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Abstract: A quantum system (with Hilbert space H1) entangled with its environment
(with Hilbert spaceH2) is usually not attributed to a wave function but only to a reduced
density matrix ρ1. Nevertheless, there is a precise way of attributing to it a random
wave function ψ1, called its conditional wave function, whose probability distribution
μ1 depends on the entangled wave function ψ ∈ H1 ⊗ H2 in the Hilbert space of
system and environment together. It also depends on a choice of orthonormal basis of
H2 but in relevant cases, as we show, not very much. We prove several universality
(or typicality) results about μ1, e.g., that if the environment is sufficiently large then
for every orthonormal basis ofH2, most entangled states ψ with given reduced density
matrix ρ1 are such that μ1 is close to one of the so-called GAP (Gaussian adjusted
projected) measures, GAP(ρ1). We also show that, for most entangled states ψ from a
microcanonical subspace (spanned by the eigenvectors of the Hamiltonian with energies
in a narrow interval [E, E + δE]) and most orthonormal bases of H2, μ1 is close to
GAP(tr2 ρmc) with ρmc the normalized projection to the microcanonical subspace. In
particular, if the coupling between the system and the environment is weak, then μ1 is
close to GAP(ρβ) with ρβ the canonical density matrix on H1 at inverse temperature
β = β(E). This provides themathematical justification of our claim in Goldstein et al. (J
Stat Phys 125: 1193–1221, 2006) that GAP measures describe the thermal equilibrium
distribution of the wave function.
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1. Introduction

In this paper we establish the universality of certain probability distributions on Hilbert
spaces known as Scrooge measures or Gaussian adjusted projected (GAP) measures
[8,11,19] (see Sect. 1.4 below for the definition). This makes precise some statements
and mathematical considerations discussed in our earlier paper [8]; our main physical
conclusion, elucidated in Sect. 1.2 below, is that the wave function of an open quantum
system (i.e., a subsystem of a larger system) possesses a thermal equilibrium distribution
given by a GAP measure.

By the wave function of a subsystem, we mean more precisely the conditional wave
function, described in Sect. 1.1 below. By saying that GAP measures are universal we
mean that, when the system’s environment is sufficiently large, the distribution μ1 of
the conditional wave function is typically close to a GAP measure, namely

μ1 ≈ GAP(ρ1) (1)

(see below). To illustrate the terminology of universality, one can say that the central
limit theorem conveys a sense in which the Gaussian probability distribution on the real
line is universal: many physically relevant probability distributions are approximately
Gaussian. Instead of universality, one also often speaks of typicality; we use these two
terms more or less interchangeably.

The family of GAP measures is a family of probability measures on Hilbert spaces.
There is one GAP measure for every density matrix ρ on a Hilbert space H , denoted
GAP(ρ); it is concentrated on the unit sphere inH ,

S(H ) = {ψ ∈ H : ‖ψ‖ = 1}. (2)

The density matrix of GAP(ρ) is ρ. By this we mean the following: For any probability
measure μ on S(H ), its density matrix is

ρμ =
∫
S(H )

μ(dψ)|ψ〉〈ψ | , (3)

which is also the covariance matrix of μ provided μ has mean zero. For μ = GAP(ρ),
ρμ = ρ.
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Of particular interest are the GAP measures associated with canonical density ma-
trices

ρβ = 1

Z
e−βH , (4)

where Z = tr e−βH is the normalization constant, β the inverse temperature and H the
Hamiltonian. Our main conclusion is that the conditional wave function of a system
entangled with its environment is GAP(ρβ)-distributed for pure states of the system
and environment that correspond to thermal equilibrium. Detailed discussions of GAP
measures and their physical applications can be found in [8,19]. See [22] for a study
about the support of GAP measures, that is, about what GAP(ρβ)-distributed wave
functions typically look like.

The main application of GAP measures is the characterization of the wave functions
of systems we encounter in nature. In most cases we do not know a system’s wave
function, but in many cases the system is more or less in thermal equilibrium, and then,
according to the considerations presented in [8] and here, its wave function should be
GAP distributed.

1.1. Conditional wave function. Consider a composite quantum system consisting of
two subsystems, system 1 and system 2, with associated Hilbert spaces H1 and H2.
Suppose that the system is in a pure state ψ ∈ Htotal = H1 ⊗ H2. We ask what might
be meant by the wave function of system 1. An answer is provided by the notion of
conditional wave function, defined as follows [4,8]:1 Let b = {b j } be an orthonormal
basis of H2. For each choice of j , the partial inner product 〈b j |ψ〉, taken in H2, is a
vector belonging toH1. Regarding j as random (and therefore writing J ), we are led to
consider the random vector ψ1 ∈ H1 given by

ψ1 = 〈bJ |ψ〉∥∥〈bJ |ψ〉∥∥ (6)

where bJ is a random element of the basis {b j }, chosen with the quantum distribution

P
ψ,b(J = j) = ∥∥〈b j |ψ〉∥∥2. (7)

We refer to ψ1 as the conditional wave function of system 1.2

1 This definition is inspired by Bohmian mechanics, a formulation of quantum mechanics with particle
trajectories, where the (non-normalized) conditional wave function ψ1 of system 1 is defined by [3]

ψ1(x) = ψ(x, Y ) (5)

for x in the configuration space of system 1, with Y the actual configuration of system 2. If system 2 contains
particles with spin, then the configuration basis is not a basis ofH2, and we may either choose a basis of spin
space or trace out the spin indices; see [15] for a discussion of the latter choice.

2 The conditional wave function can be regarded as a precise version of the “collapsed” wave function in
the standard quantum formalism: Suppose that system 1 has interacted with system 2, and their joint wave
function, as produced by the appropriate Schrödinger evolution, is now

∑
j

c jψ
(1)
j ⊗ ψ

(2)
j , (8)
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The distribution of ψ1 corresponding to (6) and (7) is given by the following proba-
bility measure on S(H1): The probability that ψ1 ∈ A ⊆ S(H1) is

μ1(A) = μ
ψ,b
1 (A) = P(ψ1 ∈ A) =

∑
j

∥∥〈b j |ψ〉∥∥2 δ〈b j |ψ〉/‖〈b j |ψ〉‖(A) (9)

=
∑
j

∥∥〈b j |ψ〉∥∥2 1A
( 〈b j |ψ〉

‖〈b j |ψ〉‖
)

, (10)

where δφ denotes the Dirac “delta” measure (a point mass) concentrated at φ and 1A
denotes the characteristic function of the set A. While the density matrix ρμ1 associated

with μ1 always equals the reduced density matrix ρ
ψ
1 of system 1, given by

ρ
ψ
1 = tr2 |ψ〉〈ψ | =

∑
j

〈b j |ψ〉〈ψ |b j 〉, (11)

the measure μ1 itself usually depends on the choice of the basis b, so μ1 = μ
ψ,b
1 .

1.2. Summary of results. In this paper, we prove several universality theorems about
GAP measures, Theorems 1–4, formulated in Sect. 2. These are statements to the effect
that for most wave functions ψ from relevant subsets of H1 ⊗ H2 and/or most ortho-
normal bases b of H2, ψ1 is approximately GAP-distributed. Here, “most” means that
the set of exceptions is small with respect to the appropriate natural uniform measure.

The basic universality property is expressed in Theorem 1, which asserts that for
sufficiently large dimH2, for any orthonormal basis b ofH2, and for any density matrix
ρ1 onH1, most ψ in S(H1 ⊗H2) with the reduced density matrix tr2 |ψ〉〈ψ | = ρ1 are
such that the distribution μ

ψ,b
1 of ψ1 is arbitrarily close to GAP(ρ1),

μ
ψ,b
1 ≈ GAP(ρ1). (12)

This fact was derived (but not rigorously proven) in Section 5.1.3 of [8].
Theorem 2 asserts that the conclusion of Theorem 1—that (12) holds with arbitrary

accuracy for sufficiently large dimH2—is also true for every ψ with tr2 |ψ〉〈ψ | = ρ1
for most b (instead of for every b for most ψ).

