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Summary 

A theory is presented for the time evolution of the joint age and generation time distribution of a 
microbial population. By means of the solution to the fundamental equation of the theory, the 
effect of correlations between the generation times of mother and daughter cells may be determined 
on the transient and steady state growth stages of the population. The relationships among various 
generation time distributions measured under different experimental circumstances is clarified. 

1. Introduction 

A striking property of microbial populations, even when grown under constant 
environmental conditions, is the great variability of the generation times of 
individual members of the population, illustrated in Fig. 1. The cause of this 
variability remains an important unsolved biological problem. The variability 
is generally ascribed to intrinsic variable factors associated with cell growth and 
maturation, culminating in division [1]. 

Prescott [2] has suggested that the variability stems from variability in the 
initial state of a newborn cell, where initial state means cell weight, number of 
mitochondria, microsomes, etc. Variability in the initial state of the chromosome 
is likewise a fundamental feature of the Cooper-Helmstetter model for chromo- 
some replication in E. coli [3]. In both of these views, the generation time is 
determined at birth. 
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Fig. 1. The solid points represent the number of  cells entering mitosis as a function of  time, 
where t = o represents cells o f  age 0, for 766 cells o f  the HS strain of  Tetrahymena geleii cells 
observed by Prescott [2]. The solid line is a fitted curve of  the form of  equation (48), taken from re- 
ference 8. Such a skewed curve is a typical generation time distribution function for microbial 

populations 

Rahn [4], on the other hand, viewed the division process as consisting of a large 
number of primitive biochemical steps, each step subject to probabilistic variation. 
This idea was further developed by Kendall [5]. In this view, all cells are initially 
identical, and variability is a consequence of the stochastic nature of the 
primitive steps. Essentially this latter viewpoint, that the generation time is 
inherently probabilistic and not determined at birth, underlies the age-time 
formalism [6, 7]. Here, cells may undergo division at any age a, with a certain 
probability independent of their history. 

A different view of variability is presented in the maturity-time formalism [8], 
in which a cell density function is introduced which depends on maturity and time 
rather than age and time. In this formalism, the variability of generation times 
is ascribed to variability, whether stochastic or otherwise, in the velocity of 
maturation of different cells comprising the population, the final maturation 
state being exactly the same for all cells. This point of view has also been 
advocated by Kubitschek [9]. In the present work, we shall adopt the viewpoint 
that the generation time of a cell is an inherent characteristic which is essentially 
determined at the time of its birth. 
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Whatever the point of view adopted, the question naturally arises as to how the 
generation time of a parent cell is related to the generation times of its daughters. 
In the context of cell population theory, this question becomes the following: 
given a subpopulation of cells all with the same generation time, what is the 
distribution of generation times of their daughters? This problem has attracted 
the attention of many biologists. Thus, Powell [-10] and Kubitschek [11] found, 
by looking at individual bacterial cells, that there was only a weak correlation 
between the generation times of mothers and daughters, although the data were 
not completely consistent [-12, 13]. The existence of mother-daughter correlations 
can also be inferred by studying the development in time of a culture started under 
some specified conditions. Thus, Hughes [14] found that from a culture of 
E. coli Br cells derived from a single cell, it is possible to select out populations 
which grow either more or less rapidly than the parent strain, under the same 
environmental conditions. In other words, fast or slow growing mothers had, 
on the average, fast or slow growing daughters, respectively. 
Similarly in the investigations of Prescott [2], the colonies originating from many 
different cells were followed in time. These measurements were then combined to 
describe the evolution of a single population by setting the time origin for each 
colony at the first division time of the mother cell. This yielded very precise 
measurements of the growth in time of a population of tetrahymema 9eleii HS 
cells. These measurements could also serve as a quantitative test of the 
relationship between the generation times of a cell population, and the 
generation times of its progeny. 
In analysing this work, Rubinow [-8] investigated the two following extreme 
hypotheses, as it were, concerning the generation-time relationship between 
mothers and daughters: 1. Cell generation times are random, and each newly 
formed cell is governed by the same probability density function for deter- 
mining its generation time. In other words, there is no correlation between the 
generation times of mothers and daughters. With such a model, the probability 
for a newborn cell to divide when it has reached an age z is the same for all 
cells at all times. 2. There exists a precise correlation between the generation 
times of mothers and daughters, in particular, the generation time of a daughter 
cell is exactly the same as the generation time of its mother. With this 
hypothesis, the heterogeneity in the generation times of the initial cell population 
determines the future distribution of generation times. 
In the investigation, the distribution of generation times of the initial cell 
population was taken as given and the subsequent population growths predicted 
by the two hypotheses were compared with the observed growth. The somewhat 
surprising result of the comparison was that the second model agreed better 
with the observations of Prescott than the first model. Thus, it was concluded 
that the "maturation velocity" of a given cell tends to persist from mother to 
daughter for several generations at least. It was clear that this tendency could 
not persist forever, for if it did, the observed generation-time distribution 
function would not be an intrinsic property of the population. In fact, a 
generation time distribution would never be observed, because ultimately, the 
cells with the shortest generation time would dominate the population ex- 
clusively. 

