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Time evolution of electron flow in a model diode: Non-perturbative analysis
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Using a combination of Eulerian and Lagrangian variables we study the time evolution of the

electron flow from a no-current state to a final state with the stationary current in a planar

one-dimensional diode. The electrons can be injected externally or generated by the cathode via

field emission governed by a current-field law. The initial zero current regime is replaced suddenly

by injection or, in the case of field emission, by jumping the anode voltage from zero to a constant

positive value. The case of equipotential electrodes and fixed injection is studied along with a

positive anode potential. When the current is fixed externally, the approach to the stationary state

goes without oscillations if the initial electron velocity is high enough and the anode can absorb the

injected flow. Otherwise the accumulated space charge creates a potential barrier which reflects the

flow and leads to its oscillations, but our method of analysis is invalid in such conditions. In the

field emission case the flow goes to its stationary state through a train of decaying oscillations

whose period is of the order of the electron transit time, in agreement with earlier studies based on

perturbation techniques. Our approximate method does not permit very high cathode emissivity

although the method works when the stationary current density is only about 10% smaller than the

Child-Langmuir limit. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4847957]

I. INTRODUCTION

Stability of electron flows and their oscillations are of a

great importance in technology, and they attract the interest

of plasma researchers and are covered by numerous publica-

tions. While the main features of the steady flow in a diode

have been known for a century,1,2 an important step in

studying time dependent states was made by Lomax3 in

1960, who applied the Lagrange formulation of flow dynam-

ics. This approach has been developed in many works, in

particular, in Refs. 4–8, where the authors found conditions

for flow stability and modes of oscillations. These works all

used perturbation techniques, and in fact only the linear sta-

bility analysis describing small deviations from the steady

flow has been fully studied. A nonlinear process in flow dy-

namics was studied in Ref. 9 in Eulerian variables by using

direct numerical integration for solving Poisson equation.

We describe here a first step toward considering far from

stationary processes analytically for the turning on regime

in a planar diode.

We study the electron flow in the transient state when

the external parameters, such as injected current or accelera-

tion voltage, are rapidly changed at t¼ 0 and then stay fixed.

We consider the space charge limited one-dimensional (1D)

flow, produced by field emission (regime I) or externally (re-

gime II), in conditions which forbid applying linearization

techniques.3–8 In particular, we study the transition from no-

flow initial state to a stationary current bearing state. The

one-dimensional system should approximate a planar diode

whose sizes in the two transversal dimensions are much

larger than the inter-electrode distance. Our emission law is

not realistic but is qualitatively of a right form, i.e., the

stronger the cathode field the larger the emission, and it can

be used for developing more practical models. The results

cannot be quantitatively compared yet with the behavior of

real diodes in the transient regimes, and this makes it possi-

ble for simplicity to use dimensionless units without map-

ping them onto realistic ones.

II. MAIN EQUATIONS AND SETUP OF 1D FLOW
MODEL

The cathode is placed at x¼ 0, anode at x¼ xa, the poten-

tial, flow velocity, and current density are denoted as

uðx; tÞ; vðx; tÞ; jðx; tÞ, respectively, as functions of x and time

t. We assume that the current at the cathode is determined by

a function of the cathode electric field f(t) (regime 1) or fixed

externally (regime 2), i.e.,

jð0; tÞ � jðtÞ ¼ F½f ðtÞ�; or jð0; tÞ ¼ j;

f ðtÞ ¼ @u
@x
ð0; tÞ ¼ Eð0; tÞ; vð0; tÞ ¼ x; (1)

where E(x, t) is the electric field at x. The initial electron

velocity x is fixed. Let q(x, t) is the charge density, then the

current density is j(x, t)¼q(x, t)v(x, t), and the system is

governed by the following set of equations in Euler

coordinates:

@2u
@x2
ðx; tÞ ¼ qðx; tÞ; @j

@x
ðx; tÞ ¼ � @q

@t
ðx; tÞ;

@v

@t
þ v

@v

@x
¼ 1

2

@uðx; tÞ
@x

;

(2)

setting the electron charge be 1, its mass be 2, and thus

the electron kinetic energy is v2(x, t). The cathode potential

uð0; tÞ is always 0.

a)Also at Department of Physics, Rutgers University, Piscataway, New

Jersey 08854-8019, USA.
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For t< 0 our system is free of charge, q¼ 0, and all its

parameters have been time independent. The initial condi-

tions (IC) at t¼ 0 are

jðx; 0Þ ¼ 0;
uðxa; 0Þ ¼ 0; f ðx; 0Þ ¼ 0; regime I;

uðxa; 0Þ ¼ Va; f ðx; 0Þ ¼ Va=xa; regime II:

