coupling constant λ′, starting from the non-interacting ground state,
λ = 0, with domain wall profile, μ = 1, and evolving with a non-local interaction potential V̂ (p) =
(πvF /2) sech(ap) with interaction range a = 0.0025� and vF = 1

Using the results above we study the asymptotic behavior of the total density, the
current, and the two-point correlation function. One important quantity describing the
evolution is the group velocity

v
g
λ(p) = d(pvλ(p))/dp, (32)
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(e) t =2.0� vF and λ = 0.80 (solid line), λ = 0.90, λ = 0.95, and λ = 0.99 (dotted line)

Fig. 4. Current at time t and for coupling constantλ′, starting from the non-interacting ground state,λ = 0,with
domain wall profile, μ = 1, and evolving with a non-local interaction potential V̂ (p) = (πvF /2) sech(ap)

with interaction range a = 0.0025� and vF = 1

which we require to be positive (cf. Lemma A.1 in Appendix A where the positivity
of v

g
λ(p) is needed). This can be shown to correspond to the third condition in (16). In

Sect. 6 we prove the following result [see (90) for a stronger version of (33)]:
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Theorem 2.3. If V (x) satisfies the conditions in (9) and (16), then

lim
t→∞ R(x, t) = 0, lim

t→∞ I (x, t) = μ

2π

Kλvλ′

vλ

,

lim
t→∞ A±(x, y, t) = ±μ

2

Kλvλ′

vλ

∀x, y (33)

and

lim
t→∞〈
λ′

λ,μ(t)|ψ+
r (x)ψ−

r (y)|
λ′
λ,μ(t)〉

= ie−irv−1
F (rμKλvλ′/2vλ)(x−y)

2πr(x − y) + i0+
exp

(ˆ ∞

0
dp

ηλ,λ′(p)

p
(cos p(x − y) − 1)

)
, (34)

where Kλ = Kλ(0) and vλ = vλ(0).

One consequence of (34) is that, while the two-point correlation function in (29) is
not translation invariant for finite t , translation invariance is recovered asymptotically
in time. This is a generalization of the corresponding result derived in [29]. As in the
non-interacting case, by comparing with (10), it follows that (34) describes fermions
with different chemical potentials for right- and left-moving particles,

μ± − μ0 = ±μ

2

Kλvλ′

vλ

, (35)

obtained from the phase factor in the correlation function [cf. (11)]. However, since
ηλ,λ′(p) �= ηλ(p) when λ �= λ′ �= 0, the correlation function in (34) is not, in general,
a ground state two-point correlation function as in (10). The only case where this could
be true is if λ = λ′, and in Sect. 7 we prove the following result allowing us to compare
(34) with the corresponding (equal-time) two-point correlation function:

Theorem 2.4. For finite L, the Hamiltonian

H = Hλ −
∑

r=±
(μr − μ0)Qr , Qr =

ˆ L/2

−L/2
dx ρr (x), (36)

with V (x) satisfying the conditions in (9) and μ± being constant chemical potentials
satisfying μ+ +μ− = 2μ0, defines a self-adjoint operator on the fermion Fock space F .
This operator is bounded from below, has pure point spectrum, and a non-degenerate
ground state. Denoting the ground state of H by |
〉, the two-point correlation function
in the thermodynamic limit is

〈
|ψ+
r (x)ψ−

r (y)|
〉 = ie−irv−1
F (μr −μ0)(x−y)

2πr(x − y) + i0+
exp

(ˆ ∞

0
dp

ηλ(p)

p
(cos p(x−y)−1)

)

(37)

with ηλ(p) = ηλ,λ(p) in (30).
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Thus, (34) for λ = λ′ and (37) are the same, and this justifies the identification in
(35). Moreover, while we do not give the details, this result can also be extended to
non-equal-time two-point correlation functions, as explained at the end of Sect. 6.

In conclusion, as t → ∞, the system reaches a translation invariant steady state
with a vanishing density and a non-vanishing current. The region of vanishing density
increases with time and lies between two fronts which evolve ballistically. However,
for a non-local interaction, as in Figs. 3 and 4, the system is dispersive. To see this,
note that, contrary to the non-interacting case, the renormalized Fermi velocity in (24)
and therefore also the group velocity in (32), which determines the propagation of the
fronts, depend on the momentum. This means that the shape of the fronts changes over
time. These dispersion effects appear, e.g., as oscillations traveling ahead of the fronts
in Figs. 3 and 4. Similar behavior was found in numerical simulations for quantum XXZ
spin chains in [22].

Only in the caseλ = λ′, i.e., if the quench consists simply of switching off the external
field, does one find that the steady state has the same two-point correlation function as
the ground state of the Hamiltonian in (36) with different chemical potentials μ± for
right- and left-moving fermions. When λ �= λ′ �= 0 the final steady state is inherently
different from a ground state of such a Hamiltonian since the non-equilibrium exponents
in (34) are different from the equilibrium ones in (10). This implies that memory of the
initial state is conserved for infinite times; cf. also [28].

It follows from Theorems 2.3 and 2.4 that the final steady state carries a current
I = μKλvλ′/2πvλ and has an effective chemical potential difference μ+ − μ− =
μKλvλ′/vλ depending on the coupling constants λ and λ′. However, even though the
final state depends on the details of the time evolution and the initial state, the Landauer
conductance [35,36] is universal:

G = I

μ+ − μ−
= μKλvλ′

2πvλ

vλ

μKλvλ′
= 1

2π
, (38)

which is equal to the conductance quantum e2/h = 1/2π (in units where e = � = 1)
for the spinless case. Since, in general, the final steady state is not the ground state of a
Luttinger Hamiltonian, this universality is a true non-equilibrium phenomenon.

Finally, we note that the formulas given above for the evolution following a quench
can be shown to remain valid for more general interactions in the Luttinger model; cf.
the final remark in Appendix B.

3. Exact Solution of the Luttinger Model

Wefirst solve themodel in the absence of external field.What follows essentially reviews
the solution of the Luttinger model in [26] but for a different interaction (cf. the appendix
in [26]) than the usual Luttinger interaction [24] (cf. also Appendix B). Note that here
and in the reminder of the paper we use the convention that sums over variables range
over all allowed values, unless specified otherwise.