2* 
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This conclusion, therefore, left unresolved an important theoretical question: 
how to introduce a birth law connecting generation times of mothers and 
daughters that would be compatible with both long-time and short-time kinetic 
behavior of cell populations. That is to say, what is the birth law which permits 
sufficient determinism between mothers and daughters so that their generation 
times may on the average be essentially the same, and sufficient indeterminism 
so that, after the establishment of long-time steady exponential growth, a distri- 
bution of generation times remains a characteristic invariant feature of the cell 
population. 

In the theory we shall present, we assume that the cell population under 
consideration is characterized by the independent variables age a, time t, and the 
generation-time ~. The introduction of the variable z permits relationships 
between the generation times of mothers and daughters that are not otherwise 
possible in the usual age-time formalism. Let n (a, t; ~)dadz denote the number 
of cells at time t whose age, measured from "birth", lies between a and a + da, 
and whose life-time (generation-time) lies between z and z+dx.  In other words, 
when the cell reaches the age z it will undergo division producing two daughter 
cells of age zero. Clearly n (a, t; ~) is defined only for O < a < z .  

The time evolution of the density function n (a, t; z) will depend on the distri- 
bution of generation times of newborn cells. We assume here that this distri- 
bution depends only on the generation time of the mother cells. This distribution 
is specified by giving the transition probability K (z, z'), where K (z, ~')dz is the 
fraction of cells born from mothers with generation time z', which will have a 
generation time between z and z + dz. The population is assumed to grow in some 
fixed environment which does not change with time, i.e. K (z, z') is constant, 
independent of time, during the whole evolution. 

This formulation enables us to clarify and present, from a unified point of 
view, the relationships between the different type of measurements which can be 
carried out on such populations. A comprehensive review of past work on the 
mathematics of microbial populations is found in the work of Painter and Mart 
1-15]. Of particular interest are the steady state values of what Powell 1-16] calls 
the "generation time frequency" function f(~) and the "population generation 
time distribution" function P (z). We shall refer to the latter more simply as the 
generation-time distribution function, and denote it by g (~). If there are 
correlations between mothers and daughters, then K (~, z') is not a function of 
alone, and these distributions are different, a distinction indicated by Powell 
[16, 17]. 

These functions and other quantitative features of bacterial growth are defined 
and discussed in section 2. In sedtion 3 we present the theory for the cell 
density function. We have solved the fundamental equation for n for both the 
long time and short time behavior, starting from a cell cohort of arbitrarily given 
ages and generation times. By means of this solution we are able to clarify further 
the meaning of generation time measurements of a given population, and their 
relationship to the functions f(z) and g (z). 
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The long-time solution is discussed in section 4. We generalize some previous 
results which relate the steady state age distribution of a growing cell population 
to the generation-time distribution function g (z). In section 5, we discuss how the 
transition kernel K (r, z') can be inferred from experiment. The generation-time 
frequency function f ( r )  and the generation-time distribution function g (z) are 
found in section 6 for a special assumed form of the kernel function K. 

2. Quantitative Features of Microbial Populations 

A microbial population growing in an ideal constant environment will, after some 
transient period achieve a steady state of exponential growth. By "ideal" we mean 
that not only are environemental conditions such as nutritional requirements, 
pH, and temperature kept constant, but the bacterial spatial density is not 
permitted to get too great so that effects of "crowding" are negligible. In this 
state the number of organisms in the total population, N(t), will increase 
asymptotically as e ~, where 7 is a positive constant. At the same time, the 
fraction of the population whose age is in a given age interval will approach a 
steady state value independent of the time. The growth constant 7, and the 
steady state age distribution ~ (a), where a is the age of a given cell, are intrinsic 
properties of the system which depend on the environment but are independent 
of the initial conditions, i.e. on the way the culture was initiated. 

Another intrinsic property of a microbial population growing in a steady state 
is the generation-time distribution function, determined as follows. Select from 
a steady state population, at some specified time, a cohort of cells all of which are 
of age 0, i. e., they are newly formed. There exist experimental procedures for doing 
this [18]. Determine the fraction of these cells which undergo cell division in the 
subsequent time interval r to r + dr. This number is set equal to g (r)dr, and the 
function g (~) so determined is called the steady state generation-time distribution 
function. 

In addition to the steady state of "exponential growth" described above, 
usually achieved by the batch culture method of growth, there is also the 
"continuous culture" method for growing cells. Here bacteria are grown in a 
chemostat or turbidostat which is continuously diluted so as to maintain a 
fixed total number of cells in the apparatus. We shall refer to cells grown in 
such a manner as being in the steady state of the chemostat, or simply the 
chemostat steady state. The generation time distribution, defined as above, of 
cells grown in the chemostat steady state was shown by Powell [16] to be inti- 
mately connected to that obtained in the batch culture steady state. Both of these 
steady states of growth correspond to special cases of the general state of 
growth which we consider herein. 