(

(3)

We consider processes at times t> 0 assuming that in regime

I the anode voltage at t¼ 0 jumps to uðxa; tÞ ¼ Va ¼ const,
the cathode field to f ð0; 0Þ ¼ Va=xa, and then the cathode

field and current will evolve as f ð0; tÞ � f ðtÞ and

jð0; tÞ � jðtÞ ¼ F½f ðtÞ�, respectively. In the regime II the

cathode current jumps at t¼ 0 from 0 to jð0; tÞ ¼ j ¼ const.
Along with the Eulerian variables x, t above we use the

Lagrangian variables s, t for an electron emitted at time s and

observed at time t. In this way all flow parameters, which

depend on both x, t, will be functions of s and t. Such func-

tions as f(t), j(t), and uð0; tÞ describe the regime at the cath-

ode, and they depend on t only. We assume that a pair s, t has

a one-to-one correspondence with some x, t (The new exter-

nal parameters for t> 0 can be such that the one-to-one corre-

spondence becomes impossible and our approach fails, see

later). This allows to find uniquely the electric field E(s, t) as

well as uðs; tÞ and current density j(s, t) at the point x, t (This

somewhat sloppy use of the same notation in the new units

will not lead to confusion). A straightforward analysis in

these variables3 shows that if T is the time needed for an elec-

tron, emitted at s, to cross the diode then this electron is

located at

xðs; tÞ ¼
ðt

s
jðt0Þ ðt� t0Þ2

4
þ f ðt0Þ t� t0

2

� �
dt0

þ xðt� sÞ; s � t � T; (4a)

with xðs; sþ TÞ ¼ xa. The electron velocity is the t–deriva-

tive of Eq. (4a)

vðs; tÞ ¼ @x

@t
ðs; tÞ ¼ xþ 1

2

ðt

s
½jðt0Þðt� t0Þ þ f ðt0Þ�dt0: (4b)

The electric field (i.e., the force) at the point x(s, t) is the

product of the acceleration and mass

Eðs; tÞ ¼ 2
@2x

@t2
ðs; tÞ ¼ f ðtÞ þ

ðt

s
jðt0Þdt0; (5)

where the partial derivative is taken in the Lagrange varia-

bles, i.e., for fixed s.

For an electron, which hits the anode at time t, then Eq.

(4a) takes the form

xa ¼
ðt

t�TðtÞ
jðt0Þ ðt� t0Þ2

4
þ f ðt0Þ t� t0

2

� �
dt0 þ xTðtÞ; (6)

where T(t) is the transit time for this electron, assuming t –

T(t)� 0. In the Euler variables the boundary condition (BC)

for uðxa; tÞ has the following form:

Va ¼ uðxa; tÞ ¼
ðxa

0

Eðx; tÞdx:

In the Lagrangian variables using Eq. (5), it can be rewritten as

Va ¼ 2

ðt�TðtÞ

t

@2x

@t2
ðs; tÞ @x

@s
ðs; tÞds; (7)

where we have used the assumption3 that x is unique for

each given t and emission time s; therefore, dx ¼ @x
@s ds.

Equations (6) and (7) should hold for all t� T(t).
One can find an explicit expression for the charge den-

sity at s, t

qðs; tÞ ¼ @E

@x
¼ @E

@s

. @x

@s

¼ jðsÞ
jðsÞðt� sÞ2=4þ f ðsÞðt� sÞ=2þ x

; (8a)

where we have taken partial derivatives of E and x given in

Eqs. (4) and (5). We see that q is a decreasing function of t if

f(t)� 0; otherwise, it can be non-monotonic. The total space

charge between the electrodes at a moment t in the Eulerian

variables

.ð1; tÞ ¼
ð1

0

qðx; tÞdx ¼ Eð1; tÞ � Eð0; tÞ: (8b)

This can be rewritten using Eq. (5) in the form

.ðt� T; tÞ ¼ Eðt� T; tÞ � Eðt; tÞ ¼
ðt

t�TðtÞ
jðt0Þdt0; (8c)

in terms of the Lagrangian coordinates leading to simple

integration of the emitted current. We will use later an

Eulerian relationship for electrons emitted at t¼ 0 and

located within the area 0< x<X(t)< 1

.ðX; tÞ ¼
ðX

0

qðx; tÞdx ¼ EðX; tÞ � Eð0; tÞ ¼
ðt

0

jðt0Þdt0: (8d)

Note that Eqs. (8b) and (8c) define the same function if t is

fixed.