The ground state of the non-interacting Hamiltonian H0 is the filled Dirac sea |
0〉
defined by the condition

a−
r,rk |
0〉 = a+

r,−rk |
0〉 = 0 ∀k > 0 (39)

using fermion creation and annihilation operators a±
r,k , r = ± and k = π(2n + 1)/L

with n ∈ Z, satisfying
{

a−
r,k , a+

r ′,k′
}

= δr,r ′δk,k′ ,
{

a±
r,k , a±

r ′,k′
}

= 0. (40)
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The conditions in (39) and (40) fully determine the fermion Fock space F , and the a±
r,k

can be used to construct fields ψ±
r (x) = L−1/2∑

k a±
r,ke∓ikx describing right- (r = +)

and left- (r = −) moving fermions. We define the densities as ρr (p) = ∑
k :a+

r,ka−
r,k+p :

for p = 2πn/L with n ∈ Z, where Wick (normal) ordering :· · ·: can be defined as

: A: = A − 〈
0|A|
0〉 (41)

for operators A = a+
r,k a−

r ′,k′ . The densities satisfy

[
ρr (p), ρr ′(−p′)

] = rδr,r ′
Lp

2π
δp,p′ ,

ρ+(p)|
0〉 = ρ−(−p)|
0〉 = 0 ∀p ≥ 0, (42)

and expressing the non-interacting Hamiltonian in Fourier space in its bosonized form,

H0 = π

L
vF

(
ρ+(0)

2 + ρ−(0)2
)
+
∑

p>0

2π

L
vF (ρ+(−p)ρ+(p) + ρ−(p)ρ−(−p)) , (43)

one can see that

[H0, ρr (p)] = −rvF pρr (p). (44)

These results are well-known in both the condensed matter and mathematical physics
literature; see, e.g., [33] for self-contained proofs. (We note that our conventions differ
from [26] in that ρ1(−p) and ρ2(−p) in [26] correspond to our densities ρ+(p) and
ρ−(p), respectively, and our conventions for the Fourier transform are such that ρr (x) =∑

p(1/L)ρr (p)eipx for the densities, while in [26] the corresponding transform has a
minus sign in the exponent.)

We now consider the interacting Hamiltonian

Hλ = H0 + λH ′,

H ′ = 1

L
V̂ (0)ρ(0)2 +

∑

p �=0

1

L
V̂ (p)ρ(p)ρ(−p)

(45)

with ρ(p) = ρ+(p) + ρ−(p) and V̂ (p) satisfying the conditions in (9). As explained in
[26], Hλ can be diagonalized by a Bogoliubov transformation implemented by a unitary
operator ei Sλ [defined in (48)]:

ei Sλ Hλe−i Sλ = H0 − Tλ + Dλ + Wλ (46)

with

Tλ = − 1

L
λV̂ (0)ρ(0)2 +

∑

p>0

2π

L
vF (ρ+(−p)ρ+(p) + ρ−(p)ρ−(−p)) ,

Dλ =
∑

p>0

2π

L
vλ(p) (ρ+(−p)ρ+(p) + ρ−(p)ρ−(−p)) ,

Wλ = −
∑

p>0

(vF − vλ(p)) p, (47)
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where vλ(p) is the renormalized Fermi velocity in (24). Since H0 − Tλ contains only
zero modes and Wλ is a c-number, both commute with the densities ρr (p). The unitary
operator ei Sλ is given by

Sλ = i
∑

p �=0

2π

L

ϕλ(p)

p
ρ+(−p)ρ−(p), tanh 2ϕλ(p) = − λV̂ (p)

πvF + λV̂ (p)
∀p �=0. (48)

It follows that [Sλ, ρr (p)] = −iϕλ(p)ρ−r (p) for p �= 0, which means that

ei Sλρr (p)e−i Sλ = ρr (p) cosh ϕλ(p) + ρ−r (p) sinh ϕλ(p) (49)

(to see this, define gr (u) = eiuSλρr (p)e−iuSλ , differentiate, and solve the resulting
differential equation g′

r (u) = ϕλ(p)g−r (u) with gr (0) = ρr (p)).
The interacting ground state is |
λ〉 = e−i Sλ |
0〉with ground state energy Wλ. Since

the latter has to be a finite number, this imposes the condition in (9) that V̂ (p)must decay
faster than |p|−1 for large |p|. We also note that, when deriving (47), vλ(p) is found as

vλ(p) = vF e−2ϕλ(p), (50)

which, using (48), gives precisely (24). [The relation in (50) does not hold for the general
interactions considered in Appendix B; cf. the comment below (25).] From this we see
that, sincevλ(p)has to be real,wemust impose the stability conditionλV̂ (p) > −πvF/2
in (9). Moreover, similar to (44),

[Dλ, ρr (p)] = −rvλ(p)pρr (p), (51)

which makes clear that vλ(p) is, indeed, to be interpreted as the renormalized Fermi
velocity.

Finally, we demonstrate how to construct the eigenstates of Hλ from the eigenstates
of H0. To construct the latter we need the operators Qr = ρr (p = 0) in (36), which
are Hermitian, and also to introduce new operators Rr called Klein factors, which are
unitary, satisfying

[Qr , Rr ′ ] = rδr,r ′ Rr , R± R∓ = −R∓ R±,

〈
0|Rq+
+ R−q−− |
0〉 = δq+,0δq−,0 ∀q+, q− ∈ Z (52)

and commuting with all ρr (p) for p �= 0; see, e.g., [33]. For the latter, i.e., densities with
non-zero momenta, we find it convenient to introduce boson creation and annihilation
operators

b+p =
(

b−
p

)†
, b−

p =
⎧
⎨

⎩
−i
√

2π
L|p|ρ+(p) if p > 0,

+i
√

2π
L|p|ρ−(p) if p < 0,

(53)

respectively, satisfying

[
b−

p , b+p′
]

= δp,p′ ,
[
b±

p , b±
p′
]

= 0, b−
p |
0〉 = 0 ∀p �= 0. (54)
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It follows that the exact eigenstates of H0 [the eigenvalues are given by (57) for λ = 0]
are

|
0,m〉 =
⎛

⎜⎝
∏

p �=0

(
b+p
)m(p)

√
m(p)!

⎞

⎟⎠ Rq+
+ R−q−− |
0〉 (55)

for m = {
(m(p))p �=0 , q+, q−

}
with m(p) ∈ N and q+, q− ∈ Z, where at most finitely

many of the m(p) are non-zero. The ground state of H0 is identified as |
0〉 = |
0,0〉.
These states form an orthonormal basis for the fermion Fock space F , and we denote
by D the set of all finite linear combinations of these eigenstates, from which F can be
obtained by norm-completion; see, e.g., [40]. The integer pair (q+, q−) can be interpreted
as the chiral charges of a given state, and Q± and R± as charge and charge-changing
operators, respectively. It follows that

|
λ,m〉 = e−i Sλ |
0,m〉 (56)

are the exact eigenstates of Hλ with eigenvalues

Eλ,m = π

L
vF

(
q2
+ + q2− +

λV̂ (0)

πvF
(q+ + q−)2

)
+
∑

p �=0

vλ(p)|p|m(p) + Wλ. (57)

As for the case without interaction, the ground state of Hλ is identified as |
λ〉 = |
λ,0〉.
We note that, even though many identities stated involve unbounded operators, they

are well-defined on D; see, e.g., [33,41] for mathematical details.