The generation-time frequency function f(z) mentioned earlier may be defined 
operationally as follows. In a batch culture select for observation some cells, in 
an arbitrary manner. Wait until these selected cells divide. Of course, the cells 
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do not all divide at the same time. Measure the times elapsed until the daughter 
cells divide again. Call f2 (r) dr the fraction of the second generation or daughter 
cells for which the time elapsed between birth and subsequent division is 
between r and r + dr. Repeat this procedure for the newborn or third generation 
cells, and call f3 (r) dr the fraction of these cells with a generation time between 
r and r + dr. Continue this process for N generations. Since for each cell in the 
first generation there are two cells in the second generation, four cells in the 

N N 

third, etc., define formally the average function f ( r ;  N)= ~ 2 j-1 fj (r) /~,  2 j-1. 
j=2  j=2  

For N large, f ( r ;  N) will presumably approach a limit, f(r). Equivalently, the 
fj(~) will approach a limiting form f(r)=}imfj(r) .  As pointed out by Powell, 

f (~) will be the same as g (r) only if there are no correlations between the 
generation times of mother and daughter cells. If such correlations do exist, 
f ( r )  and 0 (r) will be different. Powell also noted the f( r )  would coincide with 
g (r) in a population in which one of the daughters of each dividing cell was re- 
moved from the population at birth. We shall later give explicit examples of 
g (r) and f(r)  for some simple illustrative forms of the kernel K (r, f). 

We shall investigate the intimate connections among K(z, r'), the growth 
constant 7, the steady state age distribution fi (a), and the generation-time distri- 
bution function g (r). Given the latter three quantities from observation, these 
relations constitute consistency requirements which restrict but do not uniquely 
determine the transition probability K (r, z'). In the absence of a direct experimen- 
tal determination of K (z, r') for a given cell population, the functional form 
of K (r, r') may be prescribed somewhat arbitrarily. For certain special 
assumptions regarding this functional form, the available relations among the 
known observables and K (r, r') can serve to uniquely determine K. Thus, if K 
is assumed to be a function of r only, which implies that there is no correlation 
between mother and daughter generation times, then K is uniquely determined 
by g (z), and the theory may be shown to be equivalent to the age-time formalism. 
We shall investigate in some detail a particular functional form of K in section 6. 
This form of K can represent a birth law which is compatible both with the short- 
time behavior inferred from Prescott's experiments, and with the existence at 
large times of a generation-time distribution function. 

3. Mathematical Model of Cell Populations 

The basic equation governing the cell density function n = n  (a, t; z) is assumed 
to be the following, 

On On 
(a, t; T)+~-a (a , t; r )= - 2 n  (a, t; r) 0<a_<r,  (1) 

Ot 

where 2 is the fractional loss of cells per unit time, due to death or disappearance, 
but not cell division. This meaning is not the same as that for the similar term 
appearing in the age-time formalism where 2 also represents "losses" due to cell 
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division. We assume here that 2 may depend on a but is independent of z. We 
could in principle consider 2 also to be a function of time, in order to 
represent special circumstances, but we shall not do so here. The function n 
satisfies a boundary or birth condition, given as 

n(0, t; z)=2 S K (z, z') n (z', t; z')dz'. (2) 
0 

Because mother cells give birth to daughter cells which have associated with them 
some generation time ~, the corresponding probability of such birth must be 
unity. Therefore, the transition probability K satisfies the normalization con- 
dition 

~ K  (z, r') dz = 1. (3) 
0 

Equation (1) may be viewed as a flux equation which states that, in the absence of 
cell death, the age of a cell increases uniformly with time. Equation (2) expresses 
the contribution to new cells of age zero and generation time z from mothers 
of all different generations. The factor 2 on the right hand side of (2) reflects the 
assumption that, when a cell divides, it produces 2 daughter cells. The density func- 
tion n must also satisfy an initial condition, 

n (a, 0; r)=tp (a; r). (4) 

where tp is a prescribed function of a and v. 

Before going on to find the solution of (1) we note that by choosing 2 
appropriately, (1) represents different experimental conditions. Thus, 2 = 0  cor- 
responds to the growth of cells in a batch culture in which there are no cell deaths. 
In this case the system will approach, as t increases, a steady state of exponential 
growth for which n (a, t; z )~e  ~~ n (a; z), where 2:0 and n (a; "c) are determined by 
K. If, on the other hand, we set ;t equal to a constant independent of a, and 
this constant equal to 70, we represent a continuous culture grown in a chemostat 
in which the dilution is such as to maintain a constant number of cells. Then, as 
t approaches infinity, n(a, t; z) approaches a time independent function we 
denote by no(a; z), where the subscript c indicates chemostat conditions. In 
general, any constant 2 leads to a population growth proportional to exp [(70 - 2) t]. 
Making 2 > 70 corresponds to extinction of the population, a situation we shall 
not consider here. 

