Long-Range Correlations in a Closed System with Applications to Nonuniform Fluids*

J. L. Lebowitz
Graduate School of Science, Yeshiva University, New York, New York

AND

J. K. Percus
Institute of Mathematical Sciences, New York University, New York, New York
(Received November 23, 1960)

We investigate the corrections to the representation of the joint distribution of \(q+l \) particles, \(\eta_{q+l} \), by the product \(\eta_q \eta_l \) for large separation between the sets of \(q \) and \(l \) particles. For a system in which there exists a "finite correlation length," we find explicitly the \(1/N \) correction term to the simple product, where \(N \) is the number of particles in our system. When \(q+l \) is equal to two, this expression reduces to that familiar from the Ornstein-Zernike relations for scattering of light from a fluid. In a uniform gas, our derivation also yields the explicit \(1/N \) dependence of equilibrium distributions. Our result on the asymptotic form is then used to determine the low-order distribution functions for an equilibrium system of varying density, as well as for a nonequilibrium system represented by a local-equilibrium ensemble. These distribution functions are shown to be governed by the temperature and density in the vicinity of the molecules considered. We find as expected that the two-body distribution function coincides, to within quadratic terms in the gradients, with its equilibrium value for a uniform system at the temperature and density of the midpoint. For the higher-order distributions, correction terms linear in the gradients are found.

1. INTRODUCTION

One of the fundamental concepts of macroscopic physics is that of a homogeneous system. The state of such a system is completely described by a set of intensive parameters which make no reference at all to the size or shape of the system, and by the total number of particles, \(N \) (unless otherwise specified, we deal with a one-component fluid). In actual systems, there are always inhomogeneities due to boundaries and to gravitational body forces. For sufficiently large systems, however, the boundary inhomogeneities, being confined to a region very close to the surface, i.e., involving distances comparable to the range of intermolecular forces, may be neglected when considering bulk properties of the system (or may be investigated explicitly by changing the boundaries). The inhomogeneities due to gravity (or other body forces) are usually very small over molecular distances and are treated by considering the fluid as made up of homogeneous parts with differing intensive parameters. One of the purposes of the present paper is to investigate and find from the point of view of statistical mechanics a justification of this procedure. We consider both the case of density variations alone, where we may have a true equilibrium system, and the case of temperature and velocity variations as well, where the system is to zero order in a state of local equilibrium.

In order to carry out this investigation, we first establish some results concerning the form of the joint distribution \(\eta_{q+l}(r_1, \ldots, r_{q+l}) \) of \(q+l \) particles in equilibrium, when the set of \(q \) particles is "very far" from the set of \(l \) particles. The distribution \(\eta_{q+l} \) approaches the product of the distributions \(\eta_q \) and \(\eta_l \) plus a correction term. It is the form, Eq. (2.22), of this correction term which we find here under certain conditions. It turns out that this correction is related to the integral over all space for the Ursell functions in an infinite system. In the course of the derivation, we also find the explicit \(1/N \) dependence of the low-order distributions for a completely uniform system, i.e., one confined to a box with periodic boundary conditions. This case was also studied by Oppenheim and Mazur who, using a virial expansion and making essentially the same physical assumptions as we do, find a density expansion for the coefficients of the powers of \((1/N) \) in the distributions of a uniform system. It is possible to show that their density expansion may be summed to yield our result.

The general correction terms to the pair distribution function \(n_q(r_1, r_2) \) when \(|r_1 - r_2| \to \infty \) have previously been investigated. When both \(r_1 \) and \(r_2 \) are in the interior of a fluid, the asymptotic form of \(n_q \) is related indirectly (through normalization, see, e.g., Appendix B) to the scattering cross section of visible light (of wavelength long compared to the length of molecular correlations) by fluids found by Ornstein and Zernike. When the dependence of the one-particle density \(n(r) \) on \(r \) is neglected, and some further assumptions are made (implicitly) which will later become clear, then through terms of relative order \(1/N, \)

\[
n_q(r_{12}) = n^2 g(r_{12}) \rightarrow n^2 \left[1 - n k T x / N \right]. \tag{1.1}
\]

* This work was supported by the U. S. Air Force under a contract monitored by the Air Force Office of Scientific Research of the Air Research and Development Command, and by the ABC Computing and Applied Mathematics Center, Institute of Mathematical Sciences, New York University, under a contract with the U. S. Atomic Energy Commission.

Here n is the average density N/V, χ is the isothermal compressibility

$$\chi = \left. \frac{1}{n} \frac{\partial n}{\partial p} \right|_T,$$

(1.2)

and p is the pressure. Recently, one of us also investigated by a very different method (based on a new virial theorem for total momentum fluctuations) the rather special case of the asymptotic form of $n_2(r_1,r_2)$ when r_1 is adjacent to a rigid wall which forms the boundary of the fluid and r_2 is far in the interior. It was found there that, again through order $1/N$,

$$n_2(r_1,r_2) = n_{\omega} n \left(\frac{1}{N} - \frac{1}{n} \right),$$

(1.3)

where

$$n_{\omega} = \frac{\rho}{kT} = n(r_1)$$

(1.4)

was shown to be the value of the density at a rigid wall. Equations (1.1) and (1.3) turn out to be special cases of Eq. (2.22) derived in this paper. Another consequence of Eq. (2.22) is the vanishing of $1/N$ correction terms to all distributions at $T=0$. This was conjectured by Feynman and Cohen. It is here seen to rest upon our fundamental hypothesis of finite correlation length.

The basic assumption which is made implicitly in the derivation of (1.1) and in reference 1, and was explicitly made in reference 3, may be stated loosely as the absence of long-range correlations in a fluid. A rather stringent formulation of this assumption, which in one form or another is universally accepted in the theory of fluids, states that if the fluid is disturbed somehow in a limited region of space of volume ω, then properties of parts of the fluid sufficiently far away from ω (the effective unit of length being the range of molecular forces) will be affected only to the extent of $O(\omega/V)$. Further, the effect of the disturbance is supposed to approach its asymptotic value exponentially fast. (The additional assumption of exponential approach is not necessary for many applications. It is usually sufficient that the approach go as some power of the inverse distance from the location of the disturbance. What does appear necessary to assume is the absence of fluctuating behavior extending over the whole container.) It is clear that the assumption of no long-range correlation can be made precise only in the limit of the volume V becoming infinite, the density remaining constant. It is also clear unfortunately that a proof of this central hypothesis would be extremely difficult. Since this hypothesis is believed violated in the solid state, any proof of it would give a criterion for phase transitions. There is however an ample experimental and intuitive basis for this characterization of the fluid state; we shall accept it here and use it in our proofs in this paper, leaving a more formal discussion to Appendix A.

We give two derivations of our general result, a thermodynamic one is in Sec. 2, and a statistical one based in part on the virial expansion, and thus presumably valid only for gases, in Sec. 3. The application of our result to nonuniform systems is presented in Sec. 4. In Appendix B, we extend the result on asymptotic expressions to mixtures, and also consider light scattering from mixtures. Appendix C contains a formulation of our main result in terms of Ursell functions, and Appendix D contains a further self-consistent confirmation of this result.

2. THERMODYNAMIC DERIVATION

In order to make our arguments concrete, we shall consider explicitly the asymptotic value of the pair density $n_2(r_1,r_2)$. Our argument, however, will be of such a form that extension of the results to the other distributions will be immediate. From its definition, n_2 is symmetric in r_1 and r_2. When $n_2(r_1,r_2)$ is integrated over the whole pair space, each pair is counted twice, thus yielding the normalization

$$\int \int n_2(r_1,r_2) dr_1 dr_2 = N(N-1),$$

(2.1)

where N is the number of particles and the integration is over the system volume V. [Since $n_2(r_1,r_2)$ is zero whenever r_1 or r_2 is outside V, the integration can be extended over all space, which is indeed necessary when there is no well-defined volume V.]

The assumption of a finite correlation length implies, for r_{12} very large, that

$$n_2(r_1,r_2) \to n(r_2) n(r_1) \left(1 - \frac{b}{N} \left[1 + o(1) \right] \right),$$

(2.2)

where we use the notation $A = B + o(1)$ to mean that $\lim_{N \to \infty} (A - B) = 0$, and b is a number, independent of N, which will be determined later. To show this, we first write Eq. (2.2) in a form which exhibits more transparency to its relation to the correlation length. Consider the conditional number density,

$$w(r_1|r_2) = n_2(r_2,r_1)/n(r_1),$$

(2.3)

for particles at r_2 when it is known that there is a particle at r_1. Equation (2.2) may then be written as

$$w(r_2|r_1) = n(r_2) \left[1 - b/N + \cdots \right].$$

(2.4)

Now in a classical system in equilibrium, the presence of a particle at r_1 does two things: (1) It leaves only $N-1$ particles with unspecified positions, and (2) it introduces an effective one-particle potential $\phi(r_1)$ for the jth particle [here $\phi(r)$ is the assumed potential between any two molecules]. The conditional density

\(w(t_2|t_1)\) is therefore identical with the ordinary density in a system of \(N-1\) particles with this extra perturbing potential. Hence for distances large compared to \(\lambda\), the range of \(\phi\), \(w(t_2|t_1)\) should be equal to the density at \(t_2\) in a fluid consisting of \(N-1\) particles, plus a term \(O(N/V)\).

Since the difference in the density at \(t_2\) between a fluid consisting of \(N\) particles and one of \(N-1\) particles is again \(O(1/N)\), we are led to (2.4).

For the special case of an ideal gas, \(\phi=0\), and we find immediately that

\[
w(t_2|t_1) = \left[\frac{(N-1)}{N}\right]n(t_2) = n(t_2)[1-1/N].
\]

(2.5)

From its definition, we of course always have

\[
\int w(t_2|t_1) dt_2 = N-1.
\]

(2.6)

For a real fluid, the added "external" potential \(\phi(t_2)\) produces a change in density in the vicinity of \(t_1\) with the result that the effective number of particles whose position is unspecified (which determines \(w_2\) far away from \(t_1\)) differs from \(N-1\), and (2.5) is replaced by (2.4). We can express this idea more clearly in the following way. Let us divide the volume \(V\) into two macroscopic parts \(V_A\) and \(V_B\), \(V_A + V_B = V\). The part \(V_A\) contains the point \(t_1\) while all points \(t_2\) in \(V_B\) are sufficiently far from \(t_1\) that \(n_2\) may be given its asymptotic value. The average number of particles normally in \(V_A\) and \(V_B\) will be designated by \(\bar{N}_A\) and \(\bar{N}_B\), where \(\bar{N}_A\) and \(\bar{N}_B\) are regarded here as of order \(N\). Now for any particular partition of the \(N\) particles into \(N_1\) in \(V_A\) and \(N_2\) in \(V_B\), where

\[
\bar{N}_B = N - \bar{N}_A,
\]

we may write

\[
n_2(t_1|t_2, \bar{N}_A, \bar{N}_B) = n(t_1|t_2, N_1, N_2)n(t_2|N_1, N_2).
\]

(2.8)

Here \(n(t_1|t_2, N_1, N_2)\) is the density at \(t_1\) when there are \(N_1\) particles in \(V_A\) and \(N_2\) particles in \(V_B\), one of the latter being specified to be at \(t_2\); similarly, \(n(t_2|N_1, N_2)\) is the density at \(t_2\) when there are \(N_2\) particles in \(V_A\) and \(N_2\) in \(V_B\). This situation corresponds to a model system in which \(V_A\) is separated from \(V_B\) by a surface \(S_A\) which is impenetrable for particles crossing between \(V_A\) and \(V_B\), but which does not otherwise modify the Hamiltonian of the system.