4. Luttinger Model with an External Field: Proof of Theorem 2.1

We extend the exact solution of the Luttinger model to include the case with an external
field W (x) satisfying the condition

´ L/2
−L/2 dx W (x) = 0 as well as periodic boundary

conditions (which we recall are needed if L is finite). In other words, we consider the
Hamiltonian

Hλ,μ = H0 + λH ′ − μP (58)

with

P =
∑

r

∑

p

1

L
Ŵ (−p)ρr (p), (59)

where Ŵ (p) is the Fourier transform of W (x) satisfying Ŵ (0) = 0 due to the condition
that the integral of W (x) over the entire space is zero. To diagonalize Hλ,μ we introduce
an operator Aλ,μ defined as

Aλ,μ =
∑

r

∑

p �=0

1

L
η̂(−p)rρr (p) (60)
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for some suitable function η(x) with Fourier transform η̂(p), chosen so that it removes
all terms linear in the densities; we note that, without loss of generality, we may set
η̂(0) = 0. It follows that

[
Aλ,μ, ρr (p)

] = −pη̂(p)/2π , which implies

ei Aλ,μρr (p)e−i Aλ,μ = ρr (p) − 1

2π
i pη̂(p) (61)

(to see this, define gr (u) = eiu Aλ,μρr (p)e−iu Aλ,μ , differentiate, and solve the resulting
differential equation g′

r (u) = −i pη̂(p)/2π with gr (0) = ρr (p)). This operator applied
to each term in the Hamiltonian yields:

ei Aλ,μ H0e−i Aλ,μ = H0 − vF

∑

r

∑

p

1

L
(−i p)η̂(−p)ρr (p) +

vF

2π

∑

p

1

L
p2
∣∣η̂(p)

∣∣2 ,

ei Aλ,μ H ′e−i Aλ,μ = H ′ − vF

∑

r

∑

p

1

L

2V̂ (p)

πvF
(−i p)η̂(−p)ρr (p)

+
vF

π

∑

p

1

L

2V̂ (p)

πvF
p2
∣∣η̂(p)

∣∣2 ,

ei Aλ,μ Pe−i Aλ,μ = P − 1

π

∑

p

1

L
Ŵ (−p)i pη̂(p),

(62)

where
∣∣η̂(p)

∣∣2 = η̂(−p)η̂(p). Therefore, by choosing η̂(p) such that

vF

(
1 + 2λV̂ (p)/πvF

)
i pη̂(p) + μŴ (p) = 0 (63)

is satisfied, we find that the Hamiltonian can be diagonalized using ei Sλ in (48):

ei Sλei Aλ,μ Hλ,μe−i Aλ,μe−i Sλ = H0 − Tλ + Dλ + Wλ,μ (64)

with

Wλ,μ = Wλ − μ2vF

2π

∑

p

1

L

Kλ(p)2

vλ(p)2

∣∣∣Ŵ (p)

∣∣∣
2

(65)

using vλ(p) in (24), Kλ(p) in (25), and Wλ in (47), where |Ŵ (p)|2 = Ŵ (−p)Ŵ (p).
We note that the Luttinger parameter Kλ(p) can be expressed as

Kλ(p) = e2ϕλ(p), (66)

which, using (48), gives precisely (25). [The relation in (66) can be shown to hold for
the general interactions considered in Appendix B.] The ground state of Hλ,μ is thus
|
λ,μ〉 = e−i Aλ,μ |
λ〉 with ground state energy Wλ,μ. Since the latter must be finite,
this implies that the external field must satisfy

∑

p

1

L

Kλ(p)2

vλ(p)2

∣∣∣Ŵ (p)

∣∣∣
2

< ∞. (67)
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This condition can be shown to be satisfied by W (x) in (13). We also note that (63) can
be written as

i pη̂(p) = −μ
Kλ(p)

vλ(p)
Ŵ (p) (68)

using vλ(p) in (24) and Kλ(p) in (25). This together with (61) yields the identity

ei Aλ,μρr (p)e−i Aλ,μ = ρr (p) +
μ

2π

Kλ(p)

vλ(p)
Ŵ (p) ∀p, (69)

which shows that the external field appears as a c-number added to ρr (p) after the
transformation under ei Aλ,μ . Moreover, it follows from (56), (57), and (64) that the
exact eigenstates of Hλ,μ are

|
λ,μ,m〉 = e−i Aλ,μe−i Sλ |
0,m〉 (70)

for m = {
(m(p))p �=0 , q+, q−

}
with m(p) ∈ N and q+, q− ∈ Z, where at most finitely

many of the m(p) are non-zero. The corresponding eigenvalues are

Eλ,μ,m = π

L
vF

(
q2
+ + q2− +

λV̂ (0)

πvF
(q+ + q−)2

)
+
∑

p �=0

vλ(p)|p|m(p) + Wλ,μ. (71)

It is clear that the eigenstates of Hλ,μ in (70) form a complete orthonormal basis for the
fermion Fock spaceF defined in Sect. 3. This implies that Hλ,μ is self-adjoint onF and
has a pure point spectrum. Moreover, it follows from (71) that all eigenvalues of Hλ,μ

are ≥ Wλ,μ and that its ground state can be identified as |
λ,μ〉 = |
λ,μ,0〉 which is
clearly non-degenerate. This also implies that Hλ,μ is bounded from below. This proves
Theorem 2.1.

5. Evolution Following a Quench

Assuming the system is in the ground state |
λ,μ〉 of Hλ,μ in (58), we study its evolution
under Hλ′ and compute the expectation values of certain local observables. First, we
consider the total density ρ(x) = ρ+(x) + ρ−(x) and the current j (x) = vF (ρ+(x) −
ρ−(x)). Second, we compute the fermion two-point correlation function. As we will see,
the results in (49) and (69) are the workhorse in these computations. We recall that the
expectation values are first computed for finite L and then we pass to the thermodynamic
limit (cf. Remark 2.2).