We shall now give the solution to equation (1) by means of the generation 
expansion, given by Rubinow I-8]. Thus, let 

n (a, t; ~) = ~ nj (a, t; z), (5) 
j = l  

where n s. (a, t; z) is the age-time generation density function associated with the 
j-th generation. The function n 1 representing the initial cohort of cells or first 
generation, chosen to satisfy the initial condition nl (a, 0; z)= (p (a; z), has the form 
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For j_>_2 we have 

nj (0, t; z) = 2 ~ K (z, z') n~_ 1 (z', t; z') dz', 
o (7) 

nj(a't; z)=nj(O't--a; z) exp [ - io 2(~)d~l' t>a" 

Using (6) in (7), we obtain the more explicit result 

n2(a't;T)=2~K(~'~')q~(~'+a-t;~')exp[.-+i'2(q)drl-i2(~)d~] .-, o (8) 

[ i  j n~(a,t;z)=2 ~ K(z,z')n~_t(z',t-a;z')ex p - 2(~)d~ dz',t>a, 
0 0 

j = 3 , 4 ,  5, .... (9) 

The solution (5--9) expressed in terms of generations may be expected to be 
useful if the behavior of the population is desired for a period of several 
generations or so following the initial time, i. e. the short-time behavior. 

We introduce here the function 0j (~) defined as 

gig(z)=- ~ n~(O, t; z) dr, j>2, (10) 
0 

which represents the number  of cells of the j-th generation, born at any time which 
have a generation time z. When 2 ~0,  some of these cells will of course not 
survive until age ~ and thus will not  produce any offspring. Using (7) and (8) in 
(10), we find that 

[ ] ~Oj(z)=2 oS~ - J  2(~)d~ ~bs_t(z ' )dz ' , j>2,  (11) 

with gq (~) defined by the expression 

Now when 2=0 ,  the population doubles with each generation, so that the total 

number  of cells in the j - th  generation is N O 2 s- l ,  where No = f dz i ~0 (a; z) da 
0 O 

is the number  of cells present at t=0 .  Hence, for 2=0 ,  ~j (z)/N o 2 s-* is the 
fraction of cells in the j- th generation with generation time z, and is denoted as 
fj  (z). From (11), fs (z) satisfies the equation 

fs(z)= ~ K (z,z')fj_ 1 (z') dz, j>___2, (13) 

where f l  (z) = ~Pl (z)/No. 
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As j---} 0% fj (z)~f(z), with f(z) determined by the equation 

f (z )=  S K(z, z')f(z')dz'. (14) 
o 

f(z) is the generation-time frequency function discussed in section 2. 

Hence, if K is known, then f(z) is in principle determined by this equation. For 
example if K (z, z ')=k (z), which implies there is no correlation between the 
generation times of mother and daughter cells, cells, then fj(z)=k(z)=f(z) for 

all j>2 ,  because, by definition, ~ f j(z)d~= f (z )d~=l .  If however K(z,z') 
o o 

does depend on z', then fj (z) for small j is not equal to f(z) even when the 
initial sample ~0 (a; ~) is taken from a population in a steady state of exponential 
growth. The relationship between f(z), 9 (r) and k (~) is further clarified by the 
specific example discussed in section 6. 

4. The Long-Time Solution 

A solution to equation (1) which is useful for investigating the long-time behavior 
of the population will now be presented. First, we note that if we go over from 
n (a, t; r) to y (a, t; T) by means of the transformation 

n(a't; z)=Y(a't; z)exp [ -  f (15) 

then y (a, t; z) satisfies the equation 

~y 0y 
~t 4--~a =0 '  (16) 

subject to the boundary condition 

I l y(O, t ;z )=2  ~ K(z,z')y(z',t;z')exp - i 2(r162 dz', (17) 
o o 

and the initial condition 

Y(a'O;z)=~~ 2(~)d~]. (18) 

Because of the simple form of equation (16), it is obvious than an arbitrary 
function of ( t -  a) formally satisfies the equation, and that 

y(a,t;z)=y(O,t-a;z), t>a. (19) 

Hence, from equation (18), a solution which satisfies the initial condition and which 
is valid for a > t is 

I: ] y(a, t; v)=~o (a-t; z) exp 2(r , a>t. (20) 
L O  
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We rewrite equation (17) as 

(21) 

+2  S K(~,z')y(f,t;z')exp - 2(~)d~ dr'. 
t 0 

In the first integral on the right, we replace y(z', t; r') by the expression (19), 
valid for t > Y, 

y(Y, t; f ) = y  (0, t - f ;  z'), t>~'. (22) 

In the second integral on the right we replace y (Y, t; T') by the expression (20) 
which is valid for ~' > t, 

~' --It 1 y(r',t;z')=q)(~'-t;r')exp [ J 2(~)d~ , z'>t.  (23) 

Combining (19) and (21)-(23), we obtain the result 

y(a,t;r)=2 ~ K(z,z')y(O,t-a-r;r')exp - )~(~)d~ df 
0 0 

(24) 
+2  K(r,r')q~(r'+a-t;z')exp t2(r dr', t>a. 

t - a  k 0 

Combining (20) and (24) with (15) leads to the formal solution, alternative to 
(5)---(9), 

q)(a-t;z)eXP [a_f 2(~)d~ 1, t<a, 
a t - a  

2 n(a,t;r)=, ~ e x p [ - !  2 ( , ) d , l { o  ~ K(%r')n(O,t-a-r';z')exp[- i' (,)dr 

(25) r , '+o-,  q ) 
+ ~ K(z,r')~o(r'+a-t;r')exp|~ 2(r162  dYt t>a. 