Theorems 3 and 4 justify the conclusion that, if a system (system 1) is weakly coupled
to a very large (but finite) second system then, for most wave functions of the composite
system with energy in a given narrow energy range [E, E + δE], the conditional wave
function of the system is approximately GAP-distributed for most orthonormal bases of
system 2. In more detail, let the interaction between the two systems be negligible so
that the Hamiltonian can be taken to be

H = H1 ⊗ I2 + I1 ⊗ H2 (13)

Footnote 2 continued
where the c j are complex coefficients and all ψs are normalized. If system 2 is a macroscopic system and

the ψ
(2)
j s are macroscopically different states then in the standard formalism one regards j as random with

distribution |c j |2, and says accordingly that system 1 can be attributed the “collapsed” wave function ψ
(1)
j

with probability |c j |2. The conditional wave function of system 1, according to the above definition in the

case that the ψ
(2)
j s are among the {b j }, is indeed ψ

(1)
j with probability |c j |2.
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(with I1/2 the identity operator onH1/2), and letHR ⊂ H1 ⊗H2 be a micro-canonical
energy shell of the composite system, i.e., the subspace spanned by the eigenstates of
the total energy with eigenvalues in [E, E + δE]. Assume that the eigenvalues of H2 are
sufficiently dense and that the dimensions of H2 and HR are sufficiently large. Then,
for most ψ ∈ S(HR),

μ
ψ,b
1 ≈ GAP(ρβ) (14)

for most bases b of H2; here, ρβ is the canonical density matrix (4) and β = β(E).
In Theorems 3 and 4 we relax the condition that ψ have a prescribed reduced density

matrix, and exploit instead canonical typicality. This is the fact, found independently by
several groups [5,9,16,17] and anticipated long before by Schrödinger [21], that formost
ψ ∈ S(HR), the reduced density matrix tr2 |ψ〉〈ψ | is approximately of the canonical
form (4). More generally, in Theorems 3 and 4 we may regard HR as any subspace of
H1 ⊗H2 of sufficiently high dimension. Canonical typicality then refers to the fact that
for most ψ ∈ S(HR), tr2 |ψ〉〈ψ | is close to tr2 ρR , where ρR denotes 1/ dimHR times
the projection toHR ; the precise version of canonical typicality that we use in the proof
of our Theorems 3 and 4 is due to Popescu, Short, and Winter [16,17].

Theorem 3 asserts that for most ψ ∈ S(HR),

μ
ψ,b
1 ≈ GAP(ρ

(1)
R ), (15)

with ρ
(1)
R = tr2 ρR , for most orthonormal bases b ofH2. This means in particular that we

need not restrict ourselves to weak (relatively negligible) interactions between systems
1 and 2 as in (13).

Theorem 4 is a very similar statement but differs in the detailed meaning of “≈” and
refers to a fixed density matrix, such as ρβ , in place of ρ

(1)
R in (15).

Theorems 3 and 4 follow from Theorem 2 by means of canonical typicality and con-
tinuity of the mapping ρ 
→ GAP(ρ). However, we need to pay careful attention here
to the details, in particular to the various possible meanings of “continuity,” correspond-
ing to various topologies over measures, involving various classes of test functions,
uniformity in ρ or in the test function, and domains of that uniformity, for example.

1.3. Remarks.

• Time evolution. It may be interesting to consider how μ
ψ,b
1 evolves with time if

the wave function ψ = ψt of systems 1 and 2 together evolves according to the
Schrödinger equation

i h̄
∂ψt

∂t
= Hψt . (16)

In a situation in whichHR is a micro-canonical energy shell (and thus invariant under
(16)), and most ψ ∈ S(HR) have μ

ψ,b
1 ≈ GAP(ρ

(1)
R ), we may expect that even for

ψ0 ∈ S(HR) with μ
ψ0,b
1 far from any GAP measure, μ1(t) = μ

ψt ,b
1 will approach

GAP(ρ
(1)
R ) and stay nearGAP(ρ

(1)
R )most of the time (though not forever, as follows

from the recurrence property (almost-periodicity) of the Schrödinger evolution in a
finite-dimensional Hilbert space). We leave this problem open but briefly remark that
one can already conclude by interchanging the time average and the average over ψ0
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that whenever it is true for most ψ ∈ S(HR) that μψ,b
1 ≈ GAP(ρ

(1)
R ), then for most

ψ0 ∈ S(HR), μψt ,b
1 ≈ GAP(ρ

(1)
R ) for most times t ; the open problem is to prove a

statement that concerns all, rather than most, ψ0 (under suitable hypotheses).
• The role of interaction.Another remark concerns the role of interaction (between the

system and its environment) for obtaining the distribution GAP(ρβ). The nature of
the interaction is relevant to our discussion in two places—although our theorems do
not depend on it, as they do not mention the Hamiltonian at all. First, interaction is
relevant for creating typical wave functions, as it helps evolve atypical wave functions
into typical ones. This is closely related to the fact that a system coupled to a big
second system will typically go from non-equilibrium to thermal equilibrium only in
the presence of interaction; see Section 4 of [7] for further discussion and examples.
Second, it depends on the interaction which subspace of H1 ⊗ H2 is the micro-
canonical energy shell that we want HR to be, and thus also which density matrix
tr2 ρR is. In the limit of negligible interaction, tr2 ρR has the canonical form ρβ =
(1/Z)e−βH , while interaction makes it deviate from this form. As a consequence
of these two roles, when we want to obtain from non-equilibrium a wave function
ψ ∈ H1 ⊗H2 such that the distribution of the conditional wave function ψ1 is close
to GAP(ρβ), we may want that the interaction be not too large (or else there will be
deviations from ρβ ) and that the interaction be not too small (or else it may take too
long, say longer than the present age of the universe, to reach thermal equilibrium).

1.4. Definition of the GAP measure. Let H be a Hilbert space and ρ a density matrix
on H . We describe four equivalent definitions of the measure GAP(ρ) on (the Borel
σ -algebra of) S(H ).

The first definition involves Gaussian measures and proceeds in three steps repre-
sented by the acronym GAP . We start from the measure G(ρ), which is the Gaussian
measure on H with mean 0 and covariance matrix ρ. In this paper, we are interested
only in the case dimH < ∞. Then G(ρ) can be explicitly defined as follows: Let
S be the subspace of H on which ρ is supported, i.e., its positive spectral subspace,
or equivalently the orthogonal complement of its kernel, or equivalently its range; let
d ′ = dim S and ρ+ the restriction of ρ to S; then G(ρ) is the measure on H supported
on S with the following density relative to the Lebesgue measure λ on S:

dG(ρ)

dλ
(ψ) = 1

πd ′ det ρ+
exp(−〈ψ |ρ−1

+ |ψ〉). (17)

Equivalently, a G(ρ)-distributed random vector ψ is one whose coefficients 〈χi |ψ〉
relative to an eigenbasis {χi } of ρ (i.e., ρχi = piχi with 0 ≤ pi ≤ 1) are independent
complex Gaussian random variables with mean 0 and variances E|〈χi |ψ〉|2 = pi ; by
a complex Gaussian random variable we mean one whose real and imaginary parts are
independent real Gaussian random variables with equal variances.

Noting that ∫
H

G(ρ)(dψ) ‖ψ‖2 = tr ρ = 1, (18)

we now define the adjusted Gaussian measure GA(ρ) onH as:

GA(ρ)(dψ) = ‖ψ‖2G(ρ)(dψ). (19)

If ψGA is a GA(ρ)-distributed vector, then GAP(ρ) is the distribution of this vector
projected on the unit sphere; that is, GAP(ρ) is the distribution of



Universal Probability Distribution for the Wave Function

ψGAP = ψGA

‖ψGA‖ . (20)

Like G(ρ) and unlike GA(ρ), GAP(ρ) has covariance matrix ρ.
More generally, one can define for any measure μ on H the “adjust-and-project”

procedure, producing a measure we sometimes denote by μAP . We denote by Aμ the
adjusted measure

Aμ(dψ) = ‖ψ‖2 μ(dψ). (21)

The projection on the unit sphere is defined as:

P : H \{0} → S(H ) , P(ψ) = ψ

‖ψ‖ . (22)

Then the adjusted-and-projected measure is μAP = P∗(Aμ) = Aμ ◦ P−1, where P∗
denotes the action of P on measures, thus defining a mapping P∗ ◦ A from the measures
on H to the measures on S(H ). If

∫
μ(dψ) ‖ψ‖2 = 1 then P∗(Aμ) is a probability

measure.
The second definition [11] works without Gaussian measures; it applies when d :=

dimH < ∞. Let �u be uniformly distributed on S(H ), and let uD(ρ) denote the
distribution of

�uD(ρ) = d1/2ρ1/2�u . (23)

It is a measure on H concentrated on the ellipsoid that is the image of the unit sphere
under d1/2ρ1/2. Then (as shown below)

uDAP(ρ) = GAP(ρ). (24)

That is, applying the adjust-and-project procedure to uD(ρ) yields GAP(ρ).
More generally, Jozsa et al. [11] defined for any probability measure μ on S(H ) the

procedure of ρ-distortion, yielding μDAP(ρ), as follows: Let �μ be μ-distributed and
let μD(ρ) denote the distribution of

�μD(ρ) = d1/2ρ1/2�μ. (25)

Then apply the adjust-and-project procedure to obtain the measure μDAP(ρ) (which
in general is not normalized) on S(H ). In these terms, GAP(ρ) is the ρ-distortion of
the uniform probability measure.