5.1. Total density and current: proof of (22) and (23). To compute the expectation
values of ρ(x) and j (x) with respect to |
λ′

λ,μ(t)〉 in (14), where we recall that |
λ,μ〉 =
e−i Aλ,μe−i Sλ |
0〉, we first derive the time evolution of ρr (p) under Hλ′ , do a similarity
transformation under ei Sλei Aλ,μ , take the inverse Fourier transform, and then compute
the expectation value with respect to |
0〉. Through repeated use of (49) and (69) we
find the following transformation rule for the densities:



E. Langmann, J. L. Lebowitz, V. Mastropietro, P. Moosavi

ei Sλei Aλ,μei Hλ′ tρr (p)e−i Hλ′ t e−i Aλ,μe−i Sλ

= μ

2πvF

Kλ(p)

vλ(p)
Ŵ (p) (vF cos(pvλ′(p)t) − irvλ′(p) sin(pvλ′(p)t))

+ ρr (p)
(

u++
λ,λ′(p)e−i prvλ′ (p)t − u−−

λ,λ′(p)eiprvλ′ (p)t
)

− ρ−r (p)
(

u+−
λ,λ′(p)e−i prvλ′ (p)t − u−+

λ,λ′(p)eiprvλ′ (p)t
)

(72)

with the coefficients

u++
λ,λ′(p) = cosh ϕλ′(p) cosh(ϕλ′(p) − ϕλ(p)),

u−−
λ,λ′(p) = sinh ϕλ′(p) sinh(ϕλ′(p) − ϕλ(p)),

u+−
λ,λ′(p) = cosh ϕλ′(p) sinh(ϕλ′(p) − ϕλ(p)),

u−+
λ,λ′(p) = sinh ϕλ′(p) cosh(ϕλ′(p) − ϕλ(p)). (73)

It thus follows, using the inverse Fourier transform ρr (x) = ∑
p(1/L)ρr (p)eipx and

computing the expectation value of (72) with respect to |
0〉, that the time evolution of
the total density is

〈
λ′
λ,μ(t)|ρ(x)|
λ′

λ,μ(t)〉L = μ

2π

∑

p

1

L

Kλ(p)

vλ(p)
Ŵ (p)2 cos(pvλ′(p)t)eipx , (74)

and, similarly, that the time evolution of the current is

〈
λ′
λ,μ(t)| j (x)|
λ′

λ,μ(t)〉L = μ

2π

∑

p

1

L

Kλ(p)

vλ(p)
Ŵ (p)vλ′(p)(−2i sin(pvλ′(p)t))eipx .

(75)

The results in (22) and (23) are obtained from (74) and (75) in the thermodynamic limit.

5.2. Two-point correlation function: proof of (26)–(28). To compute the two-point cor-
relation function we use the following lemma which allows us to obtain the fermion
fields ψ±

r (x) as limits of regularized fields (for proof see, e.g., [42] or Proposition 3.7
in [33]):

Lemma 5.1. Let ε > 0 and consider

ψ±
r (x; ε) = L−1/2e∓iπr x Qr /L R±r

r e∓iπr x Qr /L exp

⎛

⎝
∑

p>0

π

Lp
e−εp

⎞

⎠

× exp

⎛

⎝∓r
∑

p �=0

2π

Lp
ρr (p)eipx−ε|p|/2

⎞

⎠ (76)

with Qr and Rr defined in Sect. 3. Then ψ±
r (x; ε) converge to ψ±

r (x) as ε → 0+ in the
following distributional sense:

ˆ L/2

−L/2
dx ψ±

r (x)e±ikx = lim
ε→0+

ˆ L/2

−L/2
dx ψ±

r (x; ε)e±ikx (77)
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for all k = π(2n + 1)/L with n ∈ N, where the limit on the right-hand side is in the
strong sense [40] on the domain D defined in Sect. 3.

With these fields, and by again repeatedly using (49) and (69), we find, similar to
(72),

ei Sλ ei Aλ,μ ei Hλ′ t ψ±
r (x; ε)e−i Hλ′ t e−i Aλ,μ e−i Sλ

= exp

⎛

⎝∓ir
μ

vF

∑

p �=0

1

L

Kλ(p)

vλ(p)
Ŵ (p)

(
vF cos(pvλ′ (p)t) − irvλ′ (p) sin(pvλ′ (p)t)

) eipx−ε|p|/2
i p

⎞

⎠

×L−1/2e∓iπr x Qr /L ei Hλ′ t R±r
r e−i Hλ′ t e∓iπr x Qr /L exp

⎛

⎝
∑

p>0

π

Lp
e−εp

⎞

⎠

× exp

⎛

⎝∓r
∑

p �=0

2π

Lp
ρr (p)

(
u++
λ,λ′ (p)e−i prvλ′ (p)t − u−−

λ,λ′ (p)eiprvλ′ (p)t
)

eipx−ε|p|/2
⎞

⎠

× exp

⎛

⎝±r
∑

p �=0

2π

Lp
ρ−r (p)

(
u+−
λ,λ′ (p)e−i prvλ′ (p)t − u−+

λ,λ′ (p)eiprvλ′ (p)t
)

eipx−ε|p|/2
⎞

⎠ (78)

with

ei Hλ′ t R±r
r e−i Hλ′ t = e±iπvλ′ t

∑
s=±(K −1

λ′ +sK
λ′ )Qsr /2L R±r

r e±iπvλ′ t
∑

s=±(K −1
λ′ +sK

λ′ )Qsr /2L

(79)

and the coefficients in (73). It follows that the two-point correlation function is

〈
λ′
λ,μ(t)|ψ+

r (x)ψ−
r (y)|
λ′

λ,μ(t)〉L = e−irv−1
F Ar,L (x,y,t)(x−y)Sr,L(x, y, t) (80)

with

Ar,L(x, y, t) = μ
∑

p �=0

1

L

Kλ(p)

vλ(p)
Ŵ (p) (vF cos(pvλ′(p)t)

−irvλ′(p) sin(pvλ′(p)t))
eipx − eipy

i p(x − y)
(81)

and

Sr,L(x, y, t) = 〈
λ′
λ,0(t)|ψ+

r (x)ψ−
r (y)|
λ′

λ,0(t)〉L . (82)

The results in (26)–(28) are obtained from (80)–(82) in the thermodynamic limit.