I - .  L O  A 

Equation (25) is useful for examining the behavior of the solution for large times. 
Thus, we expect that, for a population which is growing or at least maintaining 
itself, the density function n (a, t; r) will have the asymptotic form 

n (a, t; r) ~ e vt n (a; r), t ~  o% (26) 

with n(a;z) independent of the initial distribution ~o(a;z) for y>=0. Here 
n(a; r)dadz is the fraction of cells in the steady state whose generation times 
lie between z and T + dr, and whose ages are between a and a + da. Substituting (26) 
into (25), dividing by e ~t, and letting t ~  o% we obtain for the asymptotic steady state 
distribution, 

n(a;r)= {i 'exp[-ya-f'~(~)d~]g('c)', z<a, 0 a~"c, (27) 
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g(z )=2  f g ( ~ , z ' ) e x p  - T z ' -  2(~)d~ g(z')d~'. (28) 
0 0 

g (~) -n  (0; z ) /~  n (0; z) dz (29) 
0 

is defined as the generation-time distribution of newly formed cells in the 
steady state, and C is a normalization constant chosen so as to make 

-~ da ~ n (a; r)dr--= 1. This function is the generation-time distribution function 
0 0 

discussed in section 2. 

The growth rate ? and the generation time distribution function g (~) are 
determined by K (v, ~') through (28). By integrating (28) with respect to ~, we 
obtain the result 

1 = 2  - exp -Tz '  2(~)d~ g(z')d~'. (30) 
0 0 

Essentially this same result is attributable to early investigators in population 
biology such as Lotka and Euler [19]. 

The normalized age distribution in the steady state, ~ (a) is the age distribution 
of cells in the steady state without regard to their generation time. From (27), we 
find that 

h(a)=_~ n(a;z)dz=Cexp 7a- 2(~)d~ g(~)dz. (31) 
a 0 a 

The above expressions simplify when 2 (a)=2o, a constant independent of a. 
Setting 7+2o=70 ,  the growth rate when there are no losses, (28), (30) and (31) 
now assume the forms 

g (z) = 2 S K (z, z') e - ~o~' g (z') d~', (32) 
0 

1 = 2  ~ e -~~ (33) 
0 

h (a) = 2 7o e - ~~ S g (~) d~. (34) 
a 

These results reduce to those of Powell and others [15, 17] for the case 
when 2 =0. Note that the results can be interpreted as representing either the 
case of batch culture without losses for which 7 =7o and 2=0 ,  or to the case 
of continuous culture in the chemostat, for which 2 = ?0 and 7 = 0. 

We see that the cell population density function n(a, t; ~) contains all the 
information of interest regarding the kinetics of a cell population, whether it 
relates to the observable distribution functions h (a), f(~), or g (z). Many useful 
theoretical results relating to the steady state were derived by Powell. However, 
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because these were not related to or presented in the context of a cell density 
function as in the present work, Powell found it necessary to introduce new 
distribution functions to discuss particular aspects of his investigations. The re- 
lationship among these distribution functions is not always apparent. Here, 
we show how some of these functions are easily obtained from the cell density 
function. 

For example, h (z), the fraction of cells in the steady state (of whatever age) with 
generation times between T and z + dz, is defined by the expression 

h (~)--_ ~' n (a; ~) da. (35) 
o 

This function is not the same as the generation function O(z). In fact, the 
relation between them is readily obtained for the case when 2 is a constant 
by substituting (27) and (34) into (35). The result is 

h (z)=2 [1 - e - r ° ~  if(z), (36) 

in agreement with Powell [17]. 

The fraction of cells in the steady state undergoing mitosis per unit time with 
generation times between z and z +d r  is denoted the "carrier distribution" by 
Powell [16]. It is easily seen from (27) and (34) that c (z) is defined in terms 
of n as 

n (3; ~) 
c (z ) -  oo (37) 

n(x;z)dz 
0 

When 2 is constant, it follows immediately with the aid of (27) that 

c (z) = 2 e-  ~o, O (z). (38) 

The rate of appearance of cells in the steady state with generation time z is given 
dN dN dN 

as h (z) --~-. This must equal [2 9 (z ) -  c (~)] --~-, where 2 O (z) ~ represents 

dN 
the rate of appearance of cells of generation time ~, and c (T)-~-  represents the 

rate of disappearance of cells of age z. Hence, 

h (~) = 2 O (~)-  c (~). (39) 

This relation may be directly verified when 2 is constant with the aid of 
equations (36) and (38). 
We note here that when 2 is constant, h ( z ) / g ( z ) = 2 ( 1 - e  -r°') is less than one 
for z < (In 2)/y0, the doubling time, and greater than one for larger values of z. 
This relation corresponds to the fact that a cell picked at random is less likely to have 
a short generation time than a newborn one. It is this difference between O (z) and 
h (z) which is responsible for the fact that when cells are selected from the population 
at random, irrespective of age, the generation time distribution of their progeny 
(which we called f2 (Z) previously) will not be equal, when K (z, ~') depends on z', 
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to O (3), which represents the fraction of cells newly born at some specified time 
with generation time z. This difference will be illustrated by a particular example 
in section 6. 