The third definition of GAP(ρ) was suggested to us by an anonymous referee; like
the previous one, it applies if d = dimH < ∞. LetH2 be a Hilbert space of the same
dimension d, and fix a vector 
 ∈ S(H ⊗ H2) such that tr2 |
〉〈
| = ρ. Choose a
random �2 ∈ S(H2) with distribution

μ2(dψ2) = d
∥∥〈ψ2|
〉∥∥2 u2(dψ2), (26)

where 〈·|·〉 is the partial inner product in H2, ‖ · ‖ is the norm in H , and u2 is the
uniform probability distribution on S(H2); μ2 is normalized because

μ2(S(H2)) = d
∫

S(H2)

u2(dψ2) 〈
|ψ2〉〈ψ2|
〉 = d 〈
|d−1 I2|
〉 = 1. (27)
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Then GAP(ρ) is the distribution of

� = 〈�2|
〉∥∥〈�2|
〉∥∥ , (28)

where 〈·|·〉 is again the partial inner product in H2. We will prove the equivalence of
this definition with the previous one in the next section.

The measure μ2 possesses the following operational interpretation. For any Hilbert
space H with finite dimension d, let EH be the unique unitary-covariant positive-
operator-valued measure (POVM) on S(H ) acting on H ; it is defined by

EH (dψ) = d |ψ〉〈ψ | u(dψ), (29)

where u is the uniform probability measure on S(H ). In our setting involving 
 ∈
S(H ⊗ H2), μ2 coincides with the distribution of the outcome of a (generalized)
quantum measurement of I1 ⊗ EH2 on a system with pure state 
; the collapsed state
after the measurement is then � ⊗ �2 as in (28).

The fourth definition requires that d = dimH < ∞ and that zero is not among the
eigenvalues of ρ. Then GAP(ρ) possesses a density relative to the uniform probability
distribution u on S(H ), which is [8]

dGAP(ρ)

du
(ψ) = d

det ρ
〈ψ |ρ−1|ψ〉−d−1. (30)

1.5. Properties of the GAP measure. The density matrix associated with GAP(ρ) is ρ,

ρGAP(ρ) = ρ. (31)

To see this, note that the density matrix ρμ as in (3) is a special case of the covariance
matrix provided μ has mean 0, and that the covariance matrix can be defined also for
probability measures μ onH with mean 0 by

Cμ =
∫

H

μ(dψ) |ψ〉〈ψ |. (32)

The adjust-and-project procedure preserves the covariance matrix,

CP∗(Aμ) = Cμ , (33)

for the simple reason [8] that

CP∗(Aμ) =
∫

H

Aμ(dψ) |P(ψ)〉〈P(ψ)| =
∫

H

‖ψ‖2 μ(dψ)
|ψ〉〈ψ |
‖ψ‖2

=
∫

H

μ(dψ) |ψ〉〈ψ | = Cμ. (34)

As a consequence, ρGAP(ρ) = CGAP(ρ) = CG(ρ) = ρ.
If ρ is proportional to a projection, ρ = (dimW )−1 PW for some subspace W ⊆

H , then GAP(ρ) = uS(W ). In general, in a certain precise sense, GAP(ρ) is the
most spread-out distribution on S(H ) with density matrix ρ [11]. Furthermore, the
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mapping ρ 
→ GAP(ρ) is covariant under unitary transformations U , i.e., U�GAP(ρ)

has distribution GAP(UρU−1) [8].
It follows also that the second definition given above is equivalent to the first: Note

first that uDAP(ρ) is a probability measure because

E‖�uD(ρ)‖2 = d E〈�u |ρ|�u〉 = d E tr
(
ρ |�u〉〈�u |

)
= d tr(ρ d−1 I ) = tr ρ = 1.

(35)

Note also that �G(I/d) = ��u , where � = ‖�G(I/d)‖ is a real-valued random
variable independent of �u with E�2 = 1. Furthermore, G(ρ) is the distribution
of d1/2ρ1/2 �G(I/d) = �d1/2ρ1/2�u . The adjustment factor f (ψ) can be written as
�2 d ‖ρ1/2�u‖2, so that GA(ρ) is the distribution of �̃�uDA(ρ), where �uDA(ρ) has
distribution uDA(ρ) = A(uD(ρ)) and �̃ is independent of �uDA(ρ) with P(�̃ ∈
dλ) = λ2 P(� ∈ dλ). When projecting to S(H ), the factor �̃ cancels out, so that
uDAP(ρ) = GAP(ρ).

To see that the third definition is equivalent to the other two, note that 
 defines an
(anti-linear) mappingH2 → H by |ψ2〉 
→ 〈ψ2|
〉. To express this mapping explicitly
using the Schmidt decomposition [20] of 
,


 =
∑
i

√
pi χi ⊗ φi (36)

for some orthonormal basis {φi : i = 1 . . . d} of H2, the vector ψ2 = ∑
i ci φi gets

mapped to
∑

i c
∗
i
√
pi χi . Put differently, except for the conjugation, the mapping acts

like ρ1/2. Thus, it maps the distribution u2 to uD(ρ) and μ2 to uDA(ρ), except for a
rescaling in H by a factor d1/2. The remaining step is the usual projection to S(H ),
which also cancels the d1/2.

The last property, expressed by the following lemma, provides a link between the
distributionμ

ψ,b
1 of the conditional wave function and theGAP measures; it asserts that

when μ
ψ,b
1 gets averaged over all orthonormal bases b ofH2, the resulting distribution

on S(H1) is a GAP distribution. Let ONB(H2) be the set of orthonormal bases ofH2,
and let uONB be the uniform probability measure on ONB(H2), corresponding to the
Haar measure on the unitary group U (H2). Fix H1,H2, and ψ , and regard μ

ψ,b
1 as a

function of b ∈ ONB(H2).

Lemma 1. For b ∼ uONB,

Eμ
ψ,b
1 = GAP(ρ

ψ
1 ). (37)

Proof. For any measurable set A ⊆ S(H1), we obtain from the expression (10) for
μ

ψ,b
1 (A), using that the b1, . . . , bd2 are exchangeable random vectors, that

Eμ
ψ,b
1 (A) = d2 Eb1∼uS(H2)

[∥∥〈b1|ψ〉∥∥2 1A
( 〈b1|ψ〉

‖〈b1|ψ〉‖
)]

(38)

= Eb1∼d2‖〈·|ψ〉‖2uS(H2)

[
1A

( 〈b1|ψ〉
‖〈b1|ψ〉‖

)]
, (39)

and it was stated in (26)–(28) and proven earlier in this section that this quantity equals
GAP(ρ

ψ
1 )(A). ��
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2. Results

2.1. GAP measure from a typical wave function of a large system, given the reduced
density matrix. Let Htotal = H1 ⊗ H2, where H1 and H2 have respective dimension
d1 and d2, with d1 ≤ d2 < ∞. For any given density matrix ρ1 on H1, let

R(ρ1) = {
ψ ∈ S(Htotal) : ρ

ψ
1 = ρ1

}
(40)

be the set of all normalized wave functions inHtotal with reduced density matrix ρ
ψ
1 =

ρ1. We will see that R(ρ1) is always non-empty.
Theorem 1 below concerns typical wave functions inR(ρ1), i.e., typical wave func-

tions with fixed reduced density matrix. The concept of “typical” refers to the uniform
distribution uρ1 on R(ρ1); an explicit definition of this distribution will be given in
Sect. 3.1.