Evaluating the derivatives via Eq. (4), one can substitute

them into Eq. (7), apply Eq. (6), and come to the following

BC which as Eq. (6) should hold for all t> 0

Va ¼ xaf ðtÞ þ
ðt

t�TðtÞ
dt0 jðt0Þ ðt� t0Þ2

4
þ f ðt0Þ t� t0

2
þ x

� �

�
ðt

t0
jðt00Þdt00: (7a)

We see that Eqs. (6) and (7a) can be considered from now on

in the usual Eulerian variables because t is the same in both

systems and variable s is absent.

In the case when the cathode current is a function of the

cathode field j¼F(f), such as field emission or Child-

Langmuir (CL) flow, the system (6) and (7a) has the follow-

ing form:

233302-2 A. Rokhlenko and J. L. Lebowitz J. Appl. Phys. 114, 233302 (2013)
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xa ¼
ðt

t�TðtÞ
F½f ðt0Þ� ðt� t0Þ2

4
þ f ðt0Þ t� t0

2
þ x

� �
dt0;

Va ¼ xaf ðtÞ þ
ðt

t�TðtÞ
dt0 F½f ðt0Þ� ðt� t0Þ2

4
þ f ðt0Þ t� t0

2
þ x

� �

�
ðt

t0
F½f ðt00Þ�dt00: (9)

There are two unknown functions f(t) and T(t) in Eq. (9)

whose initial values at t¼ 0 are determined by the IC.

One could consider a situation with a non-zero voltage

in the initial state V (t–) which makes a sudden jump DV at

t¼ 0þ and a simultaneous jump DV/xa of the cathode field.

This corresponds in our non-relativistic approximation to the

superposition of the initial diode electric field and the homo-

geneous field, i.e., Eðx; 0þÞ ¼ Eðx; 0�Þ þ DV=xa.

Mathematically, Eq. (9) should be sufficient for deter-

mining f(t) and T(t), but a clear strategy for solving them is

not seen. Keeping intact the main features of a field emitted

current we will simplify Eq. (9) to some degree and use other

functions of the flow found above, like Eqs. (4b), (8a), and

(8c), to help us find an approximate solution. In particular,

using Eqs. (4b) and (8a) the time dependence of the anode

current can be written as

jaðtÞ ¼
jðt� TÞvðt� T; tÞ

jðt� TÞT2=4þ f ðt� TÞT=2þ x
;

T ¼ TðtÞ; t � TðtÞ: (10)

In the stationary state, when f and j are constant, the denomi-

nator of Eq. (10) is the velocity at the anode and ja is equal

to the cathode current j as it should.

III. METHOD OF SOLUTION

Our method of attacking this time dependent problem is

to study the flow evolution at discrete time steps which cor-

respond to successive time intervals. If

Hi ¼
Xi

k¼1

Tk; H0 ¼ 0; i ¼ 1; 2;…;

then these intervals are Hi�1 < t < Hi, where i¼ 1, 2,….

Here Ti is the transit time of the electrons which leave the

cathode at t ¼ Ti�1. In particular, the first electrons starting

the process at t¼ 0 need T1 for their travel to the anode.

When the flow can approach asymptotically to a stationary

state the most important time interval is the first one

0< t<T1, where the changes are dramatic, then in our com-

putations only several intervals 4–6 are needed for reaching

the stationary state with a very high precision.

This method of discrete steps can be based on Eq. (9) or

using the following scheme. There is a possibility to derive a

different set of equations in Eulerian variables implied11 by

a relationship for xa¼ 1

df

dt
ðtÞ ¼ @u

@t
ð1; tÞ þ

ð1

0

½jðx; tÞ � jð0; tÞ�dx; (11)

which fits to the situation with discrete time intervals.

During the first time interval when the first electrons did not

yet reach the anode but are located at X(t)< 1 the current

density j(x, t)¼ 0 for all x>X(t). Taking into account that

the anode potential is fixed we use Eq. (8a) to rewrite

Eq. (11) in the Lagrange variables

jðtÞ þ df

dt
ðtÞ ¼

ðXðtÞ

0

jðx; tÞdx ¼
ð0

t

vðs; tÞ @E

@s
ðs; tÞds

and substitute v(s, t) from Eq. (4b) and the s-derivative of E.

The result is

jðtÞ þ df

dt
ðtÞ ¼ x

ðt

0

jðt0Þdt0 þ 1

2

ðt

0

dt0½jðt0Þðt� t0Þ þ f ðt0Þ�

�
ðt0

0

jðt00Þdt00: (12)

This provides a closed equation for finding f(t) when j(t) is

given or j(t)¼F(f) and t�T1. Equations corresponding to

Eq. (12) for the time intervals Hi�1 < t < Hi can be useful

only for j(t)¼ const for better precision when t>T1. We

apply here a more universal scheme with Eq. (9), which pro-

vide sufficiently accurate results.