We now have generally that

\[
n_2(t_1, t_2) = \sum_{N_A} P(N_A)n_2(t_1, t_2, N_A, N-N_A),
\]

(2.9)

where \(P(N_A)\) is the probability of having \(N_A\) particles in \(V_A\), and correspondingly \(N-N_A\) in \(V_B\). Thus, performing a Taylor expansion of \(n_2\) about \(N_A = \bar{N}_A\), we have

\[
n_2(t_1, t_2) = n(t_1|t_2, N_A, N-N_A)n(t_2|N_A, N-N_A) + \frac{1}{2}\langle(N_A-\bar{N}_A)^2\rangle \frac{\partial^2}{\partial N_A^2} n(t_1|t_2, N_A, N-N_A) \\
+ \frac{1}{3}\langle(N_A-\bar{N}_A)^3\rangle \frac{\partial^3}{\partial N_A^3} n(t_1|t_2, N_A, N-N_A) \\
+ \cdots.
\]

(2.10)

where

\[
\langle(N_A-\bar{N}_A)^2\rangle = \sum_{N_A} P(N_A)(N_A-\bar{N}_A)^2.
\]

(2.10)

We assert that (1) the Taylor expansion may be stopped at the term \(\langle(N_A-\bar{N}_A)^2\rangle\), and (2) \(n(t_1|t_2, N_A, N-N_A)\) in (2.10) may be replaced by \(n(t_1|\bar{N}_A, N-N_A)\). The first point follows from the fact that, judging from the prototype of an ideal gas, \(\langle(N_A-\bar{N}_A)^2\rangle = O(N^4)\); since the volume \(V_A\) is macroscopic, the remaining terms in the series are of order \(\bar{N}_A^4O(1/N)\) and may be dropped. Secondly, the fixing of a particle at \(t_2\) in \(V_B\) for given values of \(\bar{N}_A\) and \(\bar{N}_B\) can affect the density at \(t_1\) in \(V_A\) only by modifying the distribution of particles in \(V_B\) close to the surface \(S_A\); this in turn modifies the neighboring distribution in \(V_A\) close to \(S_A\), which can then affect the density at \(t_1\). Since the potential change due to the positional perturbations of the particles near the surface in \(V_B\) extends only to the order of \(\lambda\) inside region \(V_A\), the assumption of short-range correlation tells us that when \(t_1\) is far from the surface \(S_A\),

\[
n(t_1|t_2, \bar{N}_A, N-N_A) = n(t_1|\bar{N}_A, N-N_A) + \langle\lambda S_A/V_A\rangle \\
\times \langle\text{order of deviation of } n(t_1|t_2, \bar{N}_A, N-N_A) \rangle
\]

(2.11)

where \(\lambda S_A\) denotes a surface particle in \(V_B\). But again by the assumption of short-range correlation, the deviation in (2.11), elicited by a perturbation over a volume \(\sim \lambda^3\), will be of order \(O(\lambda^2/V_B)\sim O(1/N)\) = \((N_A/N)O(1/N)\). The correction term in (2.11) for \(t_1\) and \(t_2\) far from \(S_A\) will then be \(\sim n(\lambda S_A/V_A)O(1/N)\) and will vanish compared to \(O(1/N)\) as \(V_A\) increases.

The foregoing argument can be improved by further dividing \(V_B\) into \(V_{B'}\) surrounding \(t_2\) and \(V_{B''}\) separating \(V_{B'}\) from \(V_A\). We shall however not attempt this here. Accepting then the above argument, we now rewrite Eq. (2.10) asymptotically as

\[
n_2(t_1, t_2) = n(t_1|\bar{N}_A, N-N_A)n(t_2|\bar{N}_A, N-N_A) \\
+ \frac{1}{2}\langle(N_A-\bar{N}_A)^2\rangle \frac{\partial^2}{\partial N_A^2} n(t_1|\bar{N}_A, N-N_A) \\
\times n(t_2|\bar{N}_A, N-N_A).
\]

(2.10')

The steps which led to (2.10) may also be utilized to write

\[
n(t_1) = \sum_{N_A} P(N_A)n(t_1|N_A, N-N_A) \\
= n(t_1|\bar{N}_A, N-N_A) \\
+ \frac{1}{2}\langle(N_A-\bar{N}_A)^2\rangle \frac{\partial^2}{\partial N_A^2} n(t_1|\bar{N}_A, N-N_A),
\]

(2.12)

\[
n(t_2) = n(t_2|\bar{N}_A, N-N_A) \\
+ \frac{1}{2}\langle(N_A-\bar{N}_A)^2\rangle \frac{\partial^2}{\partial N_A^2} n(t_2|\bar{N}_A, N-N_A).
\]
In (2.12), we have neglected terms of smaller order than \(1/\tilde{N}_A\), but this is consistent with \(V_A\) being of macroscopic size. Combining Eqs. (2.11) and (2.12) then yields in the asymptotic region

\[
n_2(\mathbf{r}_1, \mathbf{r}_2) \to n(\mathbf{r}_1) n(\mathbf{r}_2) + \langle (\delta N_A)^2 \rangle \left[\frac{\partial}{\partial \delta \tilde{N}_A} n(\mathbf{r}_1, \tilde{N}_A, N - \tilde{N}_A) \right] \times \left[\frac{\partial}{\partial \delta \tilde{N}_A} n(\mathbf{r}_2, \tilde{N}_A, N - \tilde{N}_A) \right],
\]

(2.13)

where \(\delta N_A = N_A - \tilde{N}_A\).

Since the second term in (2.13) is already of order \(1/N\), any parts of it which are of further order \(o(1)\) can be omitted. This permits (since \(\mathbf{r}_1\) and \(\mathbf{r}_2\) are far from the surface) the replacement to order \(S/V\),

\[
n(\mathbf{r}_1, \tilde{N}_A, N - \tilde{N}_A) = n(\mathbf{r}_1, \tilde{N}_A, 0),
\]

\[
n(\mathbf{r}_2, \tilde{N}_A, N - \tilde{N}_A) = n(\mathbf{r}_2, 0, N - \tilde{N}_A).
\]

(2.14)

Both \(\tilde{N}_A\) and \(\tilde{N}_B\) are functions of \(N\). We may therefore express (2.13) in terms of derivatives with respect to \(N\). Thus

\[
\frac{\partial n(\mathbf{r}_1, 0, N - \tilde{N}_A)}{\partial \tilde{N}_A} = \frac{dn(\mathbf{r}_1, 0, \tilde{N}_B)}{d\tilde{N}_B} = -\frac{dn(\mathbf{r}_1, 0, \tilde{N}_B(N))}{dN} \left(\frac{d\tilde{N}_B}{dN} \right)^{-1}
\]

\[
= -\frac{\partial n(\mathbf{r}_1)}{\partial N} \frac{dN}{d\tilde{N}_B},
\]

(2.15a)

and similarly

\[
\frac{\partial n(\mathbf{r}_2, \tilde{N}_A, 0)}{\partial \tilde{N}_A} = \frac{\partial n(\mathbf{r}_2)}{\partial N} \frac{dN}{d\tilde{N}_A},
\]

(2.15b)

again neglecting terms of order \(S/V\). Setting \(n = N/V\) and leaving the \(n\) dependence implicit, Eq. (2.13) thus reduces to

\[
n_2(\mathbf{r}_1, \mathbf{r}_2) \to n(\mathbf{r}_1) n(\mathbf{r}_2) - \frac{1}{N} \frac{\partial n(\mathbf{r}_1)}{\partial N} \frac{\partial n(\mathbf{r}_2)}{\partial N} \frac{dN}{d\tilde{N}_A} \frac{dN}{d\tilde{N}_B} \left(\frac{d\tilde{N}_A}{dN} \frac{d\tilde{N}_B}{dN} \right)^{-1}
\]

\[
\times \langle (\delta N_A)^2 \rangle \left[\frac{\partial}{\partial \delta \tilde{N}_A} n(\mathbf{r}_1, \tilde{N}_A, N - \tilde{N}_A) \right] \times \left[\frac{\partial}{\partial \delta \tilde{N}_A} n(\mathbf{r}_2, \tilde{N}_A, N - \tilde{N}_A) \right],
\]

(2.16)

where we have used the identity \((dN/d\tilde{N}_A)(dN/d\tilde{N}_B) = dN/d\tilde{N}_A + dN/d\tilde{N}_B\).

We now show that the expression (2.16) is independent of the division into volumes \(V_A\) and \(V_B\), and find its explicit form. It follows from the general principles of statistical mechanics that

\[
P(N_A) = \exp \left\{ - \left[F_\alpha(T, V_A, N_A) + F_B(T, V_B, N_B) \right] - F(T, V, N) \right\} \frac{kT}{kT} \exp \left\{ - \frac{1}{2} \frac{(\delta N_A)^2}{kT} \right\}
\]

\[
\times \left[\frac{\partial^2 F_\alpha(T, V_A, N_A)}{\partial \delta N_A^2} + \frac{\partial^2 F_B(T, V_B, N_B)}{\partial \delta N_B^2} \right],
\]

(2.17)

\(F\) being the Helmholtz free energy, and we have again consistently neglected terms of order \(o(1)\). Here the most probable value of \(N_A\), which for our purpose may be set equal to \(\tilde{N}_A\), is determined from the condition

\[
\frac{\partial F_\alpha(T, V_A, \tilde{N}_A)}{\partial \tilde{N}_A} = \frac{\partial F_B(T, V_B, N - \tilde{N}_A)}{\partial N},
\]

(2.18)

and \(\mu = \mu_\alpha(\tilde{N}_A(N)) = \mu(N)\) is the chemical potential of the full system. This readily yields the expression

\[
\langle (\delta N_A)^2 \rangle = kT \left[\frac{\mu}{\partial N} \left(\frac{dN}{d\tilde{N}_A} \frac{dN}{d\tilde{N}_B} \right) \right]^{-1},
\]

(2.19)

or, combining with Eq. (2.16),

\[
n_2(\mathbf{r}_1, \mathbf{r}_2) \to n(\mathbf{r}_1) n(\mathbf{r}_2)
\]

\[
\left(1 - \frac{kT}{N} \left[\frac{\partial n(\mathbf{r}_1)}{\partial N} \frac{dN}{d\tilde{N}_A} \left(\frac{d\tilde{N}_A}{dN} \right) \frac{dN}{d\tilde{N}_B} \right]^{-1} \right) \left(1 - \frac{kT}{N} \left[\frac{\partial n(\mathbf{r}_2)}{\partial N} \frac{dN}{d\tilde{N}_A} \left(\frac{d\tilde{N}_A}{dN} \right) \frac{dN}{d\tilde{N}_B} \right]^{-1} \right)
\]

(2.20)

For a uniform system with no body forces, the quantity \((1/N)dN/\partial \mu\) is equal to \(n\) times the isothermal compressibility \(\chi\). For a general nonuniform system, we may still write

\[
\frac{1}{N} \frac{\partial N}{\partial \mu} = n \tilde{\chi},
\]

(2.21)

where \(\tilde{\chi}\) is now some average compressibility. This leads us finally to the asymptotic expression,

\[
n_2(\mathbf{r}_1, \mathbf{r}_2) \to n(\mathbf{r}_1) n(\mathbf{r}_2)
\]

\[
\left(1 - \frac{nkT \tilde{\chi}}{N} \left[\frac{\partial n(\mathbf{r}_1)}{\partial n} \left(\frac{dN}{d\tilde{N}_A} \frac{dN}{d\tilde{N}_B} \right) \right]^{-1} \right) \left(1 - \frac{nkT \tilde{\chi}}{N} \left[\frac{\partial n(\mathbf{r}_2)}{\partial n} \left(\frac{dN}{d\tilde{N}_A} \frac{dN}{d\tilde{N}_B} \right) \right]^{-1} \right)
\]

(2.22)

When \(\mathbf{r}_1\) and \(\mathbf{r}_2\) are both in the interior of a uniform fluid, (2.21) becomes the Ornstein-Zernike relation

\[
g(r) \to 1 - nkT \tilde{\chi}/N,
\]

(2.23)

while if \(\mathbf{r}_1\) is at a rigid wall, then, as shown in reference 3,

\[
n_w = n(\mathbf{r}_1 \text{ at wall}) = \rho/kT, \quad n(\mathbf{r}_1)/n = 1/(nkT \tilde{\chi}),
\]

and

\[
n_2(\mathbf{r}_1, \mathbf{r}_2) \to n_w n_w \left(1 - \frac{1}{n_w} \right).
\]

(2.24)

A result derived in reference 3.