Before we formulate Theorem 1, we introduce some notation. First, for any Hilbert
space H , let D(H ) denote the set of all density operators on H , i.e., of all positive
operators on H with trace 1. Second, when μ is a measure on H or S(H ) and f (ψ)

is a measurable function on H or S(H ) then we use the notation

μ( f ) :=
∫

μ(dψ) f (ψ). (41)

Third, let ‖ f ‖∞ = supx | f (x)|.
Theorem 1. For every ε > 0, all Hilbert spaces H1,H2 with dimensions 1 ≤ d1 ≤
d2 < ∞ with d2 ≥ 4, every orthonormal basis b = {b1, . . . , bd2} of H2, every ρ1 ∈
D(H1), and every bounded measurable test function f : S(H1) → R,

uρ1

{
ψ ∈ R(ρ1) : ∣∣μψ,b

1 ( f ) − GAP(ρ1)( f )
∣∣ < ε ‖ f ‖∞

}
≥ 1 − 4

ε2d2
. (42)

In particular, for sufficiently big d2 (uniformly in b and ρ1), the measure is arbitrarily
close to 1.

We give the proof, as well as those of Theorems 2–4, in Sect. 3.
It follows from Theorem 1 that, for every sequence (H2,n)n∈N of Hilbert spaces

with d2,n = dimH2,n → ∞ as n → ∞ and every sequence (bn)n∈N of orthonormal
bases bn = {b1,n, . . . , bd2,n ,n} of H2,n , for every ρ1 ∈ D(H1), and for every bounded

measurable function f : S(H1) → R, the sequence of random variables μ
�n ,bn
1 ( f ),

where �n has distribution uρ1 on S(H1 ⊗H2,n), converges in distribution, as n → ∞,
to the constant GAP(ρ1)( f ), in fact uniformly in ρ1, bn and those f with ‖ f ‖∞ ≤ 1.
Because of the convergence for every f ,we can say that the sequenceof randommeasures
μ

�n ,bn
1 converges “weakly in distribution” to the fixed measure GAP(ρ1).
A few comments about notation. In [8], d1 was called k, d2 was called m, and the

notation for the basis {b1, . . . , bd2} was {|1〉, . . . , |m〉}. For enumerating the basis, we
will use the letter j , and thus write b j ; in [8], the notation was q2 for j (subscript
2 because it refers to H2). For a random choice of j , we write J ; the corresponding
notation in [8] was Q2.
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2.2. GAP measure from a typical basis of a large system. As already explained in [8],
instead of considering a typical wave function and a fixed basis one can consider a fixed
wave function and a typical basis. Recall the notation ρ

ψ
1 = tr2 |ψ〉〈ψ |.

Theorem 2. For every ε > 0, all Hilbert spacesH1,H2 of dimensions 1 ≤ d1 ≤ d2 <

∞ with d2 ≥ 4, every ψ ∈ S(H1 ⊗ H2), and every bounded measurable test function
f : S(H1) → R,

uON B

{
b ∈ ONB(H2) : ∣∣μψ,b

1 ( f ) − GAP(ρ
ψ
1 )( f )

∣∣ < ε ‖ f ‖∞
}

≥ 1 − 4

ε2d2
. (43)

Our theorems are closely related to the phenomenon of concentration of measures
[14], which refers to the situation in certain metric probability spaces X that an ε-
neighborhood of a set of measure near 0 can have measure near 1 and leads to the
consequence that relevant functions on these spaces are nearly constant (i.e., they are
near their mean at most points). While our theorems are not implied by standard results
about concentration of measures (see the end of Sect. 3.2 for more detail), they are
similar in that they say that certain functions are nearly constant, such as the function
ψ 
→ μ

ψ,b
1 ( f ) on X = R(ρ1) or the function b 
→ μ

ψ,b
1 ( f ) on X = ONB(H2).

2.3. GAP measure from a typical basis and a typical wave function in a large subspace.
In our main physical application, the reduced density matrix ρ

ψ
1 is not fixed, although—

by a fact known as canonical typicality—most of the relevant ψs have a reduced density
matrix ρ

ψ
1 that is close to a certain fixed density matrix, for example to the canonical

density matrix ρβ = (1/Z)e−βH . In this section, we present two further universality
theorems that are appropriate for such situations, in which the relevant set of ψs is a
subspace of H1 ⊗ H2 that will be denoted HR .

The physical setting to have in mind is this. A system with Hilbert space H1 is
entangled with a large system whose Hilbert space is H2. The Hamiltonian H is thus
defined on Htotal = H1 ⊗ H2; suppose the total system is confined to a finite volume,
so that H has pure point spectrum. Let [E, E + δE] be a narrow energy window, located
at a suitable energy E such as one corresponding to a more or less fixed energy per
particle or per volume. Then the micro-canonical energy shell is the spectral subspace
of H associated with this interval, i.e., the subspace spanned by the eigenvectors with
eigenvalues between E and E + δE , and this is our subspaceHR . The micro-canonical
density matrix ρR is the density matrix associated with HR , i.e., 1/ dimHR times the
projection to HR . Canonical typicality then asserts that, if the interaction between the
two systems can be neglected as in (13), then, for most wave functions in S(HR), the
reduced density matrix is approximately ρβ for an appropriate value of β.

For generalHR (and regardless of the interaction), canonical typicalitymeans that for
mostψ ∈ S(HR), the reduced densitymatrixρ

ψ
1 is close to tr2 ρR . The precise statement

that we make use of is Theorem 1 of [16] or the “main theorem” of [17], which asserts,
in a somewhat specialized and simplified form that suffices for our purposes:

Lemma 2. Consider a Hilbert space H1 of dimension d1 ∈ N, another Hilbert space
H2 of dimension d2 ∈ N and a subspace HR ⊆ H1 ⊗ H2 of dimension dR. Let ρR be
1/dR times the projection to HR, and uR the uniform distribution on S(HR). Then for
every η > 0,

uR

{
ψ ∈ S(HR) :

∥∥∥ρ
ψ
1 − tr2 ρR

∥∥∥
tr

≥ η +
d1√
dR

}
≤ 4 exp

(
−dRη2

18π3

)
. (44)
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Here, the trace norm is defined by

‖M‖tr = tr |M | = tr
√
M∗M . (45)

By the uniform distribution uR wemean the (2dR−1)-dimensional surface areameasure
on S(HR), normalized so that uR(S(HR)) = 1.

Theorem 3. For every 0 < ε < 1, 0 < δ < 1, d1 ∈ N, every Hilbert space H1 with
dimH1 = d1, and every continuous function f : S(H1) → R, there is a number
DR = DR(ε, δ, d1, f ) > 0 such that for every dR ∈ N with dR > DR and for everyH2
and HR ⊆ H1 ⊗ H2 with dimHR = dR,

uR × uONB

{(
ψ, b

) ∈ S(HR) × ONB(H2) :
∣∣μψ,b

1 ( f ) − GAP(tr2 ρR)( f )
∣∣ < ε

}
≥ 1 − δ. (46)

It follows that, for every sequence (H2,n)n∈N ofHilbert spaceswithd2,n = dimH2,n →
∞ as n → ∞, every sequence (HR,n)n∈N of subspaces of H1 ⊗ H2,n with dR,n =
dimHR,n → ∞ as n → ∞, and every continuous function f : S(H1) → R, the
sequence of random variables

μ
�n ,Bn
1 ( f ) − GAP(tr2 ρR,n)( f ), (47)

where (�n, Bn) has distribution uR,n × uONB,n on S(HR,n)× ONB(H2,n), converges
to zero in distribution as n → ∞. We say that the sequence of random signed measures
μ

�n ,Bn
1 − GAP(tr2 ρR,n) converges “weakly in distribution” to zero.
For 0 < γ < 1/ dimH let D≥γ (H ) denote the set of density matrices ρ ∈ D(H )

whose eigenvalues are all greater than or equal to γ (so that, in particular, zero is not an
eigenvalue of ρ).