5.3. Two-point correlation function: proof of (29)–(31). For the proof we use the reg-
ularized operators ψ

q
r (x; ε) in Lemma 5.1 for q = ± and ε > 0. It follows by setting

μ = 0 in (78) that

ei Sλei Hλ′ tψq
r (x; ε)e−i Hλ′ t e−i Sλ

= L−1/2e−iπqr x Qr /Lei Hλ′ t Rqr
r e−i Hλ′ t e−iπqr x Qr /L Za,ε,L(t)

×W q
1,r (x, t; ε)W q

2,−r (x, t; ε) (83)
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with the time-dependent factor

Za,ε,L(t) = exp

⎛

⎝−
∑

p>0

π

L

ηλ,λ′(p) − γλ,λ′(p) cos(2pvλ′(p)t)

p
e−εp

⎞

⎠ (84)

(the dependence on the interaction range a > 0 is commented on further below) and
so-called vertex operators,

W q
1,r (x, t; ε)

= ×
×exp

(
−qr

∑

p �=0

2π

Lp
ρr (p)

(
u++

λ,λ′ (p)eip(x−rvλ′ (p)t) − u−−
λ,λ′(p)eip(x+rvλ′ (p)t)

)
e−ε|p|/2

)
×
× ,

W q
2,−r (x, t; ε)

= ×
×exp

(
qr

∑

p �=0

2π

Lp
ρ−r (p)

(
u+−

λ,λ′(p)eip(x−rvλ′ (p)t) − u−+
λ,λ′ (p)eip(x+rvλ′ (p)t)

)
e−ε|p|/2

)
×
× ,

(85)

where
×
×· · ·×

× denotes boson normal ordering, i.e., all boson creation operators are placed
to the left of all boson annihilation operators; see, e.g., [33] for precise definitions. Using
the coefficients in (73) one finds that ηλ,λ′(p) and γλ,λ′(p) are given by

ηλ,λ′(p) = 2
(

u++
λ,λ′(p)2 + u−−

λ,λ′(p)2 − 1
)

= 2
(

u+−
λ,λ′(p)2 + u−+

λ,λ′(p)2
)

= cosh 2ϕλ′(p) cosh 2(ϕλ′(p) − ϕλ(p)) − 1 (86)

and

γλ,λ′(p) = 4u++
λ,λ′(p)u−−

λ,λ′(p) = 4u+−
λ,λ′(p)u−+

λ,λ′(p)

= sinh 2ϕλ′(p) sinh 2(ϕλ′(p) − ϕλ(p)), (87)

respectively. Note that the dependence in (84) on the interaction range a > 0 is indicated
to emphasize that Za,ε,L(t) vanishes in the local limit a → 0+; see, e.g., [33] for details.

The technical parts of the computations are omitted here since they are identical to
those in [33], where they are explained in detail. We mention only that it follows from
(83)–(87) and Proposition 3.4 in [33] that

Za,ε,L (t)2〈
0|W+
1,r (x, t; ε)W+

2,−r (x, t; ε)W−
1,r (y, t; ε)W−

2,−r (y, t; ε)|
0〉L

= exp

⎛

⎝
∑

p>0

2π

L

(
eipr(x−y)

p
+

ηλ,λ′ (p)−γλ,λ′ (p) cos(2pvλ′ (p)t)

p
(cos p(x − y)−1)

)
e−εp

⎞

⎠ , (88)

where the only factor which does not depend on λ or λ′ corresponds to

〈
0
0,0(t)|ψ+

r (x)ψ−
r (y)|
0

0,0(t)〉 = lim
ε→0+

lim
L→∞

1

L
exp

⎛

⎝
∑

p>0

2π

L

eipr(x−y)

p
e−εp

⎞

⎠

= i

2πr(x − y) + i0+
. (89)
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The latter is precisely the two-point correlation function in the thermodynamic limit
when there is no interaction (and no domain wall). Moreover, the operators Qr and Rr
in (83) do not contribute if we take L → ∞ other than that the last identity in (52)
puts constraints on which two-point correlation functions are non-zero: the ground state

expectation value of ψ
q
r (x)ψ

q ′
r ′ (y) for r, r ′ = ± and q, q ′ = ± can be non-zero only

if r = r ′ and q = −q ′. Therefore, after taking the limit ε → 0+, the only non-zero
two-point correlation function in the thermodynamic limit is the one given in (29) with
ηλ,λ′(p) and γλ,λ′(p) in (30); this follows from (66) and (83)–(89). Finally, we note that
the identity in (31) follows from (86) and (87) usingηλ(p) = ηλ,λ(p) = cosh 2ϕλ(p)−1.

6. Approach to Steady State: Proof of Theorem 2.3

The asymptotic behaviors of I (x, t), R(x, t), and Ar (x, y, t) can be studied by consid-
ering the integrals in (22), (23), and (27), respectively. In Appendix A we show that

|R(x, t) − R| ≤ CR

t
, |I (x, t) − I | ≤ CI

t
, |A±(x, y, t) − A±| ≤ CA

t
∀x, y

(90)

for certain finite constants CR, CI , CA > 0 with

R = 0, I = μ

2π

Kλvλ′

vλ

, A± = ±μ

2

Kλvλ′

vλ

, (91)

which are manifestly translation invariant. From this the result in (33) follows. Similarly,
the asymptotic behavior of Sr (x, y, t) can be studied by considering the integral in (29).
In Appendix A we prove that

lim
t→∞ Sr (x, y, t) = i

2πr(x − y) + i0+
exp

(ˆ ∞

0
dp

ηλ,λ′(p)

p
(cos p(x − y) − 1)

)
,

(92)

where the contribution containing γλ,λ′(p), which is non-zero if λ �= λ′ �= 0, has
disappeared in the limit t → ∞. The result in (34) follows from (92) using (26) and
(33). This completes the proof of Theorem 2.3.

A result similar to (92) can be derived for the non-equal-time two-point cor-
relation function 〈
λ′

λ,0(t)|ψ+
r (x+, t+)ψ−

r (x−, t−)|
λ′
λ,0(t)〉 for fields ψ±

r (x±, t±) =
ei Hλ′ t±ψ±

r (x±)e−i Hλ′ t± with t± � t using the methods in Sect. 5. Although we omit
the explicit expression we note that it shares the property with (92) that contributions
containing γλ,λ′(p) disappear as t → ∞. Moreover, these particular contributions are
the only ones which are not time-translation invariant, one example is a dependence on
t++ t−, and, since they disappear, time-translation invariance is recovered asymptotically
in time. One could naively try to reproduce this by treating the final state as a ground
state of some Luttinger Hamiltonian (cf. Sect. 7). However, for λ �= λ′ �= 0, the same
non-equal-time two-point correlation function for such a ground state of a Luttinger
Hamiltonian, which cannot be Hλ′ since ηλ′(p) �= ηλ,λ′(p), depends, in general, on
t+ + t−. Therefore, since such a state is not time-translation invariant, it cannot corre-
spond to the final steady state when λ �= λ′ �= 0; cf. also [28]. On the other hand,
we show in Sect. 7 that for λ = λ′ the two-point correlation function supports such a
description, but with different chemical potentials for right- and left-moving fermions if
μ �= 0. Moreover, since γλ,λ′(p) = 0 if λ = λ′, this is also true for the non-equal-time
correlation function.
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7. Luttinger Model with Constant Chemical Potentials: Proof of Theorem 2.4

We now show that, for λ = λ′, the steady state, obtained asymptotically in time, has
the same equal-time two-point correlation function in the thermodynamic limit as the
ground state of the Hamiltonian in (36) with constant chemical potentials μ± satisfying
μ+ +μ− = 2μ0. We again recall that the model is defined for finite L (cf. Remark 2.2).