This approximation is based on representing the func-

tion fi(t) on each time interval as a series

f iðtÞ ¼
X
n¼0

ci
n

t�Hi�1

Ti

� �n

(13)

and truncating it to a finite sum with n�N. The number of

terms N will be chosen in accord with the available number

of equations for determining ci
n; n ¼ 0::N and the corre-

sponding transition time Ti.

A. Regime I with linear F[f], x 5 0, and Vaðt > 0Þ51

Let F½f ðtÞ� ¼ af ðtÞ; a > 0 and at t¼ 0– we have xa¼ 1,

and the Eulerian variables uðx; 0Þ ¼ 0; qðx; 0Þ ¼ 0 are

changed with

uðx; 0Þ ¼ x; f ðx; 0Þ ¼ 1 for t ¼ 0þ : (14)

In this way we study the flow after the diode is turned on by

applying the voltage Va¼ 1 suddenly. When x 6¼ 0 all our

equations become only slightly more complicated, we con-

sider the simplification x¼ 0 keeping in mind mainly high

applied voltages when x can be neglected.

Thus we come to a problem of finding two unknown

functions f(t) and T(t) which satisfy Eq. (9) in the form

1

4

ðt

t�T

f ðt0Þ½aðt� t0Þ2 þ 2ðt� t0Þ�dt0 ¼ 1; (15a)

f ðtÞ þ a

4

ðt

t�T

dt0f ðt0Þ½aðt� t0Þ2 þ 2ðt� t0Þ�
ðt

t0
f ðt00Þdt00 ¼ 1;

(15b)

for all t�T, where T is the transit time T¼T(t) for the elec-

tron which hits the anode at time t. Here as before f(t) is the

233302-3 A. Rokhlenko and J. L. Lebowitz J. Appl. Phys. 114, 233302 (2013)
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electric field at the emitter. Note that Eq. (15a) is already

implemented in Eq. (15b) as well as in Eq. (17b) below.

Equations (9) or (15) with proper BC and IC obviously

uniquely determine the flow evolution in our system because

they are valid for all t�T(t) in Eqs. (15), but finding f(t)
from them is a difficult problem. Approximate methods of

solving them in our approach will involve the use of discrete

sets of values of t, which leads to losing some information.

As Eqs. (15) are identities valid for all t we supplement Eqs.

(15) with three derivative of these equations. Thus we con-

serve at least some information to get additional identities of

the same nature as Eqs. (15). The derivative of the integral in

Eq. (15a) is zero, and therefore

1� dT

dt

� �
f ðt� TÞðaT2 þ 2TÞ ¼ 2

ðt

t�T

f ðt0Þ½aðt� t0Þ þ 1�dt0:

(16)

This equation will be used for evaluating the derivative T0ðtÞ
in computations below. After some manipulations one can

derive from Eqs. (15b) and (16) the following relation:

df

dt
þ af ðtÞ ¼ a

2

ðt

t�T

dt0f ðt0Þ½aðt� t0Þ þ 1�
ðt0

t�T

f ðt00Þdt00;

(17a)

which as well as Eqs. (15) is valid for all t�T(t) but does

not involve the derivative T0ðtÞ explicitly. We add to Eqs.

(15) and (17a) the derivative of Eq. (17a)

d2f

dt2
ðtÞ þ a

df

dt
ðtÞ ¼ af ðtÞ

2

ðt

t�T

f ðt0Þdt0 þ a2

4

ðt

t�T

f ðt0Þdt0
� �2

� a

aT2 þ 2T

ðt

t�T

f ðt0Þ½aðt� t0Þþ 1�dt0
� �2

;

(17b)

which can be rewritten using Eqs. (4b) and (8c) as

d2f

dt2
ðtÞ þ a

df

dt
ðtÞ ¼ f ðtÞ

2
.ðtÞ þ .2ðtÞ

4
� 4a

aT2 þ 2T
v2ðtÞ:

Then we calculate the time derivative of Eq. (17b) and obtain

the following relation in the Eulerian variables:

d3f

dt3
ðtÞ þ a

d2f

dt2
ðtÞ � .ðtÞ

2

df

dt
ðtÞ

¼ ½f ðtÞ þ .ðtÞ� af ðtÞ
2
� 6avðtÞ

aT2 þ 2T

� �

þ 8av2ðtÞ aT þ 1

ðaT2 þ 2TÞ2
3� 4vðtÞ

aT2 þ 2T

� �
; (17c)

for the moment t¼T(t) when the electrons emitted at t¼ 0

reach the anode.