5. The Transition Kernel K (x, x') 

We have tacitly assumed here that, starting from an arbitrary initial distribution 
n (a, 0; 3): (1) lira [e -rt n (a, t; 3)] = n  (a; 3) exists, and (2) n (a; z) is independent 

t'-* oo 

of the form of n (a, 0; z). The validity of these assumptions depends on the 
transition probability K (3, 3') having certain "smoothing" properties, e.g. for 
each z', K (z, z') should be a "smooth" function of r. We expect K to have such 
properties in all realistic cases and shall not investigate here in any detail the 
precise necessary and sufficient conditions on K (z, z') for this to be true. (The 
interested reader is referred to the paper of Harris [20] for a discussion of these 
questions in a somewhat different context.) We note however that a necessary 
condition for a stationary asymptotic state to exist in accordance with assumption 
(2), is clearly that (28) have a unique solution g (3) which is non-negative and 
normalizable. If the solution of (28) is not unique, then it is certainly possible 
for n (a, t; T) to remember the initial state for all times. 

For example, if K (~, z') = ~i ( 3 -  ~'), which corresponds to one of the possibilities 
of cell growth considered by Rubinow [8], namely that each daughter cell has 
exactly the same generation time as its mother, then with 2 constant, (28) has the 
family of solutions g (3) = 6 ( ~ -  ~) with 2 e-  re = 1, and ~ arbitrary. In this case it 
is intuitively clear that the progeny of the cells with the shortest generation time 
in the initial colony will always become dominant after a long time, as has 
previously been pointed out [8]. 

An example for K (3, 3') for which our assumptions are valid is the following, 

K (z, z') = k (T), (40) 

a function independent of 3' (and not containing any delta functions). This 
assumption corresponds to the other hypothesis considered by Rubinow of no 
correlations between mothers and daughters. 

We shall indicate that with this assumption, the theory can be reduced to the 
ordinary age-time formalism. Thus, consider the age-density function which is 
independent of generation times, defined as 

fi(a,t)- ~ n(a,t;z)dz, t>=O. (41) 
a 

Then, if the initial distribution n (a, 0; 3)= tp (a, z) has the special form 

k (3) 
q~ (a, z) = fi (a, O) ~ 

k(z)dz 
a 

(42) 
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where h (a, 0) is given by  (41), then it is readily shown by integrating equation (1) 
over z from a to oo that h (a, t) is the solution of the age-time equation [7] 

0t 8a 

= 2 (a) + 2., (a), (43) 

k (a) 
2., (a)= ~o 

I k (r`) dr` 
a 

Here 2., (a) represents the disappearance rate due to cell division. In addition, 
h (a, t) satisfies the boundary condition 

(0, t) = 2 ~ fi (a, t) 2r~ (a) da, (44) 
0 

and an initial condition in accordance with (41), namely 

h (a, 0) = ~ (p (a; r`) dr`. (45) 
a 

With this correspondence, the short-time solution (5--9) becomes 

h (a, t) = ~ hj (a, t), 
j = l  

~ k (z) dr, 
ht ta, t)=h(a-t,O)exp -._,i 2(~)d~ ~ k ( z ) d z  

a - - t  

=h(a-t,O) expl - f_?(Od~ ], ,<a, (46) 

hz(a,t)=2 2.,(r`')fil(r`',t-a)dr`' exp -I1(r162 , t>a, 
t - a  0 _.1 

hj(a,t)=2 S 2.,(r`')hj-l(z',t-a)dr`' exp - (~)dr , j>3, t>a. 
0 

In deriving these expressions, we have made use of the relations 

k (a) 
n (a, t; a) = fi (a, t) 

I k (r`) dr` 
a 

and (47) 

exp[ 1 



A Theory for the Age and Generation Time Distribution of a Microbial Population 31 

These results generalize some formulas of Rubinow [8] for the special case 
h (a, 0 ) = N  o 6 (a). The solution (46) could of course be derived quite readily 
directly from equations (43 45). 

We shall turn now to the question posed in the introduction, namely, can a 
K (~, ~') be found which has the feature that over a period of several generations or 
so, it tends to make the newborn population remember the generation time of its 
ancestors, while over long times, it diffuses that memory so that its generation 
distribution function is as shown in Fig. 1. In principle, K (z, z') could be 
experimentally determined, although the task for a given bacterial species would 
undoubtedly be very arduous. It would require the selection ofa  subpopulation of 
cells of a given generation time z', and the determination of the generation times 
of their offspring. This procedure would then have to be repeated for many different 
values of ~'. 