Theorem 4. For every 0 < ε < 1, 0 < δ < 1, d1 ∈ N, and 0 < γ < 1/d1, there
are numbers D′

R = D′
R(ε, δ, d1, γ ) > 0 and r ′ = r ′(ε, d1, γ ) > 0 such that for every

dR ∈ N with dR > D′
R, for every Hilbert space H1 with dimH1 = d1, for every

� ∈ D≥γ (H1), for every H2 and HR ⊆ H1 ⊗ H2 with dimHR = dR satisfying
∥∥tr2(ρR) − �

∥∥
tr < r ′, (48)

and for every bounded measurable function f : S(H1) → R,

uR × uONB

{(
ψ, b

) ∈ S(HR) × ONB(H2) :
∣∣μψ,b

1 ( f ) − GAP(�)( f )
∣∣ < ε ‖ f ‖∞

}
≥ 1 − δ. (49)

If we want to consider just one particular density matrix � (of which zero is not an
eigenvalue) then we can set γ equal to the smallest eigenvalue of �. It then follows that,
for every sequence (H2,n)n∈N ofHilbert spaceswith d2,n = dimH2,n → ∞ as n → ∞,
and every sequence (HR,n)n∈N of subspaces ofH1⊗H2,n withdR,n = dimHR,n → ∞
and tr2 ρR,n → � as n → ∞, the sequence of random measures μ

�n ,Bn
1 converges

weakly in distribution to the fixed measure GAP(�). In short,

μ
ψ,b
1

uR×uONB�⇒ GAP(�). (50)
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Of the two theorems above, Theorem 3 is the simpler and perhaps more natural
mathematical statement: it does not even mention any other density matrix than tr2 ρR ;
its structure is to ask first that ε, δ, and f be specified, which define the accuracy of the
desired approximations;3 and it applies to all subspacesHR of sufficient dimension. For
the physical application, though, we often want to compare μ

ψ
1 to GAP(�) rather than

GAP(tr2 ρR), for example because � is the thermal density matrix ρβ = (1/Z)e−βH

while tr2 ρR is something complicated; we usually do not need that the estimate applies
uniformly to all spacesHR of sufficient dimension, but instead consider only one fixed
HR ; and in that situation we can, in fact, obtain an estimate, the one provided by
Theorem 4, that is uniform in f .

2.4. GAP measure as the thermal equilibrium distribution. Theorem 4 justifies regard-
ing GAP(ρβ) as the thermal equilibrium distribution of the wave function of system 1
in the following way. LetHR be the microcanonical subspace, i.e., the spectral subspace
of H associated with the interval [E, E + δE]. It is a standard fact (e.g., [6,13]) that
when the interaction energy between system 1 and system 2 is sufficiently small, i.e.,
when we may set

H = H1 ⊗ I2 + I1 ⊗ H2 (51)

onHtotal = H1⊗H2, andwhen the eigenvalues of H2 are sufficiently dense, then tr2 ρR
is approximately of the exponential form Z−1 exp(−βH1) with Z = tr exp(−βH1)

for suitable β > 0, i.e., is approximately the canonical density matrix ρβ . Then by
Theorem 4 in this special case of negligible interaction we have that for most wave
functions ψ ∈ S(HR),

μ
ψ,b
1 ≈ GAP(ρβ) (52)

for most orthonormal bases b of H2.

3. Proofs

3.1. Definition of uρ1 . According to the Schmidt decomposition [20], every ψ ∈ Htotal
can be written in the form

ψ =
d1∑
i=1

ci χ̃i ⊗ φ̃i (53)

where {χ̃i } is an orthonormal basis in H1, {φ̃i } is an orthonormal system in H2 (i.e., a
set of orthonormal vectors that is not necessarily complete), and the ci are coefficients
which can be chosen to be real and non-negative. If ‖ψ‖ = 1, the reduced density matrix
of the system 1 is then

ρ
ψ
1 =

d1∑
i=1

c2i |χ̃i 〉〈χ̃i |. (54)

3 How f defines a sense of accuracy becomes manifest if we consider finitely many test functions

f1, . . . , f�, assume dR > max(DR( f1), . . . , DR( f�)), and then apply Theorem 3 to obtain that μ
ψ,b
1 and

GAP(tr2 ρR) agree approximately on all linear combinations of f1, . . . , f�.
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Thus, {χ̃i } is an eigenbasis of ρ
ψ
1 , and c2i are the corresponding eigenvalues.

Now let a density matrix ρ1 be given, let {χi } be an eigenbasis for ρ1, and let 0 ≤
pi ≤ 1 be the corresponding eigenvalues. Then every ψ ∈ R(ρ1) possesses a Schmidt
decomposition of the form

ψ =
d1∑
i=1

√
pi χi ⊗ φi (55)

with some orthonormal system {φi } inH2. Indeed, we know it has a Schmidt decomposi-
tion (53) in which {χ̃i } is an eigenbasis of ρ1, and c2i are the eigenvalues. Reordering the
terms in (53),we canmake sure that ci = √

pi .Any twoeigenbases {χi } and {χ̃i }ofρ1 are
related by a block unitary; more precisely, for every eigenvalue p of ρ1, {χi : i ∈ I (p)}
and {χ̃i : i ∈ I (p)} (using the index set I (p) = {i : c2i = p} = {i : pi = p})
are two orthonormal bases of the eigenspace of p, and thus related by a unitary matrix
(U (p)

i j )i, j∈I (p):

χ̃i =
∑

j∈I (p)

U (p)
i j χ j . (56)

Setting

φi =
∑

j∈I (p)

U (p)
j i φ̃ j , (57)

we obtain (55), and that {φi } is an orthonormal system.
Conversely, every orthonormal system {φi } in H2 defines, by (55), a ψ ∈ R(ρ1).

Thus, (55) defines a bijection Fρ1,{χi } : ONS(H2, d1) → R(ρ1). The Haar measure on
the unitary group ofH2 defines the uniform distribution on the set of orthonormal bases
ofH2, of which the uniform distribution on ONS(H2, d1) is a marginal; let uρ1,{χi } be
its image under Fρ1,{χi }.

We note that uρ1,{χi } actually does not depend on the choice of the eigenbasis {χi }.
Indeed, if {χ̃i } is any other eigenbasis of ρ1 (without loss of generality numbered in such
a way that the eigenvalue of χ̃i is pi ) then, as explained above, it is related to {χi } by
a block unitary d1 × d1 matrix U consisting of the blocks (U (p)

i j ). Let U be the matrix

whose entries are the complex conjugates of the entries ofU , and let Û denote the action
of U on ONS(H2, d1) given by

Û
({

φi : i = 1, . . . , d1
}) =

{ d1∑
j=1

Ui jφ j : i = 1, . . . , d1

}
. (58)

Then

Fρ1,{χi } = Fρ1,{χ̃i } ◦ Û . (59)

Since the Haar measure is invariant under left multiplication, its marginal on ONS(H2,

d1) is invariant under Û . We thus define uρ1 to be uρ1,{χi } for any eigenbasis {χi }.
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3.2. Proof of Theorem 2. We first prove Theorem 2 and later show that Theorem 1 is
equivalent. Let Var(Y ) denote the variance of the random variable Y and Cov(X,Y ) the
covariance of the random variables X,Y .

Lemma 3. Let �u = (�u
1 , . . . , �u

d ) ∼ uS(Cd ). Then E�u
1 = 0, E |�u

1 |2 = 1/d,

E|�u
1 |4 = 2

d(d + 1)
, Var

(|�u
1 |2) = 1

d2
d − 1

d + 1
, (60)

and

E

[
|�u

1 |2|�u
2 |2

]
= 1

d(d + 1)
, Cov

(
|�u

1 |2, |�u
2 |2

)
= − 1

d2(d + 1)
. (61)

Proof. Since these relations can be found in many sources, e.g., [10, Eq. (2.3.6)] or [23,
see Eq. (144) and (149) in the English translation with s = 1], we only give a brief
outline. The relation E�u

1 = 0 follows from the spherical symmetry of the distribution,
and E |�u

1 |2 = 1/d from E
∑d

k=1 |�u
k |2 = 1 and the fact that the �u

k are exchangeable.
The first equation in (60) can be obtained bymeans of integration in spherical coordinates
inR2d , the second equation follows from the first. The first equation in (61) follows easily
from (60) using that

∑d
k=1 |�u

k |2 = 1 and thusE[(∑ |�u
k |2)2] = 1, and the second again

from the first. ��
As a remark on Lemma 3, readers may find it useful to compare these results to

the well-known fact that for large d, �u
1 and �u

2 are approximately distributed like
independent complex Gaussian random variables G1,G2 with mean 0 and variance
E |Gi |2 = 1/d. The relations for G1,G2 corresponding to (60), (61) are

Var
(|G1|2

) = 1

d2
and Cov

(|G1|2, |G2|2
) = 0. (62)

Equation (61) implies that the correlation coefficient of |�u
1 |2 and |�u

2 |2 is small like
1/d, in agreement with the statement that they are approximately independent.