The set of Eqs. (15) and (17) will be used in our calcula-

tions. Using Eq. (4b), Eq. (10) for the anode current density

can be now simplified to the form

jaðTÞ ¼
4avðTÞ

aT2 þ 2T
; (18)

where the electron velocity at the anode v and T are both

functions of a single variable t and can be treated in the

Eulerian units. For this one should calculate T(t) by the

Lagrangian approach to find ja as a continuous function of

time. Equations (16) and (18) imply a useful relationship

jaðTÞ ¼ af ð0Þð1� T0Þ for the anode current.

In the stationary case f(t)¼ f¼ const the electron velocity at

the anode va¼ 1 and Eqs. (8a) and (17a) imply j ¼ af ¼ vaqa

¼ qðT þ s; sÞ ¼ 4a=ðaT2 þ 2TÞ. Thus f ¼ 4=ðaT2 þ 2TÞ and

from Eq. (6) f ¼ 12=ðaT3 þ 3T2Þ. Therefore

Tst ¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2a=3þ a2
p

� aþ 1
;

fst ¼
1þ 3a2

2
þ 1� 3a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2a=3þ a2

p
;

and, in particular, the well known results T¼ 3, j¼ 4/9, f¼ 0

if a¼1 for the CL flow, and T¼ 2 when a¼ 0 (no current).

These formulas are in agreement with corresponding rela-

tions found in Refs. 8 and 10.

On the initial time interval 0< t<T1 using the approxi-

mation Eq. (13) with a finite N we have

f ðT1Þ ¼
XN

i¼0

c1
i ; .ðT1Þ ¼ aT

XN

i¼0

c1
i

iþ 1
;

vðT1Þ ¼
T1

2

XN

i¼0

c1
i

iþ 1
1þ aT1

iþ 2

� �
:

Using these notations the straightforward but tedious calcula-

tions allow to rewrite Eqs. (15a), (15b), and (17a)–(17c),

respectively, in the following form:

1

2

XN

i¼0

c1
i T2

1

ðiþ 1Þðiþ 2Þ 1þ aT1

iþ 3

� �
¼ 1; (19a)

f ðT1Þ þ .ðT1Þ �
a

2

XN

i;j¼0

c1
i c1

j T3
1

ðiþ 1Þðiþ jþ 2Þðiþ jþ 3Þ

� 1þ aT1

iþ jþ 4

� �
¼ 1; (19b)

2
XN

i¼0

c1
i 1þ i

aT1

� �
¼
XN

i;j¼0

c1
i c1

j T2
1

ðiþ 1Þðiþ jþ 2Þ 1þ aT1

iþ jþ 3

� �
;

(19c)

1

T1

XN

i¼0

c1
i i 1þ i� 1

aT1

� �
¼ 2f ðT1Þ þ .ðT1Þ

4a
.ðT1Þ

� 4v2ðTÞ
aT2

1 þ 2T
; (19d)
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8
v2ðT1ÞðaT1 þ 1Þ
ðaT2

1 þ 2T1Þ2
3� 4vðT1Þ

aT2
1 þ 2T1

" #
þ ½f ðT1Þ þ .ðT1Þ�

� f ðT1Þ
2
� 6vðT1Þ

aT2
1 þ 2T1

" #

¼ 1

aT3
1

XN

i¼0

c1
i iði� 1Þði� 2þ aT1Þ �

.ðT1Þ
2aT

XN

i¼0

ic1
i : (19e)

Equations (19) are five algebraic equations for f(t) and Tj on

each consequent interval Hj�1 � t � Tj þHj�1, and by differ-

entiation one can have as many equation as he wants if their

practical use is reasonable. Our method of using a polynomial

form (13) neglects the higher derivatives of f(t), and we think

that to go beyond d3f=dt3 (in Eq. (17c)) is not sensible.