Rather less arduous is the determination of the generation-time distribution 
function g (r). It can be accomplished directly by selecting a cohort No of newborn 
cells from a population of cells growing in a steady state of exponential growth, and 
then observing the times at which these cells divide. An alternative procedure is 
to measure the total population of this cohort as a function of time, for a period 
which is greater than the minimum generation time zo, and less than the minimum 
time for the appearance of granddaughter cells, 2 z 0. Then the total population 

t 

of the cohort N (t) is given by the expression N (t) = N O [1 + ~ g (z) dr], so that 
0 

g ( t ) = N o  1 dN (t)/dt, for t < 2  z o. Although this procedure does not determine 
g (z) for all values of ~, in practice it may be expected that g (z) is negligible for 
~>2 z o. Such a procedure was utilized by Harvey [21] utilizing some data of 
Helmstetter [22]. The method, however, is beset by the difficulty of finding the 
derivative to a curve which must be fitted to data points having associated 
experimental errors. 

We assume that such an experimental determination of g (z) has been made. 
A typical skewed distribution curve is shown in Fig. I, taken from the work of 
Rubinow [8], and based on data of Prescott [2] for the HS strain of Tetrahymena 
geleii cells. The manner of obtaining the data was not sufficiently described by 
Prescott for us to determine whether fj  (~), f(z), g (z), or some other distribution 
function was actually measured. But no matter, these distribution functions are 
all similar, and for our present purposes, it is sufficient to assume that it 
represents g (z)- The solid line in the Fig. is given by the following expression [8], 
a gamma distribution with a time delay ~o, 

O~ v + l  

g (z)= r(v+ 1) (z-z~ e-~(*-*~ z>z~ (48) 

where z0=85min. ,  v-5.318, ct=(v+l) /(~-Zo) , and ~=111 min., the mean ge- 
neration time. 
Given g (v), the following theoretical question arises: to what extent is K (z, ~') 
prescribed. Obviously, since g (z) is a function of only one variable, we cannot expect 
that it will, by itself, uniquely determine K (z, z') which is a function of two variables. 
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We shall therefore assume for illustrative purposes a certain form for K (z, z'), 
such that it is essentially a function of only a single variable. Taking into account 
mathematical convenience and biological reasonableness, we choose K to be of 
the form 

K (z, "c')=fl t~ (r/- r / ' )+(1-  fl) k (r / -  pr/'). (49) 

Here ~/= z - z o, r/' = z' - Zo, so that r/, r/' __> 0, fl and ~ are constants, 0_-_ fl < 1, and 
k(x) is a non-negative normalized function defined for x>__0, so that 

~k  (x) dx = 1. Equation (49) states, essentially, that for cells with a given generation 
o 

time z', a certain fraction/~ of them give rise to progeny with the same generation 
time z', while the remaining fraction give rise to progeny with generation times 
which are "shifted" in accordance with the function k (r / -  pr/'). 

Equation (32) is a constraint that the function k must satisfy. Setting g (T) = (o (r/), 
which is the form of equation (48), equation (32) with the substitution of 
equation (49) for K becomes the following, 

q~(r/) = 2 e - ' ~ 1 7 6  f l e - ' ~  I k(r/--Pr/')e-'~ (50) 
o 

Taking the laplace transform of (50) yields 

(~ (s)=2 e -~~176 [flO (S+~o)+(1 - f l )  ~(s) ~ (ps+~,o) ] (51) 

where 0 (s)= S e-  " tO (r/) dr/and k (s)= S e- '7 k (r/) dr/are the laplace transforms 
0 0 

of t0 (r/) and k (r/), respectively. Solving equation (51) for k (s) yields 

k(s)=[(a(s)-2fle-~~176176176 (52) 

We note that, for a given tp (~/), ~o is determined by (33) via the relation 

(?o) =�89 er~176 (53) 

This equation will always have a unique solution ~o, because t~ (s) is a monotone 
decreasing function of s with 0 (0)--1 and t~ ( ~ ) = 0  provided q~ (r/) does not 
behave like 6 (r/) as r/~0. 

