
On page 1947, in the right-hand column, line 25 should read, "... exchange, \(\sigma \rightarrow \sigma^x \), with ..." The opening curly parenthesis in Eq. (1) should be deleted.

On page 1948, in the left-hand column, the sentence beginning in line 6 should read, "Let \(\Lambda_t^b \) be a cubical box with sides of length \(\delta \), centered on \(r \in R^d \)." Line 20 should read, "... magnetization density at ..." In line 27, \(\Lambda_t^b \) should read \(e^{-d} \Lambda_t^b \). In line 29, \(m(r,t) \) should be deleted.

On page 1948, in the right-hand column, line 1 should read, "\(\rightarrow \int_{\Lambda_t} m'(r',t)d^d r' \), a ..." The sentence containing Eq. (5) should begin, "For the example in (1) we have ..."

We alter the discussion of Theorem 2 for clarity. The text should be replaced by the following:

Theorem 2.—Let

\[
\phi^* (r,t;\sigma) = e^{-d/2} [m^* (r',t;\sigma) - \int_{\Lambda_t^b} m'(r',t)d^d r'];
\]

then

\[
\phi^* (r,t;\sigma) \to \int_0^\infty \phi (r',t)d^d r',
\]

a random Gaussian field satisfying the following Ornstein-Uhlenbeck-type stochastic equation:

\[
\frac{\partial \phi (r,t)}{\partial t} = \nabla^2 \phi + F'(m(r,t))\phi + H(r,t),
\]

where \(H(r,t) \) is "white" noise with the covariance

\[
\langle H(r,t)H(r',t') \rangle = \delta (t-t') [2 \nabla_r \cdot \nabla_r [(1-m^2)\delta (r-r') + 4f(m)\delta (r-r')]],
\]

where \(f(m) = \langle c(0,\sigma) \rangle \eta_m \equiv 1 - \gamma (2 - \gamma) m^2 \), for example (1).

The equal-time correlations of the fluctuation field \(\phi \),

\[
c(r,r';t) = \langle \phi (r,t)\phi (r',t) \rangle,
\]

satisfy the following equations:

\[
c(r,t,t) = [1 - m^2 (r,t)]\delta (r-t) + \tilde{c} (r,t,t), \quad \tilde{c} (r,t,t) = 0,
\]

\[
\frac{\partial \tilde{c} (r,r';t)}{\partial t} = [\nabla_r^2 + \nabla_r^2 + F' (m (r,t)) + F' (m (r',t))] \tilde{c} (r,r';t) - 2 \delta (r-r') [(\nabla m)^2 - F'' (m) (1-m^2) + mF (m) - 2f (m)].
\]

The proof of these theorems uses a dual branching process; cf. Liggett,2 Sect. 3, for a clear presentation of duality. This reduces.

On page 1949, in line 17 of the first column, \(|m(q,t)| \) should read \(|m(r,t)| \). The equations on page 1949 should be replaced by

\[
\frac{\partial \tilde{c}}{\partial t} = -4 (1 - 2\gamma) \tilde{c} + 8 \gamma \delta (r-r') + 2 \nabla^2 \tilde{c}, \quad \tilde{c} (r,r';0) = 0,
\]

and the solution is

\[
\tilde{c} (r,r';t) = 8 \gamma \int_0^t ds (8 \pi s)^{-1/2} \exp [- (r-r')^2 / 8 s] \exp [-4 (1-2\gamma) s].
\]

For \(\gamma > \gamma_c \), \(\tilde{c} \to \infty \) as \(t \to \infty \), the growth being like \(\sqrt{t} \) for \(\gamma_c \) and exponential for \(\gamma > \gamma_c \), while for \(\gamma < \gamma_c \),

\[
\tilde{c} (r,r';t) \to \frac{\gamma}{(\gamma_c - \gamma)^{1/2}} \exp [-2 (\gamma_c - \gamma)^{1/2} |r-r'|]
\]