Note that Eq. (12) can be rewritten using the expansion

(13) of f(t) on the first interval 0� t<T1 as following:

X
i¼0

c1
i

Ti
1

ðati þ iti�1Þ ¼ a
X
i¼0

c1
i

Ti
1

tiþ1

iþ 1
xþ 1

2

X
j¼0

c1
j tjþ1

Tj
1ðiþ jþ 2Þ

1þ at

iþ jþ 3

� �" #
:

This relationship and the BC make it possible to evaluate all

the coefficients of the series (13). The first of them are

c1
0 ¼ 1;

c1
1

T1

¼ �a;
c1

2

T2
1

¼ xaþ a2

2
;

c1
3

T3
1

¼ a
1� 4xa� 2a2

12
; :::; (20)

and the computation of the higher ones is more laborious but

straightforward. The general term bk ¼ c1
k=Tk

1 can be com-

puted from the following equation:

ðnþ 1Þbnþ1 ¼ �abn þ ax
bn�1

n
þ a

4

Xn�2

i¼0

bibn�2�i

ðiþ 1Þðn� 1� iÞ

þ a2

4n

Xn�3

i¼0

bibn�3�i

ðiþ 1Þðn� 2� iÞ:

This provides an important information about the first coeffi-

cients c1
0; c

1
1;…, but the convergence of the series is very

slow in this case (regime I). We use only these two coeffi-

cient then model f(t) with a finite sum and apply Eqs. (19)

for this model of the field emission.

Two more remarks. A simple analysis of Eqs. (1) and

(2) allows also to find the upper bound for T1 in the general

case. By integrating twice the Maxwell equation in Eq. (2)

and using BC we have first

@u
@x
ðx; tÞ ¼ f ðtÞ þ

ðx

0

qðx0; tÞdx0; (21a)

and then the potential in the form

uðx; tÞ ¼ xf ðtÞ þ
ðx

0

ðx� x0Þqðx0Þdx0: (21b)

Let us consider the moving boundary X(t) between the space

charge and vacuum and thus q(x>X)¼ 0. Now we exhibit

Eq. (21b) at the anode x¼ 1 and Eq. (21a) at x¼X(t)

1 ¼ f ðtÞ þ
ðXðtÞ

0

ð1� x0Þqðx0Þdx0;

@u
@x
ðX; tÞ ¼ f ðtÞ þ

ðXðtÞ

0

qðx0; tÞdx0:

(21c)

Combining Eq. (21c) we derive

@u
@x
ðX; tÞ ¼ 1þ

ðXðtÞ

0

x0qðx0; tÞdx0: (22)

Equation (22) shows explicitly that the frontal electrons are

always accelerated by the field stronger than the vacuum field,

i.e., 1, and therefore the crossing time T1 is less than 2, which

is consistent with the intuition. One more important statement

relates to the continuity of the cathode field at t¼T1.

As uð1; tÞ is constant while the cathode field f(t) and current

j(0, t) are continuous functions, the derivative df/dt in Eqs.

(17) is continuous at T1 because X(t) approaches and stays

equal to 1. This justifies our technique of solving Eqs. (17) on

the second and the following step and keeping continuity of

f(t) with its first derivative at t¼ Tj. It is easy to see that the

second derivative of f at T1 is discontinuous in general.

IV. FLOW EVOLUTION FOR DIFFERENT CATHODE
EMISSIVITY

Using Eqs. (19) for 0< t< T1 and Eq. (20) we evaluate

c1
3;…; c1

6 and T1. Then we will study the flow on the interval

T1< t�T1þ T2, where T2 is the transition time for electrons

emitted at t¼T1, and so on step by step until the current sta-

bilization. On each subsequent interval the IC for f(Ti) and

its first derivative will be matched with the previous values

found by calculations. Our 5 equations are Eqs. (15a), (15b)

and Eqs. (17a), (17b), (17c); this implies that on all intervals

we can evaluate corresponding Ti and four coefficients

ci
2…ci

5 because two coefficients ci
0 and ci

1 are determined by

the IC at t ¼ Hi�1 mentioned above. The technique of using

Eqs. (19) cannot be applied on the later intervals because the

upper limit of the integral in (22) must be equal to 1 there. It

turns out that relatively small current variations at later time
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t>T1 are well described without using higher derivatives of

f(t).
Taking a¼ 3 this scheme can be realized, and the time de-

pendence of the cathode current density is exhibited in Fig. 1.

The stabilization process almost finishes after t>T1þT2

and j(t) asymptotically approaches to the stationary10 value.

For 0� a� 3.5 the asymptotic values of j for a¼ 1, 2, 3, 3.5

are found at corresponding t¼T1þ T2þT3 to be 0.367,

0.417, 0.432, 0.434, respectively. They differ from the cur-

rents in the steady states at most by 0.4% for a¼ 3.5.