Equation (52) gives the laplace transform of k (x), for a given r (r/), fl and p. In order 
that the k (x) so obtained be "acceptable", we must be sure that k (x)>0 for 
x > 0. This condition imposes some constraints on/~ and p. It is always possible to 
choose fl = 0, p = 0, and k (r/) = ~o (r/), corresponding to there being no correlation 
between the generation times of a cell and that of its offspring. As previously 
indicated, such a choice does not seem biologically reasonable, and also does not 
fit the data of Prescott if N (t) is followed beyond the second generation [8]. 
Indeed if we require that k (x) should not behave like di (x) as x- ,0 ,  then we must 
have ~ (s)--,0 as s ~ .  Hence, whenever ~ (s) behaves as Cs -b when s~ov,  with 
C and b some positive constants, which indeed is the case for g (z) given in (48), 
and p:/:0, we must choose fl=�89 er~176 We shall consider the case p = 0  
in the next section. 
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For g (z) given by (48), ~b (s) is readily calculated to be 
~v+ 1 

(s) = (~ + s y  + ~. (54) 

Substituting the above equation into (52) yields for k (s) the following explicit 
form, 

~'+ ~ [(~ + s + 7~ ' - ( ~  + s)'+ l] [~ + ~'~ + PsY+ ~ (55) 
I~(s)= [(~+7o),+l_~,+13(~+S+7oy+~(~+s) ,+~ , 

where 7o is determined by the relation 2e-V~176 +~ and p is an 
undetermined parameter which can be chosen to fit other experimental data, 
such as the behavior of N (t) at later times. 

The inverse laplace transform of(55) can be found simply whenever v is an integer. 
For v = 0 we find 

k(x)=Ot['o+(1-P)Ot]e-,,[1 ( 1 - P ) ( ' o + ~ )  - 1 
a+7o  7 o + ( 1 - p ) a  e vo~ , (56) 

with x=rl-pri'>=O. We see that k(x) will be non-negative as long as 
7o + (1 - p) a > O. In this case, K (z, z') is given by (49) and (56) as 

K (z, z') = f16 ( z -  z') + (1 - fl) k [ z -  z o - p ( z ' -  Co)], (57) 

with k (x) given by (56). 

6. The Relation between g (Q and f (Q 

To illustrate the relation between the functions g (z) and f(z) explicitly in a 
particular context, we assume a particularly simple form of K (z, z') obtained by 
setting p = 0 in (49), namely, 

K (z, z') = fl 6 ( z -  z') + (1 - fl) k (z), 0 < fl < 1, (58) 

Here, for the sake of generality, we have not necessarily restricted k to be zero 
for z < Zo. Substituting (58) into (13), we find immediately that 

f~(z)=fl j-~ fl (z)+[1 __flj-1] k(z), j>- l. (59) 

Le t t i ng j~  0% we see that f(z)= k (z), independent of fl, for fl < 1.9 (z) is determined 
by (50), and with p = 0, it becomes 

(1 - fl) "k (z) (60) 
g(z)=  l_2fle-rO~- 

Here 7o is determined by the normalization condition 

(1- f l )  ; k(z)dT 
o l - 2 f l  e-~~ = 1' (61) 

equivalent to (33). 
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We note that (60) is a valid solution only if/~ < 1/2. Otherwise, 9 (z) becomes 
negative for some small value of ~. This restriction is relaxed partially or 
completely if a min imum generation time % is introduced. We see from (60) that 
g (~) is smaller than f(~) especially for cells with large generation times. 

/ ~ f z ( r )  

~176 

~176 //i il, ,.%J l// 

"r minutes 

Fig. 2. The functions g (~) (solid line), f(T) (dotted line), and f2 (~) (dashed line) are illustrated for 
the same population in steady exponential growth. These curves are based on equations (48), (60), 

and (64), respectively, with 13 arbitrarily set equal to 0.8 

Consider now an experiment in which No cells are selected at random from a 
populat ion in steady exponential  growth, for which/1, is constant,  and with K 
given by (58). Call the time of selection t = 0. The cell density function at t = 0 
is then n (a, 0; ~) = q~ (a, t) = n (a; ~} where, according to (27), the generation 
distribution of the selected cells is 

n (a; ~) = C e-  ~o. g (~), a < ~, (62) 

and O (z) is given by (60). F r o m  (12), (27), (30), and the definition of f l  (~), it 
follows that  

(1--t~) k (~) 
f l  (z) = 2 (1 - e -  ~o,) 9 (~) = 2 (1 - e-  ~o~) . (63) 

1 - 2  fl e ~~ 
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The f i  (z) for j=> 2 can now be computed  from (59), thus, 

f2 (z) = (1 - fl) [ i + 2 fl - 4 fl e -  ~o~] k (z)/(l - 2 fl e -  yo~) = I- i + 2 fl - 4 fl e -  ~o~] O (z), (64) 

A (~) = ( 1 - fl) [ 1 + fl + 2 f12 _ 2 fl (1 + 2 fl) e - roq k (z)/( 1 - 2 f l e  - ~o~) (65) 

= [ 1  + f l+  2 f l z - 2  fl ( l  + 2 fl) e -~~ 9 (z), 

and so forth. These equat ions show explicitly that when cells are selected at 
r andom from a popula t ion  even in steady exponential  growth, the distr ibution 
functions f j  (r), g (~), and f (z )  are distinct. This aspect is illustrated in Fig. 2 
where the curves for g (z), f (z), and f z  (~) are shown, with g (~) given by equat ion (48). 
The curves for f ( z ) = k ( "  0 and f2 (z) are based on equat ions (60) and (64), 
respectively, with the value of fl arbitrarily chosen to be 0.8. 
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