To diagonalize the Hamiltonian H in (36) we use so-called large gauge transforma-
tions, which are implemented by the unitary operators Rr defined in Sect. 3:

R−rwr
r ψ±

r ′ (x)Rrwr
r = e∓irδr,r ′wr2πx/Lψ±

r ′ (x),

R−rwr
r ρr ′(x)Rrwr

r = ρr ′(x) + δr,r ′wr/L
(93)

forwr ∈ Z; see, e.g., [33].We note that the requirement that thewr are integers constrain
the possible values ofμr −μ0 forwhich the following arguments apply, but this will be of
no consequence in the thermodynamic limit and can thus be ignored. For the densities,
the transformation in (93) implies that there is a shift in the zero-mode contribution,
which we will see corresponds to a shift in the ground state. It follows from Sect. 3 that

ei Sλ He−i Sλ = H0 − Tλ + Dλ + Wλ −
∑

r

(μr − μ0)Qr (94)

for H in (36), and therefore

R−w+
+ Rw−− ei Sλ He−i Sλ Rw+

+ R−w−−

= π

L
vF

⎛

⎝
∑

r

(Qr + wr )
2 +

λV̂ (0)

πvF

(
∑

r

Qr + wr

)2
⎞

⎠ + Dλ

+ Wλ −
∑

r

(μr − μ0)(Qr + wr ). (95)

To make this diagonal we must choose w± = L(μ± − μ0)/2πvF , which yields

R−w+
+ Rw−− ψ±

r (x)Rw+
+ R−w−− = e∓irv−1

F (μr −μ0)xψ±
r (x),

R−w+
+ Rw−− ρr (x)Rw+

+ R−w−− = ρr (x) +
μr − μ0

2πvF
,

(96)

and

R−w+
+ Rw−− ei Sλ He−i Sλ Rw+

+ R−w−− = H0 − Tλ + Dλ + Wλ − L

4πvF

∑

r

(μr − μ0)
2

(97)

(where we have used the condition μ+ + μ− = 2μ0). This means that the ground state
of H is |
〉 = Rw+

+ R−w−− |
λ〉 with ground state energy Wλ − L(μ+ − μ−)2/8πvF .
We note that |
〉 can also be interpreted as an excited eigenstate of Hλ since it has
chiral charges w± �= 0 if μ± �= μ0 [cf. (55)]. Using the results in Sect. 3 we can
construct all eigenstates and eigenvalues of H for finite L , but we omit the details since
they are similar to (55)–(57). This proves the statements about H in Theorem 2.4; cf.
the end of Sect. 4. Moreover, as explained in Sect. 5, we can compute the two-point
correlation function 〈
|ψ+

r (x)ψ−
r (y)|
〉L using the first identity in (96), which in the
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thermodynamic limit gives the result in (37), but again we omit the details since they
are similar to (83)–(89). This completes the proof of Theorem 2.4.

Lastly, we note that the identities in (8) relating the fields ψ±
r (x) and ψ̃±

r (x) can
be proven in the same way as (96). The only difference is in the transformation of the
corresponding Hamiltonians: it follows from (7) and (8) that there must be counterterms
in (2), not present in (7), for the Hamiltonians expressed using ψ̃±

r (x) and ψ±
r (x) to be

the same; cf. also [32].

8. Concluding Remarks

We studied properties of the Luttinger model with a non-local interaction following
a quench from a domain wall initial state. The evolution of the local observables we
consider is ballistic, but, at the same time, dispersive if λ′ �= 0. The dispersion effects
appear as oscillations traveling ahead of the wave fronts as in Figs. 3 and 4. This is in
agreementwith analytical and numerical results in [22,23] for quantumXXZspin chains.
However, it should be noted that, since themodel in [23] ismapped to theLuttingermodel
with a delta-function interaction, the evolution in that case is non-dispersive, similar to
our non-interacting case, and there are divergences which are absent in our results.
Asymptotically in time, the system reaches a steady state that retains memory of the
initial state, meaning there is equilibration (stabilization). This was previously found in
[23] for quantumXXZ spin chains and in [5] for non-interacting bosons.We also showed
that, if λ �= λ′ �= 0, the final steady state has exponents which are different from those
in equilibrium. This generalizes previous results in [27–29] to more general interaction
quenches.

The final state is clearly different from the ground state of Hλ′ in general (i.e., if
λ �= λ′ �= 0 or μ �= 0) and thus cannot be described as a thermal state obtained
from the usual canonical ensemble. Since the system is integrable this is not surprising:
thermalization in the usual sense is not expected but rather in the sense of a generalized
canonical ensemble; see, e.g., [5,28]. For λ = λ′ we showed that the (equal-time) two-
point correlation function for the final state is equal to that for the ground state of the
Hamiltonian H in (36) with different chemical potentials for right- and left-moving
fermions (this can also be verified for the non-equal-time correlation function). If true
for all N -point correlation functions, this would suggest that the Gibbs measure of the
final state is e−βH with H in (36) in the zero-temperature limit β → ∞. Therefore,
when λ = λ′, the suggested generalized canonical ensemble needed to describe the final
state consists of the conserved quantities Hλ′ and Q±. However, for λ �= λ′ �= 0 we
showed that this particular generalized canonical ensemble is too simple. To test whether
a generalized canonical ensemble can describe the final steady state, when λ �= λ′ �= 0,
additional conserved quantities [which are higher-order polynomials in the commuting
operators n p = b+pb−

p with b±
p in (53)] would have to be included. This problem is left

open.
We stress that universality of conductance is found via a fully non-equilibrium

approach. Previous explanations of this universality were in a near-to-equilibrium set-
ting; see, e.g., [36–39]. Whether the conductance in the Luttinger model is renormalized
or not has been debated. Earlier works found that it should be renormalized by the
interaction [34], but later experimental and theoretical results found it to be universal;
see, e.g., [37]. We found that these different results can be reconciled in a dynamical
approach, which we believe sheds new light on this issue. The key observation is that
the current and the chemical potential difference are renormalized by the interaction, but
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that the renormalizations cancel when computing the Landauer conductance [35,36].
On the other hand, if one uses a non-renormalized chemical potential difference when
defining the conductance, the renormalizations do not cancel. This is summarized by
the relation in (6), which, in particular, shows that G = I/(μ+ − μ+) = 1/2π (in units
where e = � = 1) is always universal. This relation also makes clear that our results
for the Luttinger model are not in conflict with the non-universal results in [22] for
quantum XXZ spin chains. Indeed, setting λ = λ′ in (33) yields the non-universal value
Gλ,λ = I/μ = Kλ/2π in [34], which is in agreement with the result in [22] if one takes
spin degrees of freedom into account.