Our proof of Theorem 2 is based on the following lemma, which was proved in [10]
as Theorem 1 (Version 3).

Lemma 4. Let ε > 0, δ > 0, d ∈ N with d ≥ 4 and d ≥ 2δ−2ε−1, and let {b1, . . . , bd}
be a random, uniformly distributed orthonormal basis ofCd . Then, for every test function
ϕ ∈ L2(S(Cd), u,R),

P

(∣∣∣ 1
d

d∑
j=1

ϕ(b j ) − Eu(ϕ)

∣∣∣ ≤ δ
√
Varu(ϕ)

)
≥ 1 − ε, (63)

where Eu(ϕ) and Varu(ϕ) mean the mean and variance, respectively, relative to the
uniform probability distribution over the unit sphere in Cd .

Proof of Theorem 2. Fix ε, H1, H2, ψ , and f . Let the function ϕ be defined, for any
φ ∈ S(H2), by

ϕ(φ) = d2
∥∥〈φ|ψ〉∥∥2 f

(
P(〈φ|ψ〉)

)
(64)
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with P(�) = �/‖�‖ the projection to the unit sphere. Then, for any b ∈ ONB(H2),

μ
ψ,b
1 ( f ) = 1

d2

d2∑
j=1

ϕ(b j ), (65)

cf. (10). Now regard b as random, b ∼ uONB . By Lemma 1,

GAP(ρ
ψ
1 )( f ) = Eμ

ψ,b
1 ( f ) = E

1

d2

d2∑
j=1

ϕ(b j ) = Eϕ(b1) = Eu(ϕ). (66)

We now show that

Varu(ϕ) ≤ 2 ‖ f ‖2∞. (67)

Indeed,writing X for a uniformlydistributed randompoint onS(H2), andY = 〈X |ψ〉2 ∈
H1, we have that

Varu(ϕ) = E
[
ϕ(X)2

] −
(
E[ϕ(X)]

)2
(68)

≤ E
[
ϕ(X)2

]
(69)

= E

[
d22 ‖Y‖4 f

(
P(Y )

)2] (70)

≤ d22 ‖ f ‖2∞ E

[
‖Y‖4

]
. (71)

We now estimate E‖Y‖4. As a tool, let

ψ =
d1∑
i=1

√
pi χi ⊗ φi (72)

be the Schmidt decomposition [20] of ψ , where (χ1, . . . , χd1) ∈ ONB(H1),
(φ1, . . . , φd2) ∈ ONB(H2), and ρ

ψ
1 = ∑

i pi |χi 〉〈χi |. Note that ∑d1
i=1 pi = 1. Let

p2 :=
d1∑
i=1

p2i (73)

and note that 0 < p2 ≤ 1. Then

E ‖Y‖4 = E
∥∥〈X |ψ〉∥∥4 (74)

= E

[( d1∑
i=1

pi
∣∣〈X |φi 〉

∣∣2)2
]

(75)

= E

[ d1∑
i, j=1

pi p j
∣∣〈X |φi 〉

∣∣2∣∣〈X |φ j 〉
∣∣2

]
(76)

=
d1∑
i=1

p2i E
∣∣〈X |φi 〉

∣∣4 +
d1∑

i, j=1
i �= j

pi p j E

[∣∣〈X |φi 〉
∣∣2∣∣〈X |φ j 〉

∣∣2
]

(77)
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=
d1∑
i=1

p2i E
∣∣〈X |φ1〉

∣∣4 +
d1∑

i, j=1
i �= j

pi p j E

[∣∣〈X |φ1〉
∣∣2∣∣〈X |φ2〉

∣∣2
]

(78)

[because the distribution of X is invariant under unitaries]

= p2 E
∣∣〈X |φ1〉

∣∣4 + (1 − p2)E

[∣∣〈X |φ1〉
∣∣2∣∣〈X |φ2〉

∣∣2
]

(79)

= p2 E|X1|4 + (1 − p2)E
[
|X1|2 |X2|2

]
(80)

= 2p2

d2(d2 + 1)
+

1 − p2

d2(d2 + 1)
≤ 2

d22
(81)

by Lemma 3, with X = (X1, . . . , Xd2). This, together with (71), proves (67).
Now, in Lemma 4, replace d by d2 (so C

d = H2), replace ε by 4ε−2d−1
2 , and δ by

ε/
√
2. Then, the condition d ≥ 2δ−2ε−1 gets replaced by

d2 ≥ 2(ε/
√
2)−2(4ε−2d−1

2 )−1, (82)

which is satisfied because the right-hand side simplifies to d2, and the condition d ≥ 4
is satisfied as well. Inserting (65) and (66), Lemma 4 asserts that

P

(∣∣∣μψ,b
1 ( f ) − GAP(ρ

ψ
1 )( f )

∣∣∣ ≤ ε√
2

√
Varu(ϕ)

)
≥ 1 − 4

ε2d2
. (83)

From this and (67), we obtain (43), the relation we wanted to prove. ��
An alternative proof of Theorem 2 is provided in an earlier version of this article that

is available as a preprint at http://arxiv.org/abs/1104.5482v1. That proof did not make
use of the theorem [10] about the uniformity of a randomorthonormal basis quoted above
as Lemma 4, but instead of the theorem [2] (see also the references in our preprint and in
[2]) that for a random n × n unitary matrix with distribution given by the Haar measure
on the unitary group U (n), the upper left (or any other) k × k submatrix, multiplied by
a normalization factor

√
n, converges as n → ∞ to a matrix of independent complex

Gaussian random variables with mean 0 and variance 1. (To understand the factor
√
n,

note that a column of a unitary n × n matrix is a unit vector, and thus a single entry
should be of order 1/

√
n.)

Another strategy for proving Theorem 2 has been suggested by an anonymous referee
and is based on concentration of measures [14]. The latter is a name for the fact that,
in certain metric probability spaces X including X = S(Cd) and X = ONB(Cd) for
large d with the uniform measure uX , the ε-neighborhood of any measurable subset
A ⊆ X of measure uX (A) ≥ 1/2 has measure close to 1. As a consequence, any
1-Lipschitz function g (i.e., function with Lipschitz constant 1) on X will be nearly
constant, i.e., will stay within the ε-neighborhood of its median (or, for that matter, of
its mean) on a set of measure close to 1. For our purposes, consider X = ONB(H2)

and g(b) = μ
ψ,b
1 ( f ). Since the mean of g is, by Lemma 1, GAP(ρ

ψ
1 )( f ), we would

obtain that uONB{b : μ
ψ,b
1 − GAP(ρ

ψ
1 )( f ) is small} is close to 1, provided that g is

1-Lipschitz. But g will not be 1-Lipschitz unless f is, so this argument requires a much
stronger hypothesis on f than Theorem 2. In fact, to have the statement of Theorem 2

http://arxiv.org/abs/1104.5482v1
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only for 1-Lipschitz test functions f is rather useless because when (say) dimH1 > 105

(aswould realistically be the case inmany applications of interest) then, by concentration
of measures again, such an f is nearly constant on S(H1) and thus unable to detect the
difference between two measures such as μ

ψ,b
1 and GAP(ρ

ψ
1 ); that is, for a 1-Lipschitz

function f , μ
ψ,b
1 ( f ) − GAP(ρ

ψ
1 )( f ) may be expected to be small even if μ

ψ,b
1 and

GAP(ρ
ψ
1 ) are not close to each other. That is why we follow a different strategy and

obtain Theorem 2, a stronger and more relevant result.