The extension of the above analysis to the distribu-
tion of $q+l$ particles is straightforward and yields

$$
n_{q+l} \rightarrow n_q n_l = \frac{n_k T^2}{N} \left(\frac{\partial n_q}{\partial n} \right) \left(\frac{\partial n_l}{\partial n} \right).
$$

(2.22)

3. STATISTICAL MECHANICS DERIVATION

We shall now investigate the asymptotic behavior of n_{q+l} from a statistical mechanical viewpoint. To do this involves two steps: (1) a decomposition of quite general validity of thermodynamic quantities and distribution functions into a dominant part and an $O(1/N)$ correction term expressed in terms of the dominant part, and (2) a computation of the spatial asymptotic form of the dominant part of a distribution and consequently of the $O(1/N)$ term, in which the explicit form of the canonical partition function plays a crucial role. Since the dominant part in fact represents a grand canonical average from which the fixed-N components are then extracted, there is a family relation with the “box within a box” thermodynamic argument of the previous section.

The equilibrium statistical mechanics of an interacting N-particle system in a volume V may be obtained from the partition function Q_N, or from its physical counterpart, the free energy

$$
F_N = - (1/\beta) \ln Q_N,
$$

where $k \beta$ is the uniform reciprocal temperature. Q_N is given explicitly by

$$
Q_N = (1/N!) \int \exp(-\beta H_N) (d\mathbf{p}/\hbar)^N, \quad \text{classical}
$$

$$
= \text{Tr} \exp(-\beta H_N), \quad \text{quantum mechanical},
$$

(3.2)

H_N being the system Hamiltonian. However, the precise form of Q_N is unimportant at this stage. What is vital is the smallness of density fluctuations, to the extent that the grand partition function,

$$
Q(z) = \sum_0^\infty Q_N z^N,
$$

(3.3)

at fixed V and z has contributions from only a very small range of particle number M. If this is so, we may contemplate a Darwin-Fowler or steepest descent extraction of Q_N from $Q(z)$.

Let us define

$$
L(z) = \ln Q(z).
$$

(3.4)

For an open system or grand canonical ensemble, L is related to the pressure by $L = \beta V/kT$ and z to the chemical potential by $\beta \mu = \ln z$. Here, the quantity L is but a means to an end, for we may express Q_N in terms of it through the contour integral

$$
Q_N = (1/2\pi i) \oint \exp[L(z)] z^{-N} dz/\gamma
$$

$$
= (1/2\pi) \int_{-\gamma}^{\gamma} \exp[L(re^{i\theta})] - N i \theta - N \ln r] d\theta.
$$

(3.5)

The large-N asymptotic form of (3.5) appears from a steepest descent evaluation as

$$
Q_N \approx z^{-N} e^{L(0)} \left[2\pi z \left. \frac{\partial}{\partial z} \frac{1}{z-L(z)} \right] \right]^{-1},
$$

(3.6)

where

$$
z \frac{\partial L(z)}{\partial z} = N
$$

(3.7)

determines z. If the method is valid, corrections to (3.6) for derived quantities such as F_N may be shown to be of order $O(1/N^2)$ compared to the principal term, and this is strictly negligible for most applications, including ours. Such a statement is as always fully meaningful only for a uniform fluid, where one can take the limit $N \rightarrow \infty$ at constant density, but the same numerical order of magnitude should hold for a non-uniform system. From (3.1), we have as well

$$
-\beta F_N \equiv L(z) - N \ln z - \frac{1}{2} \ln 2\pi
$$

$$
-\frac{1}{2} \ln \left. \left[z \frac{\partial}{\partial z} \frac{1}{z-L(z)} \right] \right|.
$$

(3.8)

On the basis of (3.8), we may introduce the “dominant part” of F_N,

$$
-\beta F_{N}^{(0)} \equiv L(z) - N \ln z - \frac{1}{2} \ln 2\pi.
$$

(3.9)

$F_{N}^{(0)}$, which coincides with the result of the usual Mayer-Ursell virial expansion, is of course just the grand canonical average, and would yield the correct free energy per particle in an infinitely large uniform system. In a general system, the principal property of $F_{N}^{(0)}$ which will be utilized is the following. Consider any variation of the system which does not affect total particle number. Then according to (3.9),

$$
-\delta(\beta F_{N}^{(0)}) = \delta L(z) - (N/z) \delta z,
$$

or, inserting (3.7),

$$
-\delta(\beta F_{N}^{(0)}) = \delta L(z) - \left[\partial L(z)/\partial z \right] \delta z.
$$

Hence we may write

$$
-\delta(\beta F_{N}^{(0)}) = \delta L(z) \big|_{z\text{ constant}}.
$$

(3.10)

Equation (3.10) permits us to compute a variation of $F_{N}^{(0)}$ explicitly in terms of L without being required

\footnote{M. G. Mayer and J. E. Mayer, \textit{Statistical Mechanics} (John Wiley & Sons, Inc., New York, 1940), Chap. 13.}
to solve for z. Finally, F_N is to be expressed in terms of $F_N^{(0)}$. Since

$$
-\beta \frac{\partial F_N^{(0)}}{\partial N} = \left(\frac{\partial z}{\partial N} \right) \left(\frac{\partial L}{\partial z} - \frac{N}{z} \right) \ln z = -\ln z,
$$
i.e., the thermodynamic relation $\mu = \partial F/\partial N$, then

$$
\beta \frac{\partial^2 F_N^{(0)}}{\partial N^2} = \left(\frac{1}{z} \right) \frac{\partial z}{\partial N} = \left(\frac{\partial N}{\partial z} \right)^{-1} \left[\frac{\partial}{\partial z} \left(\frac{\partial}{\partial z} \right) \right].
$$

Inserting into Eqs. (3.8) and (3.9), we have

$$
\beta \ln \left(\frac{\partial F_N^{(0)}}{\partial N^2} \right) = \beta \frac{\partial^2 F_N^{(0)}}{\partial N^2} - \frac{1}{2} \ln \left(\frac{\partial F_N^{(0)}}{\partial N^2} \right). \tag{3.11}
$$

Equation (3.11) may be rewritten in terms of the compressibility. For a very large uniform system, F_N/N is a function of $n = N/V$ alone. Hence the isothermal compressibility may be written as

$$
\chi = \left(\frac{\partial n}{\partial N} \right)^{-1} = \left(\frac{N}{\partial N} \right)^{-1}
$$

$$
= \left[-N \frac{\partial \left(N \frac{\partial F}{\partial N} \right)}{\partial N} \right]^{-1}
$$

$$
= \left(\frac{\partial ^2 F}{\partial N^2} \right)^{-1} = \left(\frac{n N^2}{\partial n^2} \right). \tag{3.12}
$$

For an arbitrary system, we may correspondingly define an average compressibility,

$$
\bar{\chi} = \left(\frac{n}{N} \frac{\partial^2 F_N^{(0)}}{\partial n^2} \right)^{-1}, \tag{3.13}
$$

where differentiation is at constant volume (or constant external potential). Equation (3.12) is seen to be equivalent to the expression (2.20). Further, applying a variation δ, commuting with N, to (3.11) yields by virtue of (3.12)

$$
\delta F = \delta F_N^{(0)} - \frac{1}{N} \frac{n \bar{\chi}}{2 \beta} \frac{\partial^2}{\partial n^2} (\delta F_N^{(0)}), \tag{3.14}
$$

our fundamental relation. The second term on the right-hand side of (3.13) is a correction, containing the factor $1/N$. For a large uniform system, the relative correction $(F_N/N)_\text{itself goes as } N)$ is literally a $1/N$ term, while for a nonuniform system, this is still a reasonable assessment of its numerical value.

Relation (3.13) is readily applied to determining the N dependence and asymptotic form of the configuration space distribution functions. For the N dependence, it suffices to express the distributions in terms of the free energy. Suppose that the system Hamiltonian contains an s-body potential,

$$
H = \cdots + \frac{1}{s!} \sum_{i_1 \cdots i_s} \phi^{(s)}(r_{i_1}, \cdots, r_{i_s}) + \cdots, \tag{3.15}
$$

which in the final evaluation is to be given its actual value, perhaps zero, but not until then. Then it is easily shown that the s-body distribution function n_s, normalized so that

$$
\int n_s(r_1, \cdots, r_s) dr_1 \cdots dr_s = N! / (N-s)!
$$

may be written as

$$
n_s(r_1, \cdots, r_s) = \frac{1}{s!} \frac{\delta Q_N}{\delta \phi^{(s)}(r_1, \cdots, r_s)}, \tag{3.16}
$$

or

$$
n_s = s \delta F_N/\delta \phi^{(s)}. \tag{3.17}
$$

By making ϕ other than a pure configuration-space potential, this result extends at once to phase-space distributions and density matrices. Now applying (3.13) to (3.16) results in the relation

$$
n_s = n_s^{(0)} - \frac{1}{N} \frac{nN}{2 \beta} \frac{\partial^2}{\partial n^2} n_s^{(0)}, \tag{3.18}
$$

where $n_s^{(0)}$, arising via (3.16) from $F_N^{(0)}$, actually represents a grand canonical average distribution. When $n_s^{(0)}$ depends only on $n = N/V$, then it coincides with n_s in an infinite system, and (3.17) expresses the $1/N$ corrections. For example, with $s=2$ and large separation r_{12}, then in a uniform system, (3.17) reduces to the previously discussed $n_2 = n^2 - 1 - n^2 (1 - N/3M)$. For a nonuniform system, the utility of (3.17) derives from the special properties which $n_s^{(0)}$ possesses, and in particular its simple asymptotic form.

Our major objective is to find the asymptotic form of n_{s+1} when the coordinates separate into two distinct bunches,

$$
q = (r_1, \cdots, r_q) \quad \text{and} \quad l = (r_{q+1}, \cdots, r_{q+l}).
$$

For this purpose, the corresponding asymptotic form of $n_{s+1}^{(0)}$ is required, and it may be obtained by assuming sufficiently rapid convergence of the standard cluster expansion for $L(z)$, a stronger condition than the previously employed finite correlation length. The point is this. First consider classical equilibrium statistical mechanics. If the factor

$$
f^{(s)}(r_1, \cdots, r_s) = \exp \left[-\beta \phi^{(s)}(r_1, \cdots, r_s) \right] - 1 \tag{3.19}
$$

is regarded as a "star" connecting vertices r_1, \cdots, r_s, and if we further introduce the Ursell factor

$$
U_s(r_1, \cdots, r_s) = \sum D_s(r_1, \cdots, r_s), \tag{3.20}
$$

where the D_s run over all (nonrepeated) products of $f^{(s)}$ represented by diagrams in which the r_i, \cdots, r_s are
connected, then it is known (see Hill\(^9\)) that \(Q(z)\) of (3.2) and (3.3) achieves the form

\[
Q(z) = \exp \left\{ \sum \left[\int U_i(r_1, \ldots, r_l) d^r z^C / l! \right] \right\},
\]

(3.20)

where

\[d^r z = dr_1 dr_2 \cdots dr_l.\]

Here \(C\) is a factor resulting from momentum integrations. From (3.16) and (3.10), then

\[n_q^{(0)} = \sum z^C \left(\frac{-z}{\beta} \right)^{\delta} \left(\frac{1}{\Delta^2} \right) \int d^r z^C;\]

(3.21)

whose simplicity is due to the fact that explicit \(z\) dependence is untouched by the variation.