It is natural to conjecture that universality of conductance persists even when no
exact solution is available. In equilibrium, renormalization group techniques can explain
universality also in caseswithout exact solutions. Itwould be interesting to extend such an
approach to a non-equilibrium setting. We also note a connection between the Landauer
conductance and the Thouless conductance for reflectionless transport of free fermions
studied in [43]. It would be interesting to investigate if the mechanism explored in [43]
is related to our universality result. Finally, we mention that we expect our method to be
applicable to more general states, such as, e.g., thermal states.
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Appendix A: Asymptotics

To study the asymptotic behavior of R(x, t), I (x, t), Ar (x, y, t), and Sr (x, y, t) in Sect. 6
we use the following lemma (the proof is given at the end of this appendix):

Lemma A.1. Let

F(t) =
 ∞

−∞
dp

2π

f (p)

p
eipu(p)t , F0(t) =

 ∞

−∞
dp

2π

f (0)

p
eipu(0)t (A.1)

(interpreted as Cauchy principal values) with real-valued functions f (p) and u(p) (for
p ∈ R) satisfying the following conditions:

1. ( f (p) − f (0))p−1 ∈ C1(R) (a.e.),

2. ( f (p) − f (0))p−1, d(( f (p) − f (0))p−1)/dp ∈ L1(R),

3. ( f (p) − f (0))p−1 → 0 as p → ±∞,

(A.2)

and

1. u(p) ∈ C2(R) (a.e.),

2. u(p), du(p)/dp, d2u(p)/dp2 ∈ L1(R),

3. ug(p) = d(u(p)p)/dp > 0 ∀p.

(A.3)
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Then

|F(t) − F0(t)| ≤ C

t
(A.4)

for some finite constant C > 0.

Proof of (90) and (91). If W (x) = 1/2 − θ(x), or our regularized version thereof, the
Fourier transform of the external field is Ŵ (p) = i/p or tends to this as p → 0. Letting
u(p) = vλ′(p) and choosing f (p) as the function corresponding to R(x, t) in (22),
I (x, t) in (23), and Ar (x, y, t) in (27), respectively, the conditions in (16) imply that
the conditions in (A.2) and (A.3) are satisfied; this follows using (24) and (25). We now
note that ∞

−∞
dp

2π

1

p
cos(pu(0)t) = 0,

 ∞

−∞
dp

2π

1

p
sin(pu(0)t) = 1

2
∀t > 0. (A.5)

The identities in (90) and (91) then follow from Lemma A.1 and (A.5) by splitting
eipvλ′ (p)t into real and imaginary parts. ��
Proof of (92). We set u(p) = 2vλ′(p) and f (p) = 2πγλ,λ′(p) (cos p(x − y) − 1) in
Lemma A.1 and note that the conditions in (16) imply that the conditions in (A.2) and
(A.3) are satisfied; this follows using (24), (25), and γλ,λ′(p) in (30). It then follows
from Lemma A.1 and (A.5), by splitting e2i pvλ′ (p)t into real and imaginary parts, that
the time-dependence in the integral in (29) disappears as t → ∞. ��
Proof of Lemma A.1. Define p̃ by the change of variables

u(0) p̃ = u(p)p, u(0)d p̃ = ug(p)dp. (A.6)

Also, define f̃ ( p̃) by

f̃ ( p̃)d p̃

p̃
= f (p)dp

p
, (A.7)

which implies

f̃ ( p̃) = f (p)
u(p)

ug(p)
, f̃ (0) = f (0). (A.8)

By relabeling p by p̃ in F0(t), we find

F(t) − F0(t) =
 ∞

−∞
d p̃

2π

f̃ ( p̃) − f̃ (0)

p̃
ei p̃u(0)t , (A.9)

and using integration by parts,

F(t) − F0(t) =
[

1

2π

f̃ ( p̃) − f̃ (0)

p̃

−iei p̃u(0)t

u(0)t

]∞

−∞

+
 ∞

−∞
d p̃

2π

d

d p̃

(
f̃ ( p̃) − f̃ (0)

p̃

)
iei p̃u(0)t

u(0)t
. (A.10)
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This implies that (A.4) holds with

C = 1

u(0)

 ∞

−∞
d p̃

2π

∣∣∣∣∣
d

d p̃

(
f̃ ( p̃) − f̃ (0)

p̃

)∣∣∣∣∣ < ∞ (A.11)

since the conditions on f (p) in (A.2) and u(p) in (A.3) imply that the integrand is L1:
this follows from a straightforward computation showing that

f̃ ( p̃) − f̃ (0)

p̃
=
(

f (p) − f (0)

p
− f (0)

d

dp
ln

(
u(p)

u(0)

))
dp

d p̃
(A.12)

and

d

d p̃

(
f̃ ( p̃) − f̃ (0)

p̃

)
= d

dp

(
f (p) − f (0)

p
− f (0)

d

dp
ln

(
u(p)

u(0)

))(
dp

d p̃

)2

+

(
f (p) − f (0)

p
− f (0)

d

dp
ln

(
u(p)

u(0)

))
d2 p

d p̃2
(A.13)

with dp/d p̃ = u(0)/ug(p) and d2 p/d p̃2 = d(u(0)2/2ug(p)2)/dp. [The latter contains
the second derivative of u(p), which explains why the condition on d2u(p)/dp2 in (A.3)
is needed.] ��

Appendix B: General Interactions

We consider an equilibrium model of the same form as the one in Sect. 7 but for general
g2- and g4-interactions in g-ology; see, e.g., [31]. This model has different chemical
potentials for right- and left-moving fermions and λH ′ is decomposed into g2H2 (inter-
action between fermions moving in opposite directions) and g4H4 (interaction between
fermions moving in the same direction):

H = H0 + g2H2 + g4H4 −
∑

r

(μr − μ0)Qr ,

H2 =
∑

r

1

L
V̂2(0)Qr Q−r +

∑

r

∑

p>0

1

L
V̂2(p) (ρr (p)ρ−r (−p) + ρr (−p)ρ−r (p)) ,

H4 =
∑

r

1

L
V̂4(0)Q2

r +
∑

r

∑

p>0

1

L
V̂4(p) (ρr (p)ρr (−p) + ρr (−p)ρr (p)) (B.1)

with μ± constant chemical potentials satisfying μ+ + μ− = 2μ0; the conditions on the
g2- and g4-interactions can be shown to be V̂i (p) = V̂i (−p) for i = 2, 4, |g2V̂2(p)| <

πvF + g4V̂4(p) for all p, and

∑

p>0

pg2
2 V̂2(p)2

πvF

(
πvF + g4V̂4(p)

) < ∞. (B.2)

We also find it convenient to introduce the following shorthand notation:

g̃2(p) = g2V̂2(p)/πvF , g̃4(p) = g4V̂4(p)/πvF , μ̃r = (μr − μ0)/πvF . (B.3)
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The renormalized Fermi velocity and Luttinger parameter can then be written

vg2,g4(p) = vF

√
(1 + g̃4(p))2 − g̃2(p)2,

Kg2,g4(p) = √
(1 + g̃4(p) − g̃2(p))/(1 + g̃4(p) + g̃2(p)),

(B.4)

respectively, for general g2- and g4-interactions [31]. Moreover, similar to Sect. 7, the
possible values ofμ±−μ0 must be integermultiples of an interaction dependent constant
[see (B.12)], but as before this will be of no consequence in the thermodynamic limit.