3.3. Proof of Theorem 1.

Proof. Note that for any unitary U on H2

〈U−1b j |ψ〉 = 〈b j | I1 ⊗U ψ〉. (84)

From this fact and the fact that the Haar measure is invariant underU 
→ U−1 it follows
that the distribution of μ

ψ,b
1 , when ψ ∈ R(ρ1) is uρ1 -distributed and b is fixed, is

the same as when b is uONB-distributed and ψ ∈ R(ρ1) is fixed. Thus, Theorem 2 is
equivalent to Theorem 1. (It also follows that the distribution of μ

ψ,b
1 , when ψ ∈ R(ρ1)

is uρ1 -distributed and b is fixed, does not depend on b, and that its distribution, when b
is uONB-distributed and ψ is fixed, does not depend on ψ ∈ R(ρ1).) ��

3.4. Continuity of GAP. For the proofs of Theorems 3 and 4, we will exploit canonical
typicality, i.e., the fact that for most ψ ∈ S(HR), the reduced density matrix ρ

ψ
1 is

close to tr2 ρR . Theorems 3 and 4 then follow from Theorem 2 via suitable continuity
of the mapping ρ 
→ GAP(ρ). The following two lemmas provide somewhat different
statements about continuity: Recall that D≥γ (H ) is the set of density matrices with all
eigenvalues greater than or equal to γ . Lemma 6 asserts that GAP(ρ)( f ) depends in a
uniformly continuous way on both ρ and f when we restrict ρ toDγ (H ) for arbitrarily
small γ > 0; continuity is not uniform without this restriction. However, Lemma 5
asserts that for any fixed and continuous test function f , continuity is uniform in ρ

without restrictions.

Lemma 5. For every 0 < ε < 1, every d ∈ N, every Hilbert spaceH with dimH = d,
and every continuous function f : S(H ) → R there is r = r(ε, d, f ) > 0 such that
for all ρ,� ∈ D(H ),

if ‖ρ − �‖tr < r then
∣∣GAP(ρ)( f ) − GAP(�)( f )

∣∣ < ε. (85)

While all norms on D(H ) are equivalent for dimH < ∞, we use the trace norm
‖ · ‖tr here because in this norm the continuity extends to dimH = ∞ and because it
is used in Lemma 2.

To formulate the other continuity statement, let uS(H ) denote the normalized uniform
measure on the unit sphere in H . For any density matrix ρ ∈ D(H ) of which zero is
not an eigenvalue, GAP(ρ) possesses a density relative to uS(H ) [8].

Lemma 6. For every 0 < ε < 1, every d ∈ N, every Hilbert spaceH with dimH = d,
and every 0 < γ < 1/d, there is r = r(ε, d, γ ) > 0 such that for all ρ,� ∈ D≥γ (H ),

if ‖ρ − �‖tr < r then

∥∥∥∥dGAP(ρ)

duS(H )

− dGAP(�)

duS(H )

∥∥∥∥∞
< ε. (86)
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As a consequence, for such ρ and �,
∣∣GAP(ρ)( f ) − GAP(�)( f )

∣∣ < ε ‖ f ‖1 (87)

for every f ∈ L1
(
S(H ), uS(H )

)
.

It follows in particular that for any fixed density matrix � of which zero is not an
eigenvalue and any sequence (ρn) of density matrices with ρn → �, the density of
GAP(ρn) converges to that of GAP(�) in the ‖ · ‖∞ norm: Take γ > 0 to be less
than the smallest eigenvalue of � and note that only finitely many ρn can lie outside
D≥γ (H ).

To see that in Lemma 6D≥γ (H ) cannot be replaced byD(H ) (i.e., that continuity
is not uniform without restrictions), note that, when 0 is an eigenvalue of �, GAP(�)

does not have a density with respect to uS(H ), so that at such an �, ρ 
→ GAP(ρ) is
certainly not continuous in L∞(

S(H ), uS(H )

)
, nor in L1 (which would correspond to

the variation distance of measures).
To see that in Lemma 5 one cannot drop the assumption that f is continuous, consider

an� that has zero as an eigenvalue and a ρ that does not. Then GAP(�) is concentrated
on a subspace of dimension less than d while GAP(ρ) has a density on the sphere
and lies near (rather than in) that subspace. Thus, for a test function f that is bounded
measurable but not continuous, GAP(ρ)( f ) does not have to be close to GAP(�)( f ).

As part of the proof of Lemma 5, we will need the continuity property of Gaussian
measures expressed in the next lemma.Whenμn, μ are measures on a topological space
X , we writeμn ⇒ μ to denote that the sequence of measuresμn converges weakly toμ.
This means thatμn( f ) → μ( f ) for every bounded continuous function f : X → R and
implies that the same thing is true for every bounded measurable function f : X → R

such that μ(D( f )) = 0, where D( f ) is the set of discontinuities of f .

Lemma 7. The mapping ρ 
→ G(ρ) is continuous in the weak topology on measures:
If ρn ∈ D(Cd) for every n ∈ N and ρn → ρ then G(ρn) ⇒ G(ρ).

Proof. We use characteristic functions; as usual, the characteristic function μ̂ : R2d →
C of a probability measure μ on R

2d is defined by

μ̂(k1, . . . , k2d) =
∫

μ(dx1 · · · dx2d) exp
(
i

2d∑
j=1

k j x j
)
, (88)

or, in our notation on H = C
d ,

μ̂(φ) =
∫

μ(dψ) exp
(
iRe〈φ|ψ〉

)
, (89)

where Re denotes the real part.Wewriteμn = G(ρn) andμ = G(ρ); their characteristic
functions are:

μ̂n(ψ) = exp
(−〈ψ |ρn|ψ〉), μ̂(ψ) = exp

(−〈ψ |ρ|ψ〉). (90)

If ρn → ρ then 〈ψ |ρn|ψ〉 → 〈ψ |ρ|ψ〉 for every ψ and thus μ̂n → μ̂ pointwise. Since
(e.g., [1]) pointwise convergence of the characteristic functions is equivalent (in finite
dimension) to weak convergence of the associated measures, it follows that G(ρn) ⇒
G(ρ), which is what we wanted to show. ��
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Proof of Lemma 5. SinceD(H ) is compact, uniform continuity follows from continu-
ity. That is, it suffices to show that, assuming ρn ∈ D(H ) for every n ∈ N,

if ρn → ρ then GAP(ρn) ⇒ GAP(ρ). (91)

This follows from Lemma 7, the continuity of the adjustment mapping A defined in
(21) in Sect. 1.4, and the continuity of the projection P : H \{0} → S(H ). Our first
step is to establish the continuity of A on the set of probability measures μ onH such
that

∫
μ(dψ) ‖ψ‖2 = 1: If, for every n ∈ N, μn is a probability measure on the Borel

σ -algebra of H such that
∫

μn(dψ) ‖ψ‖2 = 1, then

if μn ⇒ μ and
∫

μ(dψ) ‖ψ‖2 = 1 then Aμn ⇒ Aμ. (92)

Fix ε > 0 and an arbitrary non-zero, bounded, continuous function f : H → R.
As before, we use the notation N (ψ) = ‖ψ‖. Since, by hypothesis, μ(N 2) = 1, there
exists R > 0 so large that

∫
{ψ∈H :‖ψ‖<R}

μ(dψ) ‖ψ‖2 > 1 − ε

6‖ f ‖∞
. (93)

Let the “cut-off function” χ0 : [0,∞) → [0, 1] be any continuous function such that
χ0(x) = 1 for x ≤ R and χ0(x) = 0 for x ≥ 2R; set χ(ψ) = χ0(‖ψ‖). Because
χN 2 and f χN 2 are bounded continuous functions, and because μn ⇒ μ, we have that
μn(χN 2) → μ(χN 2) and μn( f χN 2) → μ( f χN 2); that is, there is an n1 ∈ N such
that, for all n > n1,

∣∣∣μn(χN 2) − μ(χN 2)

∣∣∣ <
ε

3‖ f ‖∞
(94)

and
∣∣∣μn( f χN 2) − μ( f χN 2)

∣∣∣ <
ε

3
. (95)

Thus, for all n > n1, we have that

|Aμn( f ) − Aμ( f )|
=

∣∣∣μn( f N
2) − μ( f N 2)

∣∣∣ (96)

≤
∣∣∣μn( f χN 2) − μ( f χN 2)

∣∣∣ +
∣∣∣μn

(
f (1 − χ)N 2)∣∣∣ +

∣∣∣μ(
f (1 − χ)N 2)∣∣∣ (97)

<
ε

3
+ ‖ f ‖∞μn

(
(1 − χ)N 2) + ‖ f ‖∞μ

(
(1 − χ)N 2) (98)

= ε

3
+ ‖ f ‖∞

(
1 − μn(χN 2)

)
+ ‖ f ‖∞

(
1 − μ(χN 2)

)
(99)