Suppose now that (3.21) converges rapidly enough that only terms up to some finite \(l\) need be considered. For finite-range forces, this then requires only clusters up to some finite spatial diameter, related of course to the correlation length but conceivably depending on the size. Sets \(q\) and \(l\) in \(s = q + l\) are then to be regarded as separated if \(q\) and \(l\) are separated, member from member, by more than this finite diameter. If under these conditions \(\delta fD d^r z/\delta \beta^{(0)}\) did not disconnect set \(q\) from set \(l\) in \(D\), the cluster would have an impermissibly large diameter. Thus a separation must occur. We note that \(U_j / l!\) lists all distinct diagrams (with undesignated vertices, but weighted by the number of repetitions under vertex permutation), while \((-z/\beta)\delta /\delta \beta^{(0)}\) for separated \(q\) and \(l\) removes a "star" \(f^{(0)}\) in any order in which it may be presented. It follows that, including both possibilities \(f^{(0)}\) and 1 for the \(q\) connection, and similarly for the \(l\), the separation is into

\[
\left(\frac{-z}{\beta} \right)^{\delta} \left(\frac{1}{\Delta^2} \right) \int D_m^q \left(\frac{-l}{\beta} \right)^{\delta} \left(\frac{1}{\Delta^2} \right) \int D_n^l.
\]

Here \(m + n = l\), and all distinct combinations \(D_m, D_n\) are obtained in this fashion. Inserting into (3.21), we at once conclude that

\[n_{q+l}^{(0)} \rightarrow n_{q}^{(0)} n_{l}^{(0)}\]

(3.22)

for asymptotic separation of sets \(q\) and \(l\). This may be regarded as the characteristic property of \(n_q^{(0)}\). The grand canonical distributions, for asymptotic decomposition into particle subsets, separate through order \(1/N\) into their component distributions. It might appear that a corresponding statement could be made for the diagrammatic density expansion of a canonical ensemble with periodic boundary conditions and translation-invariant potential, but since the generating function for the irreducible clusters is no longer the free energy, and since more diagrams may be decomposed by the variational differentiation, the form (3.22) is not obtained. Instead, one finds (3.23) directly, but more laboriously.\(^{\text{9}}\)

Applying the correction formula (3.17) to the combination \(n_{q+l}-n_q n_l\), we have

\[
n_{q+l} - n_q n_l = n_q^{(0)} - \left(\frac{n_q^{(0)}}{2\beta N} \right) \frac{\partial n_{q+l}^{(0)}}{\partial n_l^{(0)}} - n_l^{(0)} = \left(\frac{n_q^{(0)}}{2\beta N} \right) \frac{\partial n_{q+l}^{(0)}}{\partial n_l^{(0)}}
\]

Employing (3.22), and dropping the final \(O(1/N^2)\) term as well as the deviation of \(n_q\) from \(n_q^{(0)}\) within a correction term, then

\[
n_{q+l} - n_q n_l = \frac{n_q}{N} \left(\frac{n_q}{n_l} \right) \left(\frac{\partial n_q}{\partial n_l} \right),
\]

(3.23)

the desired asymptotic relation. The foregoing is classical. For quantum mechanical distributions, the explicit form of the Ursell factor is altered,\(^{10}\) but similar comments are appropriate. The noncommutativity of coordinates and momenta however introduces additional effective coupling in the form of propagation factors of range of the order of the thermal de Broglie wavelength, \((\beta h^2/2m)^{1/2}\), thereby contributing to the maximum effective cluster diameter. At very low temperature, \(\beta \rightarrow \infty\), greater care is required, as it is when infinite range, e.g., Coulomb forces, are present.

We remark here further on the relation of Eq. (3.17) to the general \(N\) dependence of the low-order distribution functions. This may be of some direct relevance in dealing with systems in which \(N\) is actually a small number, such as those used in machine calculations by Alder\(^{11}\) and others. When our assumption concerning the convergence of the virial expansion is valid, then for a uniform system, \(n_{q}\) depends only upon the density,\(^{12}\) in which case as indicated following (3.17), \(n_{q}\) coincides with the leading term in a \(1/N\) development of \(n_q\). Equation (3.17) then states a verifiable relation between the \(N\)-independent term and the first correction to it, which is proportional to \(1/N\).

The relation (3.23) may also be extended to the intrinsic correlations or Ursell distribution functions. This is carried out in Appendix C.

4. THE LOCAL NATURE OF DISTRIBUTION FUNCTIONS

We shall now apply the results of the previous sections to a one-component fluid whose intensive

\(^{\text{9}}\) See Hill, reference 2, p. 136.

\(^{\text{12}}\) Note added in proof. This is true up to the \(\delta\)th power in the density, where \(\delta = (L/a)^2\), \(L\) being the length of the periodic container. The coefficients of the higher powers in the virial expansion will contain implicit nonanalytic dependence on \(V\). We are presently studying this dependence.
parameters such as density, temperature, and local velocity vary slowly with position. The Gibbs ensemble describing such a system has been considered by many authors. The classical ensemble density $\mu(X)$, where $X = \{\cdot\cdot\cdot, r_i, \cdot\cdot\cdot, r_j, \cdot\cdot\cdot\}$ is a point in the G space of the system, is generally written as a local equilibrium part $\overline{\mu}(X)$ and a correction term $\mu'(X)$. The part $\overline{\mu}(X)$ is a superposition of canonical (or grand canonical) ensembles for each small region of the fluid at its own temperature $T(x)$, velocity $v(x)$, and density $n(x)$:

$$\mu(X) = \overline{\mu}(X) + \mu'(X),$$

$$\overline{\mu}(X) = \frac{1}{N^4 Q} \exp \left\{ - \int dx \beta(x) \left[E(X, x) v(x) \right] \left(P(X, x) - v(x) n(X, x) \right) \right\}. \quad (4.2)$$

Here x is a point in physical space, $\beta(x) = \frac{1}{kT(x)}$, and $v(x)$ is chosen to give the correct density $n(x)$. $E(X, x), P(X, x)$ and $n(X, x)$ are the microscopic energy, momentum, and particle density at x when the state of the system is represented by the phase point X. $\overline{\mu}$ is a normalization constant, reducing to the canonical partition function Q for an equilibrium ensemble. Thus

$$\overline{\mu}(X) = \frac{\overline{\mu}_{\text{un}}(X)}{N^4 Q},$$

where

$$\overline{\mu}_{\text{un}}(X) = \exp \left\{ - \frac{1}{N} \sum_{i=1}^{N} \left[- \gamma (r_i) + \beta (r_i) \right] \right\} \times \left(\frac{[p_i - m v(r_i)]^2}{2m} + \sum_{j \neq i} \phi (r_{ij}) \right). \quad (4.4)$$

$$\overline{Q} = \frac{1}{N^4} \int \overline{\mu}_{\text{un}}(X) dx_1 \cdot \cdot \cdot dx_N,$$

and

$$\gamma (r_i) = \left[- U(r_i) + \frac{1}{2} m v(r_i)^2 + v(r_i) \beta (r_i) \right]. \quad (4.5)$$

The term $\mu'(X)$ in (4.1) is of first order in the gradients of the hydrodynamical variables in the sense of vanishing in the case of uniformity, and has a vanishing integral. It is μ' which is supposed responsible

\[12^b\] J. L. Lebowitz, H. Frisch, and E. Helfand, Phys. Fluids 3, 325 (1960). for the dissipative behavior, while μ should yield the equilibrium form, at the local value of the intensive variables, for such quantities as energy density $E(x)$, pressure $p(x)$, etc. This will be true if the low-order distributions f_s, and in particular the two-body distribution function $f_2(x_1, x_2, p_1, p_2)$, computed from μ have their equilibrium form at the local value of the intensive variables. We shall investigate the validity of this hypothesis.

Now the distribution f_s for the position and momentum of s particles factors readily into a position distribution $\overline{\eta}_s(r_1, \cdot\cdot\cdot, r_s)$ and a momentum distribution (with positional dependence in the large). We have

$$f_s(r_1, \cdot\cdot\cdot, r_s, p_1, \cdot\cdot\cdot, p_s)$$

$$= \frac{N!}{(N-s)!} \int d^m r_{s+1} \cdot \cdot \cdot d^m r_{N} d\mathbf{p}_{s+1} \cdot \cdot \cdot d\mathbf{p}_N$$

$$\times \exp \left\{ - \frac{1}{2m} \left[p_i - m v(r_i) \right]^2 \right\}. \quad (4.6)$$

The momentum distribution is thus locally Maxwellian and we need consider only $\overline{\eta}_s(r_1, \cdot\cdot\cdot, r_s)$. The position distribution $\overline{\eta}_s$ is a functional of the temperature $T(r)$ and (through γ) of the density $n(r)$ in the whole container. It is our aim to show that, for slow variation of $\beta(x)$ and $n(x)$, the n_s depend only on the values of these quantities in the region containing $r_1, \cdot\cdot\cdot, r_s$. In fact, it will develop that, for $s = 1, 2,$

$$\overline{\eta}_s(r_1, \cdot\cdot\cdot, r_s) = \overline{\eta}_s(r_1, \cdot\cdot\cdot, r_s, \beta, \beta_s), \quad (4.7)$$

to second order in the gradients. Here n_0 is the equilibrium distribution for a system at uniform temperature $\langle \beta \rangle$ and density $\beta = \beta(R)$ and $n = n(R)$, where $R = (1/s) \sum_i r_i$ is the s-particle centroid. For $s > 2$, gradients at R will also be required. However, there will be no contributions from outlying elements of the fluid, so that even for $s > 2$ the distribution function is truly local, as expected.

We shall consider first the change in $\overline{\eta}_s$ due to a change in the function $\gamma(r)$. It readily follows from Eqs. (4.4) and (4.6) that

$$\frac{\delta \overline{\eta}_s(r_1, \cdot\cdot\cdot, r_s)}{\delta \gamma(r)} = \overline{\eta}_s(r_1, \cdot\cdot\cdot, r_s) \sum_s \delta (r_s - r)$$

$$+ \overline{\eta}_{s+1}(r_1, \cdot\cdot\cdot, r_s, r) - \overline{\eta}_s(r_1, \cdot\cdot\cdot, r_s) n_1(r). \quad (4.8)$$

($n_1 = \overline{n}_1$ is the density which determines γ.) Hence under the infinitesimal alteration $\delta \gamma(r)$,

$$\frac{\delta \overline{\eta}_s(r_1, \cdot\cdot\cdot, r_s)}{\delta \gamma(r)} \overline{\eta}_s(r_1, \cdot\cdot\cdot, r_s) \sum_s \delta (r_s - r)$$

$$+ \int \left[\overline{\eta}_{s+1}(r_1, \cdot\cdot\cdot, r_s, r) - \overline{\eta}_s(r_1, \cdot\cdot\cdot, r_s) n_1(r) \right] \delta \gamma(r) dr,$$
which, since
\[
\int \left[\hat{\eta}_{s+1}(r_1, \cdots, r_s, r) - \hat{\eta}_s(r_1, \cdots, r_s) n_1(r) \right] dr = - s \hat{\eta}_s(r_1, \cdots, r_s),
\]
may be written in the more convenient form:
\[
\delta \hat{\eta}_s(r_1, \cdots, r_s) = \int \left[\hat{\eta}_{s+1}(r_1, \cdots, r_s, r) - \hat{\eta}_s(r_1, \cdots, r_s) n_1(r) \right] \frac{\partial \eta(r)}{\partial n} dr - \frac{1}{s} \sum \delta \eta(r),
\]
(4.9)
To take advantage of the asymptotic expression (2.22) or (2.33), (4.10) is further decomposed as
\[
\delta \hat{\eta}_s(r_1, \cdots, r_s) = \frac{n \beta}{n^2} \frac{\partial \hat{\eta}_s(r_1, \cdots, r_s)}{\partial n} \int \frac{dn_1(r)}{dn} \left[\delta \eta(r) - \frac{1}{s} \sum \delta \eta(r) \right] dr - \frac{n \beta}{n^2} \frac{\partial \hat{\eta}_s(r_1, \cdots, r_s)}{\partial n} \int \frac{dn_1(r)}{dn} \left[\delta \eta(r) - \frac{1}{s} \sum \delta \eta(r) \right] dr.
\]
(4.10)
According to (3.1) and (3.12), the mean compressibility \(\hat{\chi} \) and reciprocal energy \(\beta \) need not be specified more precisely, for the combination
\[
n \beta = N \left(- n^2 \beta \ln \frac{\Omega}{\beta n^2} \right)^{-1}, \quad n = N/V,
\]
(4.12)
is directly determined by \(\Omega \).