We define a current which is consistent with the continuity equation implied by
H . Using ρr (p, t) = ei Hλtρr (p)e−i Ht we have ∂tρr (p, t) = iei Ht [H, ρr (p)]e−i Ht ,
where [H0, ρr (p)] is given in (44), [H2, ρr (p)] = −rvF p(V̂2(p)/πvF )ρ−r (p), and
[H4, ρr (p)] = −rvF p(V̂4(p)/πvF )ρr (p). It follows that

∂t (ρ+(p, t) + ρ−(p, t)) + i pvF (1 + g̃4(p) − g̃2(p)) (ρ+(p, t) − ρ−(p, t)) = 0. (B.5)

This is the continuity equation in Fourier space if we define the total density and the
current as ρ(p) = ρ+(p) + ρ−(p) and

j (p) = vF (1 + g̃4(p) − g̃2(p)) (ρ+(p) − ρ−(p))

= Kg2,g4(p)vg2,g4(p)(ρ+(p) − ρ−(p)), (B.6)

respectively. Setting g2 = g4 = λ and V̂2(p) = V̂4(p) = V̂ (p), we recover λH ′ =
g2H2 + g4H4 and j (x) = vF (ρ+(x) − ρ−(x)) since vλ(p) in (24) and Kλ(p) in (25)
satisfy Kλ(p)vλ(p) = vF . This proves that the total density and the current in the main
text are consistent with the corresponding continuity equation.

Let |
〉 denote the ground state of H and consider the average current

I = L−1
ˆ L/2

−L/2
dx 〈
| j (x)|
〉 = L−1〈
| j (p = 0)|
〉, (B.7)

which corresponds to the steady current in the main text. Only the zero modes contribute
to this current since

I = Kg2,g4vg2,g4

L
〈
| (Q+ − Q−) |
〉, (B.8)

where vg2,g4 = vg2,g4(0) and Kg2,g4 = Kg2,g4(0), using j (p) in (B.6). Similar to Sect. 7,
the Hamiltonian H can be diagonalized using a unitary operator ei Sg2,g4 , given by

Sg2,g4 = i
∑

p �=0

2π

L

ϕg2,g4(p)

p
ρ+(−p)ρ−(p),

tanh 2ϕg2,g4(p) = − g̃2(p)

1 + g̃4(p)
∀p �= 0, (B.9)

and large gauge transformations implemented by the unitary operators R± defined
in Sect. 3. It follows that the ground state of H can be written as |
〉 =
Rw+
+ R−w−− |
g2,g4〉 with |
g2,g4〉 = e−i Sg2,g4 |
0〉. Since we are interested in computing
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〈
| (Q+ − Q−) |
〉 = w+ − w−, it suffices to consider the zero-mode part of |
〉. We
therefore consider only the zero-mode part of H ,

HQ =
∑

r

πvF

L

(
(1 + g̃4(0)) Q2

r + g̃2(0)Qr Q−r − Lμ̃r Qr

)
. (B.10)

The large gauge transformations are defined so that they remove all terms which are
linear in the charge operators Q±,

R−w+
+ Rw−− HQ Rw+

+ R−w−− = HQ −
∑

r

πvF

L
((1 + g̃4(0)) wr + g̃2(0)w−r ) wr

+ 2
∑

r

πvF

L
((1+ g̃4(0)) wr + g̃2(0)w−r − Lμ̃r/2) (Qr +wr ),

(B.11)

which, using μ+ + μ− = 2μ0, implies that w± must be chosen as

w± = Lμ̃±/2

1 + g̃4(0) − g̃2(0)
= L(μr − μ0)

2π Kg2,g4vg2,g4
. (B.12)

From this and (B.8), using 〈
| (Q+ − Q−) |
〉 = w+ − w−, we find that Kg2,g4vg2,g4
cancels:

I = Kg2,g4vg2,g4

L

L(μ+ − μ−)

2π Kg2,g4vg2,g4
= μ+ − μ−

2π
. (B.13)

This corresponds to a universal conductance G = 1/2π , i.e., the conductance quantum
found in the main text; the computation given here is essentially an alternative derivation
of the result in [36], but for a less general family of Hamiltonians.

We also show that it is possible to read the chemical potential difference from the
two-point correlation function, as done in the main text. Indeed, from (93), it follows
that

〈
|ψ+
r (x)ψ−

r (y)|
〉 = e∓irwr2π(x−y)/L〈
g2,g4 |ψ+
r (x)ψ−

r (y)|
g2,g4〉, (B.14)

which, using (B.12), implies that the two-point correlation function is

〈
|ψ+
r (x)ψ−

r (y)|
〉 = e−ir(Kg2,g4vg2,g4 )−1(μr −μ0)(x−y)〈
g2,g4 |ψ+
r (x)ψ−

r (y)|
g2,g4〉.
(B.15)

The latter is of the same form as (37) but with the factor (Kg2,g4vg2,g4)
−1 replacing v−1

F

in the phase on the right-hand side. In particular, setting g2 = g4 = λ and V̂2(p) =
V̂4(p) = V̂ (p) we recall that Kλvλ = vF , while, in general, the new factor cancels the
factor Kg2,g4vg2,g4 in the current [given by (B.6) for p = 0]. This shows that universality
of conductance holds for general g2- and g4-interactions and not only for the particular
interaction in the main text.

As a final remark,wemention that the formulas given in themain text for the evolution
of the Luttinger model following a quench can be shown to remain valid for general g2-
and g4-interactions if one replacesvλ(p) and Kλ(p)withvg2,g4(p) and Kg2,g4(p)defined
in (B.4) (the other necessary changes are explained above). In particular, we note that
the relation in (66) holds replacing ϕλ(p) with ϕg2,g4(p) in (B.9) but that the relation in
(50) does not generalize.
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