≤ ε

3
+ 2‖ f ‖∞

(
1 − μ(χN 2)

)
+ ‖ f ‖∞

∣∣μn(χN 2) − μ(χN 2)
∣∣ (100)

≤ ε

3
+

ε

3
+

ε

3
= ε. (101)
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This proves (92).4

We are now ready to establish (91). Suppose ρn → ρ. We have that GAP(ρn) =
P∗A(G(ρn)) and that (AG(ρ)) (0) = 0. Since ψ 
→ Pψ is continuous for ψ �= 0, (91)
follows from (92) and Lemma 7. This completes the proof of Lemma 5. ��
Proof of Lemma 6. Wefirst note that, for any self-adjoint d×d matrix A andψ ∈ S(Cd),

∣∣∣〈ψ |A|ψ〉
∣∣∣ ≤ ‖A‖ ≤ ‖A‖tr. (102)

For any density matrix ρ ∈ D(H ) of which zero is not an eigenvalue, the density of
GAP(ρ) relative to uS(H ) is given by (30). Using this expression, we will now show
that (86) holds when ρ is sufficiently close to �. This follows from the facts (i) that, on
D≥γ (H ), the functions ρ 
→ 1/ det ρ and ρ 
→ ρ−1 are uniformly continuous, (ii) that

∣∣∣〈ψ |ρ−1|ψ〉 − 〈ψ |�−1|ψ〉
∣∣∣ ≤ ‖ρ−1 − �−1‖tr (103)

for all ψ ∈ S(H ), (iii) that the function x 
→ x−d−1 is uniformly continuous on the
interval [1,∞), and (iv) that 〈ψ |ρ−1|ψ〉 ≥ 1, 〈ψ |�−1|ψ〉 ≥ 1. This establishes the
existence of r(ε, d, γ ) > 0 as described in Lemma 6.

Now (87) follows from (86) according to
∣∣GAP(ρ)( f ) − GAP(�)( f )

∣∣
=

∣∣∣∣
∫

S(H )

duS(H )

(
dGAP(ρ)

duS(H )

(ψ) − dGAP(�)

duS(H )

(ψ)

)
f (ψ)

∣∣∣∣ (104)

≤
∫

S(H )

duS(H )

∣∣∣∣dGAP(ρ)

duS(H )

(ψ) − dGAP(�)

duS(H )

(ψ)

∣∣∣∣ | f (ψ)| < ε ‖ f ‖1. (105)

��

3.5. Proof of Theorem 3.

Proof of Theorem 3. Suppose we are given 0 < ε < 1, 0 < δ < 1, d1 ∈ N, a Hilbert
space H1 of dimension d1, and a continuous function f : S(H1) → R. Set

DR(ε, δ, d1, f ) = max

{
4d1,

32d1‖ f ‖2∞
ε2δ

,
4d21

r(ε/2, d1, f )2
,
72π3 log(8/δ)

r(ε/2, d1, f )2

}
, (106)

with r(ε, d, f ) as provided by Lemma 5. Now consider any dR ∈ N with dR > DR and
any H2 and HR ⊆ H1 ⊗ H2 with dimHR = dR ; it follows that

d2 = dimH2 ≥ dR/d1 >
32‖ f ‖2∞

ε2δ
. (107)

4 We remark that the hypothesis
∫

μ(dψ)‖ψ‖2 = 1 cannot be dropped, that is, does not follow from∫
μn(dψ)‖ψ‖2 = 1. An example is μn = (1− 1/n)δ0 + (1/n)δψn , where δφ means the Dirac delta measure

at φ and ψn is any vector with ‖ψn‖2 = n; then μn is a probability measure with
∫

μn(dψ)‖ψ‖2 = 1 but
μn ⇒ δ0, which has

∫
δ0(dψ)‖ψ‖2 = 0.
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Let M( f, ε) be the set mentioned in (46),

M( f, ε) =
{(

ψ, b
) ∈ S(HR) × ONB(H2) : ∣∣μψ,b

1 ( f ) − GAP(tr2 ρR)( f )
∣∣ < ε

}
,

(108)

let

M ′( f, ε) =
{(

ψ, b
) ∈ S(HR) × ONB(H2) : ∣∣μψ,b

1 ( f ) − GAP(ρ
ψ
1 )( f )

∣∣ < ε
}

(109)

and

M ′′(ε) =
{
ψ ∈ S(HR) : ‖ρψ

1 − tr2 ρR‖tr < ε
}
. (110)

Then, by Lemma 5,

M( f, ε) ⊇ M ′( f,
ε

2

)
∩

[
M ′′(r(ε

2
, d1, f

)) × ONB(H2)
]
. (111)

Theorem 2 yields, using (107), that for every ψ ∈ S(HR),

uONB

{
b ∈ ONB(H2) : ∣∣μψ,b

1 ( f ) − GAP(ρ
ψ
1 )( f )

∣∣ <
ε

2

}
≥ 1 − δ/2. (112)

Thus, averaging over ψ ∈ S(HR) according to uR ,

uR × uONB

(
M ′( f, ε/2)

)
≥ 1 − δ/2. (113)

Lemma 2 with η = r/2 for r = r(ε/2, d1, f ) yields, using our assumption dR >

4d21/r
2, which implies that d1/

√
dR ≤ r/2, that

uR(M ′′(r)) ≥ 1 − 4 exp
(
− dRr2

18π34

)
. (114)

Using our assumption dR > 18π34 log(8/δ)/r2, the right-hand side is greater than or
equal to 1 − δ/2, and thus

uR × uONB

[
M ′′(r) × ONB(H2)

]
≥ 1 − δ/2. (115)

From (113), (115), and (111) together we have that

uR × uONB

[
M( f, ε)

]
≥ 1 − δ, (116)

which is what we wanted to show. ��
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3.6. Proof of Theorem 4.

Proof of Theorem 4. Suppose we are given 0 < ε < 1, 0 < δ < 1, d1 ∈ N, 0 < γ <

1/d1, and a Hilbert space H1 of dimension d1. Set

D′
R = D′

R(ε, δ, d1, γ ) = max

{
4d1,

32d1
ε2δ

,
4d21
(r ′)2

,
72π3 log(8/δ)

(r ′)2

}
, (117)

r ′ = r ′(ε, d1, γ ) = 1

2
r(ε/2, d1, γ ), (118)

with r(ε, d, γ ) as provided by Lemma 6. Now consider any dR ∈ Nwith dR > D′
R , any

� ∈ D≥γ (H1), any H2 and HR ⊆ H1 ⊗ H2 with dimHR = dR , and any bounded
measurable function f : S(H1) → R. It follows that

d2 = dimH2 ≥ dR/d1 >
32

ε2δ
. (119)

Let M0( f, ε) be the set mentioned in (49),

M0( f, ε)=
{(

ψ, b
)∈S(HR) × ONB(H2) : ∣∣μψ,b

1 ( f ) − GAP(�)( f )
∣∣ < ε ‖ f ‖∞

}
,

(120)

let, as in the proof of Theorem 3,

M ′( f, ε) =
{(

ψ, b
) ∈ S(HR) × ONB(H2) : ∣∣μψ,b

1 ( f ) − GAP(ρ
ψ
1 )( f )

∣∣ < ε
}

,

(121)

let

M ′′
0 (ε) =

{
ψ ∈ S(HR) : ‖ρψ

1 − �‖tr < ε
}
, (122)

and let, as in the proof of Theorem 3,

M ′′(ε) =
{
ψ ∈ S(HR) : ‖ρψ

1 − tr2 ρR‖tr < ε
}
. (123)

Now assume
∥∥tr2 ρR − �

∥∥
tr < r ′. Then

M ′′
0 (2r ′) ⊇ M ′′(r ′) (124)

and, by Lemma 6 and ‖ f ‖1 ≤ ‖ f ‖∞,

M0( f, ε) ⊇ M ′
(
f,

ε‖ f ‖∞
2

)
∩

[
M ′′

0 (2r ′) × ONB(H2)
]
. (125)

As in the proof of Theorem 3, Theorem 2 yields (113) with ε replaced by ε‖ f ‖∞
using (119), and Lemma 2 yields (115) with r replaced by r ′, using our assumption
dR > D′

R . From (113), (115), (124), and (125) together we have that

uR × uONB

[
M0( f, ε)

]
≥ 1 − δ, (126)

which is what we wanted to show. ��
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