By virtue of the relation (3.23), the integral on the right-hand side of (4.11) has contributions only from \(r \) within some conservative multiple of the correlation length from at least one of \(r_1, \cdots, r_s \), certainly a finite region \(R \) independent of \(V \) when all \(r \) are far from the walls. Hence (4.11) is seen at once to be a local expression for the change of \(\hat{\eta}_s \). Further simplification may be achieved. Assume that the spatial density change of \(\delta \eta(r) \) may be regarded as uniform in the region \(R \). Then \(\delta \eta(r) - \frac{1}{s} \sum \delta \eta(r) \) may be replaced by \(\left[r - \frac{1}{s} \sum r \right] \cdot \nabla \delta \eta(R) \), where \(R \) is the center of mass of \(r_1, \cdots, r_s \). Similarly, assume that \(n_1(r) \) and \(\partial n_1(r)/\partial n \) are essentially constant in this region, for we are concerned with large scale inhomogeneities, while \(\hat{\eta}_{s+1} \) is also uniform in that it depends only upon interparticle distances. Under these conditions, if one makes the center-of-mass reflection \(r \rightarrow (2/s) \sum r \), the second bracket in the integral reverses sign. On the other hand, for \(s = 1 \) or 2, a center-of-mass reflection of \(r \) leaves the distances of \(\hat{\eta}_{s+1}(r_1, \cdots, r_s, r) \) unaltered, so that the first bracket is unchanged. Hence the right-hand side of (4.11) vanishes, and we are left with
\[
\delta \hat{\eta}_s(r_1, \cdots, r_s) = \left[- \frac{n \beta}{N \beta} \int \frac{dn_1(r)}{dn} \left[\delta \eta(r) - \frac{1}{s} \sum \delta \eta(r) \right] dr \right] \frac{\partial \hat{\eta}_s(r_1, \cdots, r_s)}{\partial n}.
\]
(4.13)
for \(s = 1 \) or 2. This is of \(O(1) \) with respect to \(N \).

Consider first the case \(s = 1 \). Equation (4.13) then reduces to
\[
\delta n_1(r) = \frac{n \beta}{N \beta} \int \frac{dn_1(r)}{dn} \left[\delta \eta(r) - \frac{1}{s} \sum \delta \eta(r) \right] dr.
\]
(4.14)
which, noting that \((\partial/\partial n) n_1(r) dr = \partial N/\partial n = V \) and inserting (2.20), may be solved for \(\delta \eta(r) \) in the form
\[
\delta \eta(r) = \frac{\beta}{n \beta} \frac{\partial n_1(r)}{\partial n} + \frac{1}{V} \int \frac{dn_1(r)}{dn} \delta \eta(r) dr.
\]
(4.15)
Thus, the change in \(\eta_1(r) \) required to produce a given change in \(n_1(r) \) is, except for a constant, identical with that which would be obtained by changing \(\beta \) by means of a change in total particle number (or over-all density \(n \)) adjusted to yield the actual local density \(n_1(r) \). This shows that a slowly varying density can be interpreted by representing each fluid element as an open system exchanging particles with neighboring fluid elements (total particle number being maintained), and gives meaning to \((1/\beta) \gamma'(r) \) as a local chemical potential, up to a constant independent of \(r \) (but which may depend on the function \(\gamma \)).

Let us illustrate this by considering the variation of density of an ideal gas in a uniform gravitational field in the \(z \) direction (a potential of \(mgz \)) due to a change in the gravitational force constant \(g \). According to (4.5), this will result from \(\delta \eta(r) = - \beta mgz \). Further, since \(n(r) = N \beta mg \exp(-\beta mg z) \) for a unit area of gas between \(z = 0 \) and \(z = \infty \), then \(\delta n_1(r) = (1/g - \beta m g z) \times \delta n(r) \delta g \), which would equivalently be produced by a \(\delta N \) of \((1/g - \beta m g z) \delta g \). Now the chemical potential is given here by
\[
\mu = \partial \eta/\partial N = (1/\beta) \left[N \ln(2 \pi m / \beta e^2) - \ln N! + \int \exp(-\beta mg z)dz \right]
\]
\[
\beta \mu = \ln N + (1/\beta) \gamma \]
\[
\leq \text{const} - (1/\beta) \ln N + (1/\beta) \gamma \]
so that \(\delta (\beta \mu) = \delta N / N - \delta g / \beta mg^2 \). Under the above changes, this becomes \(\delta (\beta \mu) = - \beta m g \), which is indeed identical with \(\delta \eta(r) \).

To complete the picture, consider next the case \(s = 2 \),
in which our principal interest lies. Observing that
\[\sum_{\delta \gamma} \rho_1(\mathbf{r}_1) = \rho \gamma(\mathbf{R}) \text{ through first order gradient terms,} \]
we find that Eq. (1.13) takes on precisely the same form as Eq. (4.14) for \(n_1(\mathbf{R}) \). It follows then that
\[\delta \hat{n}_1(\mathbf{r}_1, \mathbf{r}_2) = \left(\frac{\partial \hat{n}_1(\mathbf{r}_1, \mathbf{r}_2)}{\partial n} / \frac{\partial n_1(\mathbf{R})}{\partial n} \right) \delta n_1(\mathbf{R}). \]
(4.16)

In other words, the change in \(\hat{n}_1(\mathbf{r}_1, \mathbf{r}_2) \) produced by \(\delta \gamma \) is equal to that which would be obtained by only altering the number of particles in the system so that the local density \(n_1(\mathbf{R}) \) at the center of mass \(\mathbf{R} = \frac{1}{2}(\mathbf{r}_1 + \mathbf{r}_2) \) attains its actual value. Thus we reach the desired conclusion that a variation of \(n_1(\mathbf{r}) \) also has the same local effect on \(n_2 \) as an equivalent change in local density achieved by changing the total particle number.

The infinitesimal process leading to (4.14) can be iterated as long as neither the gradient of the effective potential \(\gamma(\mathbf{r}) \) nor the form of the two-body distribution vary significantly within a correlation length. Starting with a uniform motionless fluid [of small (surface×correlation length/volume) ratio], we can further conclude in this fashion that with the sole condition that the external force and local velocity (and hence local density) be slowly varying in space, the 2-body distribution will be precisely that of a uniform fluid of density equal to the local density at the center of the two particles.

The simple expression (4.14) is not valid for \(s \geq 2 \). Indeed, the vanishing of the short-range contribution to the right-hand side of (4.11) was established by an elaboration of the familiar argument that for \(\hat{n}_2(\mathbf{r}_1, \mathbf{r}_2) \) there exists no vector of local character, symmetric in \(\mathbf{r}_1, \mathbf{r}_2 \), which can combine with \(\nabla \gamma(\mathbf{R}) \) to give a first order correction. This argument fails for \(s \geq 2 \). Instead, a density gradient can provoke an anisotropy in the local s-body distribution. Replacing (4.13) by (4.11) in (14.16), and representing \(\hat{n}_{s+1}/\hat{n}_s \) by the superposition approximation, results in a relatively simple correction to (4.16) which we cite for the sake of completeness: If
\[\hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s) = \prod_{i \neq j} \hat{n}_1(\mathbf{r}_i) \theta^2(\mathbf{r}_i - \mathbf{r}_j) n_1(\mathbf{r}_i) n_1(\mathbf{r}_j), \]
then
\[\delta \hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s) = \frac{\delta \hat{n}_1(\mathbf{r}_i, \ldots, \mathbf{r}_j)}{\partial n} \frac{\partial n_1(\mathbf{R})}{\partial n} \delta n_1(\mathbf{R}) \]
\[= \hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s) \int \left[\prod_{i \neq j} \hat{n}_1(\mathbf{r}_i) \frac{\partial \hat{n}_1(\mathbf{r}_i, \mathbf{r}_j)}{\partial n} n_1(\mathbf{r}_i) n_1(\mathbf{r}_j) \right] n_1(\mathbf{r}) (\mathbf{r} - \mathbf{R}) d\mathbf{r} \cdot \nabla \gamma(\mathbf{R}). \]
(4.17)

Here \(\hat{n}_{s+1} \) is the asymptotic form of \(\hat{n}_s \).

We proceed next to the case of a slowly varying local temperature, anticipating that low order distributions will again maintain their equilibrium form. Changing the function \(\beta(\mathbf{r}) \) in (4.4) has two effects on \(\hat{n}_s \) of (4.6). First, there are one-body terms which will alter, namely \(\gamma(\mathbf{r}) \) and the \(\exp[-\frac{1}{2} \ln(2\pi m k T(\mathbf{r}))] \) arising from normalization of the momentum distribution. We have just seen that a slow alteration of a one-body term leads to an \(\hat{n}_s \) in which this term may be taken as literally constant. There remains then the effect upon the two-body potential terms, that is, upon
\[\beta(\mathbf{q}, \mathbf{r}) \phi(\mathbf{q}, \mathbf{r}) = \frac{1}{2} [\beta(\mathbf{q}) + \beta(\mathbf{r})] \phi(\mathbf{q}, \mathbf{r}). \]
Clearly
\[\delta(\beta \phi) = \frac{1}{2} [\delta \beta(\mathbf{q}) + \delta \beta(\mathbf{r})] \phi(\mathbf{q}, \mathbf{r}). \]

It is now only necessary to extend Eqs. (4.8)–(4.10) to two-body variations. Doing so we have
\[\frac{\delta \hat{n}_2(\mathbf{r}_1, \ldots, \mathbf{r}_s)}{\delta \beta \phi(\mathbf{q}, \mathbf{r})} = \hat{n}_2(\mathbf{r}_1, \ldots, \mathbf{r}_s) \sum_{\mathbf{r}_1} \delta(\mathbf{r}_1 \rightarrow \mathbf{q}) \delta(\mathbf{r}_1 - \mathbf{r}) \]
\[+ \hat{n}_{s+1}(\mathbf{r}_1, \ldots, \mathbf{r}_s, \mathbf{r}) \sum_{\mathbf{r}_1} \delta(\mathbf{r}_1 - \mathbf{r}) \]
\[- \hat{n}_{s+1}(\mathbf{r}_2, \ldots, \mathbf{r}_s) \sum_{\mathbf{r}_1} \delta(\mathbf{r}_1 - \mathbf{r}) \]
\[+ \hat{n}_{s+1}(\mathbf{r}_1, \ldots, \mathbf{r}_s, \mathbf{r}) \]
\[- \hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s) \hat{n}_2(\mathbf{q}, \mathbf{r}), \]
(4.18)

from which
\[2 \delta \hat{n}_2(\mathbf{r}_1, \ldots, \mathbf{r}_s) \int \delta \beta \phi(\mathbf{q}, \mathbf{r}) \hat{n}_{s+2}(\mathbf{r}_1, \ldots, \mathbf{r}_s, \mathbf{q}, \mathbf{r}) \]
\[- \hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s) \hat{n}_2(\mathbf{q}, \mathbf{r}) \]
\[+ 2 \sum_{\mathbf{r}_1} \delta \beta \phi(\mathbf{r}, \mathbf{q}) \hat{n}_{s+2}(\mathbf{r}_1, \ldots, \mathbf{r}_s, \mathbf{q}) \]
\[- \hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s) n_1(\mathbf{q}) \]
\[\times \int \sum_{\mathbf{r}_1} \delta \beta \phi(\mathbf{r}, \mathbf{q}) n_1(\mathbf{q}) d\mathbf{q} \]
\[+ \hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s) \sum_{\mathbf{r}_1} \delta \beta \phi(\mathbf{r}, \mathbf{r}_1), \]
(4.19)

where \(\sum' \) denotes the omission of \(i = j \).