However, unfortunately larger values of a cannot be consid-

ered by this approximation because the minimum current (see

Fig. 1) becomes negative. This contradicts the initial assump-

tion and physics: the flow becomes 0 when f � 0, i.e., (j 6¼ af).
The minimum of j(t) at t� 0.1, in Fig. 1, 0.02 is already close

to zero. Note that the time of the flow stabilization is in agree-

ment with the linear theory7 for small perturbations of the sta-

tionary state. Using Eq. (10) we exhibit also the anode current

evolution which clearly starts at t¼ T1. On the first step the

transition time T1¼ 1.98 is close to 2, which corresponds to

the case when an electron moves without space charge in the

same diode. Surprisingly T1 is quite close to 2 though the

space charge pushes forward the first bunch of electrons while

the anode attracts them. Starting from the second step all Tj

stay close (T2¼ 2.66, T3¼ 2.75) to the asymptotic stationary

value Tas¼ 2.732 (Ref. 10) as well as the current density jas

! 0.431. These quantities for a¼ 3 are not far away from the

Child-Langmuir ones: TCL¼ 3, jCL¼ 0.444 when the emissiv-

ity is infinite, a¼1.

Using Eq. (10) one can find the time dependence of the

anode current which is shown in the inset of Fig. 1 for the case

when a¼ 3. It appears only for t�T1. We plot the cathode cur-

rent together with the anode current shifted for the sake of

illustration to the left by T1 (the electrons emitted at t¼ 0 reach

the anode at t¼ T1). In order to have a sufficient number of

points for ja(t) we solve Eqs. (15) not only for s¼ 0 and s¼ Tj,

j¼ 1, 2,… but also in intermediate points with smaller inter-

vals like sk¼ 0.1k, k¼ 1, 2,… . This allows to find also corre-

sponding values for the cathode current j and T.

The asymptotic behavior of both graphs in Fig. 1 is iden-

tical. Interestingly the initial anode current is lower than the

cathode one as a dense space charge is formed temporarily in

front of the electrons which were emitted later. It decreases

their acceleration and thus makes slower their speed near the

anode.

In Fig. 2 is shown the time dependence of the transition

time T starting from T¼T1. The frontal electrons move a lit-

tle faster than in vacuum and they push back the layer of the

space charge following behind them; thus, it moves even

slower than in the stationary conditions.

Fig. 3 exhibits the flow properties when a¼ 1. The sta-

tionary values in this case are Ta¼ 2.449 and ja ! 0.367

while the oscillations are rather weak, i.e., when a< 1 the

diode comes to its stationary state with a short delay (about

one half of the transition time in free space) and almost

monotonically.

FIG. 1. Evolution of cathode and anode currents for a¼ 3. Inset shows an-

ode current ja. Dotted curve for ja shifted left by T1. On t-axis are shown

points for T1, H2, H3.

FIG. 2. Transition time T for a¼ 3 as function of s for 0< s< 5.6.

FIG. 3. Evolution of cathode field for a¼ 1 on interval 0< t<H3. Points on

t-axis correspond to T1¼ 1.998, T2¼ 2.449, T3¼ 2.458.
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A. Regime II with fixed injected current

This setup is much simpler than the case of the field

emission (even for the present emission model) because Eq.

(12) becomes linear for the unknown function f(t). In this

case Eqs. (9) and (19) are valid, and they are linear for ci
n

and therefore much simpler.

1. Va 5 1

Let us substitute j¼Const into Eq. (12) and perform the

integration

df

dt
ðtÞ � j

2

ðt

0

t0f ðt0Þdt0 ¼ �jþ xjtþ j2t3

12
: (23)

Equation (23) is exact for t� T1. It can be solved (see

Appendix) explicitly with the help of Bessel functions, but

the solution in the form of a series similar to Eq. (16)

f ðtÞ ¼
X
n¼0

bntn

provides excellent precision and a faster numerical proce-

dure. We substitute it into Eq. (23), apply the IC f(0)¼ 1,

and obtain the following relations which define the cathode

field on the first time interval

b0 ¼ 1; b1 ¼ �j; b2 ¼
xj

2
; b3 ¼

b0j

12
; b4 ¼ �

j2

48
;

bnþ3 ¼
jbn

2ðnþ 2Þðnþ 3Þ ; ðn � 2Þ:

The series converges rapidly for not very large j and x, and

12-15 terms guarantee a good precision but we used about

30 terms.