Our inquiry now concerns the extent to which the change in \(\hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s) \) differs from that which would occur due to a uniform change in temperature corresponding to that at the midpoint \(\mathbf{R} = \langle 1/s \rangle \sum \mathbf{r}_i \) of \(\mathbf{r}_1, \ldots, \mathbf{r}_s \). Thus, being more explicit, we wish to consider
\[\hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s; \beta(\mathbf{r}) + \delta \beta(\mathbf{r})) - \hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s; \beta(\mathbf{r}) + \delta \beta(\mathbf{r})) \]
the difference of two types of variation, where \(\delta \beta \) is the uniform variation \(\delta \beta(\mathbf{R}) \), and \(\gamma(\mathbf{r}) \) is the same for both distributions. Again, this difference may be divided into an asymptotic and a residual part:
\[2 \delta \hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s; \beta(\mathbf{r}) + \delta \beta(\mathbf{r})) - \hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s; \beta(\mathbf{r}) + \delta \beta(\mathbf{r})) \]
\[= \frac{n^2 \chi}{N \beta} \partial \hat{n}_s(\mathbf{r}_1, \ldots, \mathbf{r}_s) / \partial n \left[\int (\Delta(\mathbf{q}, \mathbf{r}) \hat{n}_2(\mathbf{q}, \mathbf{r}) d\mathbf{q} / \mathbf{r} \right] \]
\[+ 2 \int \sum \Delta(\mathbf{q}, \mathbf{R}) n_1(\mathbf{q}) d\mathbf{q} + \Delta + \Delta_+ + \Delta_+ + \Delta_+. \]
Combining with (4.16), we see that a uniform change of reciprocal temperature \(\delta \beta \) followed by an alteration of \(\gamma(r) \) sufficient to bring \(n_1(R; \beta + \delta \beta) \) to its true value \(n_1(R; \beta + \delta \beta) \) results in a value of \(\bar{a}_s(r_1, r_2) \) identical with that produced by the nonuniform change \(\delta \beta(r) \). This infinitesimal process can then be iterated to show that a slowly varying temperature, with no restriction on the magnitude of its change in the large, can be reduced insofar as \(\bar{a}_s(r_1, r_2) \) is concerned to a uniform temperature \(\beta(R) \) with modified \(\gamma(r) \) and thus to the corresponding equilibrium distribution at \(\beta(R), n_1(R) \). As a consequence of the analyses of (4.16) and (4.21), the validity of (4.7) for \(s = 2 \) has now been demonstrated.

In Appendix D, we show that the pattern of inference established above may be reversed, in that the asymptotic forms (2.22, 3.23) are themselves consequences of the local character of distribution functions together with the basic Ornstein-Zernike relation.

5. CONCLUSION

We have shown in this paper how the assumption of the existence of a finite correlation length in a fluid yields explicit expressions for the \(1/N \) terms in the joint distribution of two sets of particles which are far apart compared to the correlation length. The form of these terms was then utilized to prove the local nature of the low order distributions in a system with spatially varying intensive parameters.

It appears to us that the central problem in the theory of equilibrium fluids is the proof of the existence of such a length. As mentioned in the introduction, this is related to the distinction between fluids and crystals and hence to phase transitions between these forms.

ACKNOWLEDGMENTS

We would like to thank Dr. H. L. Frisch, Dr. E. Helfand, Dr. O. Penrose, and Dr. L. Van Hove for several valuable discussions.

APPENDIX A

In this appendix we attempt to give a more rigorous mathematical formulation of the concepts of finite correlation length and asymptotic form of distribution functions. It is clear that these concepts can be made precise only when we have some procedure for letting the particle number \(N \) approach infinity. When the system is completely uniform, i.e., periodic boundary conditions, this passage to the limit is indeed straightforward: \(N \to \infty, V \to \infty, N/V = \tau \) (although even here one may have to specify the ratios of the various sides).

For a nonuniform system, we may imagine the restriction to successively larger volumes \(V \) by imposition of an appropriate (short range and infinite) wall potential. All other conditions are to be held fixed at
predetermined values throughout space: internal and external (e.g., gravitational) potentials, as well as local (for a local-equilibrium ensemble) temperature and chemical potential. We assume then that these quantities are sufficiently bounded that if the particle number $N(V)$ for each volume is suitably chosen, the distributions $n_k(r_1, \cdots, r_N)$ of finite order k will possess limiting values $n_k(r_1, \cdots, r_N)$ as $N \to \infty$. The value of $n_k(r_1, \cdots, r_N)$ may of course depend on the way the volume becomes infinite. In the following we shall think particularly of two ways of passing to the limit: the first is such that the positions of all k particles become infinitely far from the walls, the second that some of the walls remain located at a finite distance from the k particles. As a prototype of the first situation we start with a cube defined by $-L \leq x \leq L$, $-L \leq y \leq L$, and then let $L \to \infty$, while the second may be represented by starting instead with a cube $0 \leq x \leq L$, $-L \leq y \leq L$. The second situation is necessary for the examination of wall effects on the distributions in the limit of infinite L for an otherwise uniform system.

We will now specialize our discussion to the one and two-particle distributions. The two-particle Ursell function for given N, V is

$$\mathcal{F}_2(r_1, r_2; N) = n_2(r_1, r_2; N) - n(r_1; N)n(r_2; N). \quad (A.1)$$

\mathcal{F}_2 vanishes when either of the particle coordinates is outside V and has the property that

$$\int_V \mathcal{F}_2(r_1, r_2; N)dr_2 = -n(r_1; N). \quad (A.2)$$

Our previous assumption assures the existence of

$$\lim_{N \to \infty} \mathcal{F}_2(r_1, r_2; N) = \mathcal{F}_2(r_1, r_2) = n_2(r_1, r_2) - n(r_1)n(r_2). \quad (A.3)$$

The Ursell function $\mathcal{F}_2(r_1, r_2)$ is defined in such a fashion that it vanishes for statistically independent particles. The correlation length of a fluid is therefore related to the scale on which \mathcal{F}_2 vanishes as $|r_{12}|$ increases. The possibility of correlation over large distances may be intrinsic, as in a crystal or at the critical point, or may be due simply to the constraint of a fixed number of particles in the system. It is clearly the second part of this long-range correlation with which we are concerned in this paper. The magnitude of this nonintrinsic correlation will vanish as the size of the system increases. Hence in the absence of intrinsic long-range correlation, which we here assume, we will in the limit have for some m

$$\int_{r_{12}^m} \mathcal{F}_2(r_1, r_2) dr_2 = 0 \quad (A.4)$$

The value of m determines the rate at which \mathcal{F}_2 approaches zero as $r_{12} \to \infty$; if (A.4) holds for all l, the approach is exponentially fast.

In addition to vanishing rapidly at large separation, $\mathcal{F}_2(r_1, r_2)$ will only have a small fractional deviation from $\mathcal{F}_2(r_1, r_2; N)$ at small r_{12}. Hence the difference

$$\phi_2(r_1, r_2; N) = \mathcal{F}_2(r_1, r_2; N) - \mathcal{F}_2(r_1, r_2) \quad (A.5)$$

(defined as vanishing outside of V) may be termed the asymptotic part of $\mathcal{F}_2(N)$. In applications, use is made of the short-range character of \mathcal{F}_2, coupled with properties of the integrals of $\phi_2(N)$ over the full volume, or more precisely of

$$\lim_{N \to \infty} \int_V \phi_2(r_1, r_2; N)\chi(r_2)dr_2 \quad (A.6)$$

where $\chi(r_2)$ is a bounded function: $|\chi(r_2)| < M$.

We shall first discuss the value of the integrals (A.6) when $\chi(r_2)$ is a constant. This will yield sufficient information about $\phi_2(N)$ that the properties of (A.6) will be obtained with few further assumptions. The advantage of the restriction to χ being a constant is that since

$$\int_V \phi_2(r_1, r_2; N)dr_2 = -n(r_1; N) - \int_V \mathcal{F}_2(r_1, r_2)dr_2 \quad (A.7)$$

[employing (A.2) and (A.5)], then only the integral of \mathcal{F}_2 is required, which being short-range can be found by integrating over a finite volume as $V \to \infty$.

Consider now the process discussed in Sec. 2 of dividing the volume V into V_A and $V_B = V - V_A$. Using the previous notation, we have

$$\mathcal{F}_2(r_1, r_2; N) = \langle n_2(r_1, r_2; N-N_A, N-N_A) \rangle - \langle n(r_1; N-N_A)n(r_2; N-N_A) \rangle \quad (A.8)$$

If $\mathcal{F}_2(r_1, r_2; N)$ is integrated over V_B with r_1 in V_A, then from (A.8)

$$\int_{r_B} \mathcal{F}_2(r_1, r_2; N)dr_2 = \langle (N-N_A)n(r_1; N-A, N-N_A) \rangle - \langle N-N_A(n(r_1; N-A, N-N_A) \rangle - \langle N-N_A(n(r_1; N-A, N-N_A) \rangle$$

$$= \langle N-N_A(n(r_1; N-A, N-N_A) \rangle$$

$$+ \langle N-A(n(r_1; N_A, N-N_A) \rangle$$

$$= \sum_{k=0}^{N-N_A} \langle (\delta N_A)^k \rangle \tilde{N}_A^{k+1} \frac{\partial^k}{\partial \tilde{N}_A} \left[n(r_1; N_A, N-N_A) \right]$$

$$- \tilde{N}_A \frac{\partial^k n(r_1; N_A, N-N_A)}{\partial \tilde{N}_A} \quad (A.9)$$

where $\tilde{N}_A = N_A/V_A$, $\delta N_A = N_A - N_A$. By taking the limit of $N, V \to \infty$, with V_A remaining fixed, it follows
that

\[
\int_{V_{\mathcal{A}}} \mathcal{F}_2(r_1, r_2) \, dr_2 = \int_{V_{\mathcal{A}}} \lim_{N \to \infty} \mathcal{F}_2(r_1, r_2; N) \, dr_2
\]

\[
= \lim_{N \to \infty} \int_{V_{\mathcal{A}}} \mathcal{F}_2(r_1, r_2; N) \, dr_2
\]

\[
= -n(r_1) - \lim_{N \to \infty} \int_{V_{\mathcal{A}}} \mathcal{F}_2(r_1, r_2; N) \, dr_2
\]

\[
= -n(r_1) + \sum_{k=2}^{\infty} \left(\frac{\langle \partial N_A \rangle^k}{k!} \mathcal{F}_2(r_1, r_2; N) \right)
\]

\[
\times \left[-\frac{\partial}{\partial N_A} n_{r_1} \left(\mathcal{F}_2(r_1, r_2; N) \right) \right] - \mathcal{F}_2(r_1, r_2; N - N_A) f_{r_1} \langle \partial N_A \rangle^k \|_{N_A} \right]
\]

where all quantities on the right-hand side are to be taken in the limit of \(V \) becoming infinite.

Next let \(N_A \) increase to infinity. The quantities inside the square brackets in (A.10) are of at most \(O(1) \), and this remains true if for the purposes of rigor the series is truncated, the final term being evaluated at other than \(N_A \). We now assume that the fluctuations in \(N_A \) are bounded in order of magnitude by the fluctuations in a grand canonical ensemble, where it can be shown that

\[
\langle \langle \partial N_A \rangle^k \rangle \leq O(N_A^{k+2}).
\]

This yields, for \(V_\mathcal{A} \) approaching infinity in such a way that \(r_1 \) becomes infinitely far from the interface \(S_A \) (although not necessarily far from the container walls),

\[
\int_{V_{\mathcal{A}}} \mathcal{F}_2(r_1, r_2) \, dr_2 = -n(r_1) + n^2 kT \mathcal{F}_2 \frac{\partial n(r_1)}{\partial n} + o(1),
\]

where we have defined

\[
\lim_{N_A \to \infty} \frac{\langle \langle \partial N_A \rangle^2 \rangle}{N_A} = nkT \mathcal{F}_2,
\]

with the understanding that to order \(o(1) \) in \(N_A, nkT \mathcal{F}_2(N_A) \) and \(n(r_1, N_A) \) coincide with their limiting values. But according to (A.4),

\[
\int_{V_{\mathcal{A}}} \mathcal{F}_2(r_1, r_2) \, dr_2 = \int_{V_{\mathcal{A}}} \mathcal{F}_2(r_1, r_2) \, dr_2 + o(1).
\]

It follows from (A.7) and (A.12) that

\[
\lim_{N \to \infty} \int_{V_{\mathcal{A}}} \mathcal{F}_2(r_1, r_2; N) \, dr_2 = -n^2 kT \mathcal{F}_2 \frac{\partial n(r_1)}{\partial n},
\]

which is the result desired.

At fixed \(r_1 \), characterization of \(\phi_2(r_1, r_2; N) \) will entail two regions of interest. For \(r_2 \) separated microscopically from \(r_1 \), the general argument following (2.10) suggests that the effect of the boundary may cause \(\mathcal{F}_2(N) \) to deviate from \(\mathcal{F}_2 \) by the order of \(1/N \), \(O(N^{-1}) \). For \(r_2 \) outside an intrinsic correlation length from \(r_1 \), the effect of the constraint (of precisely \(N \) particles in \(V \)) could still introduce terms of order \(O(N^{-1}) \). However, this could certainly not be true in a uniform sense, due to the existence of the integral (A.15). We would like to argue that in this region, the dominant term in \(\phi_2(N) \) is given by the second term on the right-hand side of (2.19), which is of order \(O(1/N) \). This is certainly compatible with Eq. (A.15) and as we shall see is also implied by it.

A very strong argument for this behavior of \(\phi_2(N) \) can be made by considering rather than \(\phi_2(r_1, r_2; N) \) a very similar quantity

\[
\phi_2(r_1, r_2; N) = \mathcal{F}_2(r_1, r_2; N) - \mathcal{F}_2(r_1, r_2)
\]

where

\[
\mathcal{F}_2(r_1, r_2; N_A) = \lim_{N_A \to \infty} \mathcal{F}_2(r_1, r_2; N_A, N - N_A).
\]

\(\phi_2(r_1, r_2; N_A) \) is the deviation of the Ursell function for an infinite system without any constraints from the one for the same system when a given volume \(V_A \) is constrained to contain \(N_A \) particles. As far as the constraint of a fixed number of particles is concerned, the subsystem inside \(V_A \) may be regarded as a closed system with a special type of boundary. The function \(\mathcal{F}_2(r_1, r_2; N_A) \) should therefore mimic for \(r_1, r_2 \) inside \(V_A \) the behavior of the function \(\mathcal{F}_2(r_1, r_2; N_A) \) for a closed system of \(N_A \) particles inside the container \(V_A \). Indeed, as far as the integral over \(V_A \) is concerned, the two functions have the same behavior:

\[
\int_{V_{\mathcal{A}}} \mathcal{F}_2(r_1, r_2; N_A) \, dr_2 = -n(r_1 | N_A).
\]

The properties of \(\phi_2(r_1, r_2; N_A) \) can be found from an expansion similar to that leading to (A.9), which yields, as a development in \(1/N_A \),

\[
\mathcal{F}_2(r_1, r_2; N_A) = \mathcal{F}_2(r_1, r_2) - \left(\frac{\langle \partial N_A \rangle}{N_A} \right) ^2 \frac{\partial}{\partial N_A^2} \mathcal{F}_2(r_1, r_2 | N_A)
\]

\[
+ \frac{\partial}{\partial N_A} n(r_1 | N_A) \frac{\partial}{\partial N_A} n(r_2 | N_A) \bigg|_{N_A} + \cdots.
\]

For \(r_1 \) and \(r_2 \) far from each other, this expression reduces to

\[
\mathcal{F}_2(r_1, r_2; N_A) - \mathcal{F}_2(r_1, r_2) = \frac{1}{N_A} n^2 kT \mathcal{F}_2 \frac{\partial n(r_1)}{\partial N_a} \frac{\partial n(r_2)}{\partial N_a} + \cdots.
\]

The properties of \(\phi_2(r_1, r_2; N_A) \) can be found from an expansion similar to that leading to (A.9), which yields, as a development in \(1/N_A \),

\[
\int_{V_{\mathcal{A}}} \mathcal{F}_2(r_1, r_2; N_A) \, dr_2 = -n(r_1 | N_A).
\]

The properties of \(\phi_2(r_1, r_2; N_A) \) can be found from an expansion similar to that leading to (A.9), which yields, as a development in \(1/N_A \),

\[
\mathcal{F}_2(r_1, r_2; N_A) = \mathcal{F}_2(r_1, r_2) - \left(\frac{\langle \partial N_A \rangle}{N_A} \right) ^2 \frac{\partial}{\partial N_A^2} \mathcal{F}_2(r_1, r_2 | N_A)
\]

\[
+ \frac{\partial}{\partial N_A} n(r_1 | N_A) \frac{\partial}{\partial N_A} n(r_2 | N_A) \bigg|_{N_A} + \cdots.
\]

For \(r_1 \) and \(r_2 \) far from each other, this expression reduces to

\[
\mathcal{F}_2(r_1, r_2; N_A) - \mathcal{F}_2(r_1, r_2) = \frac{1}{N_A} n^2 kT \mathcal{F}_2 \frac{\partial n(r_1)}{\partial N_A} \frac{\partial n(r_2)}{\partial N_A} + \cdots.
\]
if \(r_1 \) and \(r_2 \) are both interior to \(V_A \) (the correction term vanishes otherwise). The right-hand side of the expression is indeed of the same form as that found in (2.19) for the function \(\phi_2(r_1,r_2; \mathcal{N}_A) \).

Let us now return to the discussion of \(\phi_2(r_1,r_2; N) \). On the basis of (A.15), we divide \(\phi_2(N) \) into two parts:

\[
\phi_2(r_1,r_2; N) = N^{-1} \phi_2^{(0)}(r_1,r_2; N) + \phi_2^{(1)}(r_1,r_2; N) \quad (A.20)
\]

Here \(\phi_2^{(0)}(N) \) is to remain bounded as \(N \to \infty \), i.e.,

\[
\phi_2^{(0)}(N) = O(1), \quad \text{and satisfies}
\]

\[
\lim_{N \to \infty} N \int \phi_2^{(0)}(r_1,r_2; N) dr_2 = -N^{-2} kT \frac{\partial n_1}{\partial n_1} \quad (A.21)
\]

the remainder \(\phi_2^{(1)}(N) \) may be of order greater than \(O(1/N) \), but by virtue of (A.15) must satisfy

\[
\lim_{N \to \infty} N \int \phi_2^{(1)}(r_1,r_2; N) dr_2 = 0. \quad (A.22)
\]

The decomposition (A.20) is of course not unique, since one can for example add and subtract any term of order \(O(1/N) \).

The vanishing in the limit of the integral (A.22) can occur in two basic ways. First, the part of \(\phi_2^{(1)}(N) \) which is of order greater than \(O(1/N) \) may be effectively restricted to a finite region. Second, \(\phi_2^{(1)}(N) \) may be of order greater than \(O(1/N) \) over the full volume, but have an oscillatory character leading to a vanishing integral. We assume now that in a fluid the latter situation does not arise and express this formally by the condition that a decomposition (A.20) exists for which

\[
\lim_{N \to \infty} N \int \phi_2^{(1)}(r_1,r_2; N) dr_2 = 0. \quad (A.23)
\]

This assumption implies that

\[
\lim_{N \to \infty} N \int \chi(r_1,r_2) \phi_2^{(1)}(r_1,r_2; N) dr_2 = 0
\]

\[
= \lim_{N \to \infty} \frac{1}{N} \int \chi(r_1,r_2) \phi_2^{(0)}(r_1,r_2; N) dr_2, \quad (A.24)
\]

where \(\chi \) is an arbitrary bounded function of \(r_1 \) and \(r_2 \). Hence in all applications in this paper we need only be concerned with the value of \(\phi_2^{(0)}(r_1,r_2; N) \).

Consider now a homogeneous system. Let us denote the limiting value of \(\phi_2^{(0)}(N) \) by \(\phi_2^{(0)} \):

\[
\lim_{N \to \infty} \phi_2^{(0)}(r_1,r_2; N) = \phi_2^{(0)}(r_1,r_2), \quad (A.25)
\]

and its asymptotic part by \(\psi \):

\[
\lim_{|r_1| \to \infty} \phi_2^{(0)}(r_1,r_2) = \psi(r_1), \quad (A.26)
\]

both of which limits we assume to exist. The existence of these limits means that we discard the possibility of \(\phi_2^{(0)}(N) \) having an oscillatory behavior extending the length of the container. The limit \(|r_2| \to \infty \) is here to be taken in such a way that \(r_2 \) moves infinitely far from the walls. Combining Eqs. (A.21) and (A.26) yields

\[
\psi(r_1) = -N^{-2} kT \frac{\partial n_1}{\partial n_1} \quad (A.27)
\]

so that finally, using (A.24),

\[
\int \chi(r_1,r_2) \frac{\partial n_1}{\partial n_1} \frac{\partial n_1}{\partial n_1} \left[N^{-1} \int \chi(r_1,r_2) dr_2 \right] + o(1). \quad (A.28)
\]

For a system which is not completely uniform, the limit (A.26) may still exist if the system is asymptotically uniform, in which case (A.28) clearly remains valid. However, if the region \(|r_2| \to \infty \) is not uniform, (A.26) will not hold and must be replaced by the strong assumption of statistical independence of distant parts, i.e.,

\[
\lim_{|r_1| \to \infty} \phi_2^{(0)}(r_1,r_2) = \psi(r_1) \psi(r_2). \quad (A.26')
\]

This is perhaps the strongest assumption we have made and it may possibly be violated at low temperatures. If we do make this assumption, then (A.28) again holds, and we further have on combining with previous equations

\[
\phi_2(N) = \frac{1}{N} \frac{\partial n_1(r_1)}{\partial n_1} \frac{\partial n_1(r_2)}{\partial n_1} + \phi_2^{(0)}(N) + o(1/N), \quad (A.29)
\]

where

\[
\int \phi_2^{(0)}(N) dr_2 = o(1).
\]

The generalization of the above discussion to higher Ursell functions is quite direct and will not be carried out, but the final expression will be written down in Appendix C.

APPENDIX B

In this Appendix, we extend Eq. (2.22) for the asymptotic value of a distribution function to fluid mixtures. This result is then applied along the lines of Ornstein and Zernike to the scattering of visible light from mixtures. For simplicity, we shall consider explicitly only the case of a two-component fluid consisting of \(N_1 \) atoms of one kind and \(N_2 \) of another kind.

The joint distribution of \(m_1 \) particles of species \(a \) and \(m_2 \) of species \(b \) will be written as \(n_{m_1 m_2} \). The asymptotic values of \(n_{q_1+a q_2+b} \) when the subset consisting of \(q_1 \) particles of \(a \) and \(q_2 \) particles of \(b \) is very far from the other particles can be found by an
investigation similar to that used for the one-component fluid. It yields

\[n_{\alpha 1} + n_{\beta 2} \rightarrow n_{\alpha 1\beta 2}\]

\[-\sum_{\alpha \beta} \left(\frac{kT}{\beta_0} \frac{\partial N_{\alpha}}{\partial \beta_0} \right) \frac{\partial n_{\alpha 1\beta 2}}{\partial N_{\alpha}} - \frac{\partial n_{\alpha 1\beta 2}}{\partial N_{\beta}} \]

(B.1)

where \(\alpha \) and \(\beta \) can assume the values \(a \) and \(b \), and

\[\frac{\partial N_{\alpha}}{\partial \beta_0} = \frac{\partial N_{\beta}}{\partial \beta_0} = 0. \]

(B.2)

When a parallel incident beam of radiation of intensity \(I_0 \) and frequency \(\nu \) falls upon this fluid, the intensity of the radiation at distance \(r \) which has been scattered at angle \(\theta \) may be computed in a way entirely analogous to that used for a single component fluid.\(^{15}\)

It is given by

\[I(\theta) = \frac{1}{2} (1 + \cos \theta) I_0 \left(\frac{r_0}{r} \right)^2 \left[N_a f_a^2 + N_b f_b^2 + \int \int f_a^2 n_{ab} \right]
\]

\[+ 2 f_a f_b n_{ab} + f_b^2 n_{bb} \int d^3 r_1 d^3 r_2 \]

(B.3)

Here \(f_a \) and \(f_b \) are the atomic scattering factors for single atoms of type \(a \) and \(b \), respectively, \(r_0 = \frac{\hbar}{m_e c} \) is the classical radius of the electron, the \(n_{ab}(r, r') \) denote the two- and one-multipolar-body distributions, and \(K \) is the change in wave vector on scattering \(K = (4\pi v/c) \sin \theta \).

In the above, we can subtract a constant term from any \(n_{ab} \) since for a system of volume \(V \) this will contribute only when \(K \sim V^{-1} \) and is thus indistinguishable from the transmitted beam as \(V \to \infty \). We shall therefore subtract the corresponding asymptotic value. The integrand in (A.3) then exists only for small values of \(r_0 \), of the order of the correlation length. Further, if the system is uniform, then

\[n_{\alpha \beta}(r_1, r_2) = n_\alpha n_\beta g_{\alpha \beta}(r_1), \]

(B.4)

and Eq. (B.3) can be rewritten as

\[I(s) = \frac{1}{2} (1 + \cos \theta) I_0 \left(\frac{r_0}{r} \right)^2 V j(s), \]

(B.5)

where

\[j(s) = n_a f_a^2 + n_b f_b^2 + \int_0^\infty \left[f_a^2 n_a [g_{aa}(r) - g_{aa}(\infty)] \right] dr
\]

\[+ 2 f_a f_b n_{ab} [g_{ab}(r) - g_{ab}(\infty)]
\]

\[+ f_b^2 n_{bb} [g_{bb}(r) - g_{bb}(\infty)] \int d^3 r \left(\frac{\sin \theta}{r^2} \right), \]

(B.6)

and

\[s = (4\pi v/c) \sin \theta \]

(reducing correctly to the one-component case when \(f_a = f, f_b = g, n_a + n_b = n \)). Equations (B.5) and (B.6) are appropriate for determining the long-wavelength limit. If \(r \) is sufficiently low that

\[c/r >> l, \]

(B.7)

where \(l \) is the correlation length—beyond which the integrand in (B.6) must vanish—then \(s << 1/l \), and we may replace \(\sin \theta \) by \(1 \). Writing

\[n_{\alpha \beta}(\infty) = n_\alpha n_\beta (1/V) \gamma_{\alpha \beta}, \]

(B.8)

it readily follows that

\[j(s) \to j(0) = \frac{n_\alpha f_a^2 + n_\beta f_b^2 + 2 n_{ab}}{V} \]

(B.9)

But according to (B.1), we can write

\[\gamma_{\alpha \beta} = \frac{kT}{\beta_0} \left(\frac{\partial n_{\alpha}}{\partial \beta_0} \right) \]

(B.10)

Equations (B.9) and (B.10) constitute the result desired.

APPENDIX C

We now extend Eq. (2.22) to the asymptotic value of the intrinsic correlation functions. These may be defined by the sequence of relations

\[\tilde{S}_1(r) = n_1(r), \]

\[\tilde{S}_2(r, r') = n_2(r, r') - n_1(r) n_1(r'), \]

\[\tilde{S}_3(r, r', r'') = n_3(r, r', r'') - n_2(r, r') n_1(r'') + n_1(r') n_1(r'') n_1(r) \]

(C.1)

The fundamental property possessed by \(\tilde{S}_1(r), \ldots, r_n \) is that of vanishing in any region in which the set \(r_1, \ldots, r_n \) decomposes into two or more independent subsets, i.e., such that the distribution functions \(n_i \) correspondingly decompose into products. This is because all correlations due to subsets have been subtracted in forming \(\tilde{S}_i \) from \(n_i \), leaving only the “intrinsic” \(s \)-body correlation.

The connection between the \(n_i \) and the \(\tilde{S}_i \) may be defined more concisely. For this purpose, introduce a “test function” \(f(r) \), and integrate to form the constants (functionals of \(f \))

\[\int \cdots \int n_i(r_1, \ldots, r_n) f(r_1) \cdots f(r_n) dr_1 \ldots dr_n, \]

(C.2)

\[\tilde{S}_i[f] = \int \cdots \int \tilde{S}_i(r_1, \ldots, r_n) f(r_1) \cdots f(r_n) dr_1 \ldots dr_n, \]

and the combinations

\[n[f] = \sum_{i=0}^{\infty} n_i[f]/s! \]

\[\tilde{S}_i[f] = \sum_{i=0}^{\infty} \tilde{S}_i[f]/s! \]

(C.3)

\[n[f] = \frac{1}{2} \tilde{S}_1[f] \]
The distribution functions may be recovered by variational differentiation:

\[n_q(r_1, \ldots, r_q) = \frac{\delta n^q}{\delta f(r_1) \cdots \delta f(r_q)} |_{r_0 = 0}, \quad \hat{\sigma}(r_1, \ldots, r_q) = \frac{\delta^q \hat{\sigma}^q}{\delta f(r_1) \cdots \delta f(r_q)} |_{r_0 = 0}. \]

(C.4)

It is then found that the sequence (C.1) achieves the very concise form

\[\hat{\sigma}(f) = \ln n^q[f]. \]

(C.5)

The required extension of (2.22, 3.23) is now readily accomplished. From (3.17), we have

\[n[f] = n^{(0)}[f] - \frac{1}{N} \frac{n^q}{2\beta} \frac{\partial^2 n^{(0)}[f]}{\partial n^2} \cdots, \]

(C.6)

and (C.5) becomes

\[\hat{\sigma}(f) = \ln n^{(0)}[f] - \frac{1}{n^{(0)}[f]} \frac{n^q}{2\beta} \frac{\partial^2 n^{(0)}[f]}{\partial n^2} \cdots \]

\[= \left(1 - \frac{1}{N} \frac{n^q}{\partial^2} \right) \ln n^{(0)}[f] - \frac{1}{N} \frac{n^q}{2\beta} \frac{\partial \ln n^{(0)}[f]}{\partial n} \cdots. \]

(C.7)

To find \(\hat{\sigma}_{q+l} \), we must apply \(\delta^{q+l} / \delta (r_1) \cdots \delta (r_{q+l}) \) \(|_{r_0 = 0} \). But suppose that the sets \(q, l \) are asymptotically separated. Then according to (3.22), the \(n_q^{(0)} \) decompose accordingly, so that \(\hat{\sigma}_{q+l}^{(0)} \) obtained from \(\ln n^{(0)}[f] \) must vanish. In the same fashion, there can be no contribution from the \(\frac{\partial n^{(0)}[f]}{\partial n} \) term unless the complete set of derivatives corresponding to the set \(q \) operates on one factor, those for set \(l \) on the other. We conclude at once that

\[\hat{\sigma}_{q+l} = \frac{1}{N} \frac{n^\chi}{\beta} \frac{\partial \hat{\sigma}_l}{\partial n}, \]

(C.8)

the desired result. It should be pointed out that our final expression (C.8) depends only upon the asymptotic form of the distribution functions, and its validity is therefore not restricted to the gas region for which the separation into \(n^{(0)} \) and a remainder \(n^{(0)} \) is possible.

We may note that \(\hat{\sigma} \), becomes a higher order infinitesimal than \(1/N \) if its particles divide into three or more groups. Another consequence of the asymptotic form (C.8), which was previously discussed (see Appendix A) for the case of \(\hat{\sigma}_1 \), is an expression for the integrals of \(\hat{\sigma}_{q+l} \) in an infinite system. Indicating the explicit dependence of Ursell functions on particle number \(N \), we have generally (where \(q > 0 \))

\[\int \hat{\sigma}_{q+l}(r_1, \ldots, r_{q+l}; N) dr_{q+l} \cdots dr_{q+l} \]

\[= (-1)^{q+l-1} \frac{(q+l-1)!}{(q-1)!} \hat{\sigma}_q(r_1, \ldots, r_q; N). \]

(C.9)

Consider now the corresponding integral for the difference of \(\hat{\sigma}_{q+l} \) and its asymptotic value \(\hat{\sigma}_{q+l}^{(as)} \) given by (C.8),

\[\int \left[\hat{\sigma}_{q+l}(r_1, \ldots, r_{q+l}; N) \right] dr_{q+l} \cdots dr_{q+l} \]

\[= (-1)^{q+l-1} \frac{(q+l-1)!}{(q-1)!} \hat{\sigma}_q(N) \]

\[- (q-1)! \frac{\partial \hat{\sigma}_q(N)}{\partial n}. \]

(C.10)

The integrand of (C.10) is of a local nature. We can therefore pass to the limit of \(N \to \infty \) inside the integral sign, yielding finally

\[\int \hat{\sigma}_{q+l}(r_1, \ldots, r_{q+l}; \infty) dr_{q+l} \cdots dr_{q+l} \]

\[= (-1)^{q+l-1} \frac{(q+l-1)!}{(q-1)!} \hat{\sigma}_q(\infty) \]

\[- (q-1)! \frac{\partial \hat{\sigma}_q(\infty)}{\partial n}, \]

(C.11)

of which the Ornstein-Zernike relation is a special case.

APPENDIX D

Here, we “close the circle” and show, using the well-known special case \(q = l = 1 \), that the asymptotic formula (2.22, 3.23) is implied by the local character of distribution functions. This may be done in two stages.

First consider the conditional distribution \(n_q(r_1, \ldots, r_q \mid r_{q+l} \neq \infty) \) when \(r_{q+l} \) is far from the set \(r_1, \ldots, r_q \) of center of mass \(\mathbf{R} \). Now the effect of fixing \(r_{q+l} \) is to change the local density at \(\mathbf{R} \) from \(n(\mathbf{R}) \) to

\[n'(\mathbf{R}) = n(\mathbf{R} \mid r_{q+l}) \]

\[= n(\mathbf{R}) - \frac{1}{N} \frac{n^\chi}{\beta n(r_{q+l})} \frac{n^\chi}{\partial n} \frac{n^\chi}{\partial n}. \]

(D.1)

Further, if \(\eta_q(\cdots; n) \) denotes the joint distribution function for a uniform density \(n \), the local dependence of \(n_q \) on \(\mathbf{R} \) tells us [see (4.13, 4.17)] that

\[n_q(r_1, \ldots, r_q) = \eta_q(r_1, \ldots, r_q; n(\mathbf{R})) \]

\[+ \nabla n(\mathbf{R}) \cdot A_q(r_1, \ldots, r_q; n(\mathbf{R})) + \cdots. \]

(D.2)
for some appropriate vector function \(A_0 \). Also, \(n_0(r_1, \ldots, r_q, r_{q+1}) \) is similarly expressed, with \(n'(R) \) replacing \(n(R) \). Hence

\[
n_0(r_1, \ldots, r_q, r_{q+1}) - n_0(r_1, \ldots, r_q) \\
= \tilde{n}_0(r_1, \ldots, r_q; n'(R)) - \tilde{n}_0[r_1, \ldots, r_q; n(R)] \\
+ \nabla n'(R) \cdot A_0[r_1, \ldots, r_q; n'(R)] \\
- \nabla n(R) \cdot A_0[r_1, \ldots, r_q; n(R)] + \cdots
\]

Inserting in (D.3) and comparing with \(\partial n_0(r_1, \ldots, r_q)/\partial n \) from (D.2), we obtain

\[
n_0(r_1, \ldots, r_q, r_{q+1}) - n_0(r_1, \ldots, r_q) \\
= [n'(R) - n(R)] \frac{\partial \tilde{n}_0[r_1, \ldots, r_q; n(R)]}{\partial n} \\
+ [\nabla n'(R) - \nabla n(R)] \cdot A_0[r_1, \ldots, r_q; n(R)] \\
+ [n'(R) - n(R)] \nabla n(R) \\
\frac{\partial A_0[r_1, \ldots, r_q; n(R)]}{\partial n} \frac{\partial n(R)}{\partial n} + \cdots. \quad (D.3)
\]

Substituting from \(n'(R) - n(R) \) of (D.1) and multiplying by \(n(r_{q+1}) \) now results in the \(q, 1 \) case for asymptotic separation:

\[
n_{q+1}(r_1, \ldots, r_q, r_{q+1}) \rightarrow n_0(r_1, \ldots, r_q) n(r_{q+1}) \\
- \frac{1}{N} \frac{\partial n_0(r_1, \ldots, r_q)}{\partial n} \frac{\partial n(r_{q+1})}{\partial n}. \quad (D.6)
\]

Next consider \(n_l(r_{q+1} \cdots r_{q+l+1} | r_1, \ldots, r_q) \). The effect of fixing \(r_1, \ldots, r_q \) is to change the local density at \(R' \) (center of mass of the set of \(l \) particles) from \(n(R') \) to \(n_l(R' | r_1, \ldots, r_q) \), which we have just obtained. Applying the above argument to the set of \(l \) particles then recovers the full relation (2.22, 3.23).