For t>T1 one needs to construct the following set of

equations for t¼T(t) analogous to Eqs. (17) for each conse-

quent step

ðt

t�T

j
ðt� t0Þ2

4
þ f ðt0Þ t� t0

2
þ x

� �
dt0 ¼ 1; (24a)

f ðtÞ þ j

ðt

t�T

j
ðt� t0Þ3

4
þ f ðt0Þ ðt� t0Þ2

2
þ xðt� t0Þ

� �
dt0 ¼ 1;

(24b)

df

dt
ðtÞ � jT

2

ðt

t�T

f ðt0Þdt0 þ j

ðt

t�T

f ðt0Þðt� t0Þdt0 ¼ 0; (24c)

d2f

dt2
ðtÞ þ j

½Tf ðt� TÞ �
ðt

t�T

f ðt0Þdt0�2

jT2 þ 2Tf ðt� TÞ þ 4x
¼ jT

f ðtÞ þ f ðt� TÞ
2

:

(24d)

Using the approximation (16), Eqs. (24) are converted into a

set similar to Eq. (19)

jT3

12
þ T2

2

XN

i¼0

ci

ðiþ 1Þðiþ 2Þ þ xT ¼ 1; (25a)

XN

i¼0

ci þ
jxT2

2
þ j2T4

16
þ jT3

XN

i¼0

ci

ðiþ 1Þðiþ 2Þðiþ 3Þ ¼ 1;

(25b)

XN

i¼1

ici 1� jT3

2ðiþ 1Þðiþ 2Þ

" #
¼ 0; (25c)

XN

i¼2

iði� 1Þci ¼
jT3

2
f0 þ

XN

i¼0

ci
i� 1

iþ 1

 !

� jT4

4xþ 2Tf0 þ jT2
f0 �

XN

i¼0

ci

iþ 1

 !2

;

(25d)

where f0 denotes the cathode field at the start of the corre-

sponding step.

The results of such computation for x¼ 0.5 with j¼ 1

and j¼ 1.5 are shown in Fig. 4. The current becomes stable

without oscillations in this case and after 5-8 transition times

(which vary approximately from 1.2 to 1.5) the cathode field

differences from the quantities, evaluated in Ref. 7 for the

stationary flows, are about 10�4%.

When j¼ 1 there is no virtual cathode and f> 0, but

with the same x the stronger current j¼ 1.5 creates a virtual

cathode and f becomes negative. The transition times on the

consequent steps are 1.211, 1.355, 1.367, 1.368, 1.368 for

j¼ 1 and 1.201, 1.437, 1.482, 1.491, 1.493 for j¼ 1.5, and

they practically become stabilized later. The initial anode

current densities at t¼ T1 are 0.814 and 1.127 for j¼ 1 and

1.5, respectively. Note that the frontal electron velocities at

the anode are 1.199 and 1.234, i.e., larger than they would be

in vacuum
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

¼ 1:118, while the anode current

FIG. 4. Cathode electric field evolution when j¼ 1 and j¼ 1.5 with x¼ 0.5.
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densities are lower than corresponding values of j. The fron-

tal electrons in vacuum would need T¼ 1/x for crossing the

diode, but on the first interval t< T1 they move faster being

pushed by the field of particles behind them.

2. Va 5 0

We consider now the closed system with equipotential

electrodes. The injected current creates the space charge, and

the lowest (negative) potential - virtual cathode - in the diode

occurs somewhere at 0< x< 1.

In Fig. 5 we show the cathode field behavior when the

injected current is fixed for the particle initial velocity x of

three different values 0.8, 1.0, and 1.4. It is clear that the

larger is x the smaller is the charge density, and when

x¼ 0.7 we did not reach the flow stabilization because the

anode cannot absorb the incoming flow and probably the

charge density inside the diode grows infinitely; there are

possibilities also for some chaotic behavior which is beyond

our present computational techniques. Clearly the same can

happen also with a positive anode when the current density

is large while x is small.

For x¼ 0.8 the field f tends to �1.15, it becomes closer

to zero when x increases. The cathode electric field always

goes to its asymptotic value without oscillations (see Fig. 5)

and gets stabilized relatively fast. The values of transition

times Tk; k ¼ 1::n vary from 0.8 to 1.3, there are about five

of them in Fig. 5. Electrons after entering the diode meet an

already formed space charge and transition times get longer

depending on its density.

In Fig. 6 is shown the behavior of the space charge

boundaries X(t) and the locations of the virtual cathode y(t)
for x¼ 0.8 and 1.4 on the corresponding first time intervals

0< t<T1 (�1.19 and 0.72, respectively).

As seen in Fig. 6, plotted for j¼ 1.5, x¼ 0.8, 1.4, loca-

tion X(t) of the frontal electrons moves almost by a linear in t
law X(t)�xt, the maximum deviation is only a few percents.

The construction of Fig. 6 is simple: the minimum

corresponds to zero electric field, and Eq. (5) allows to evalu-

ate s for each t� T1 as soon as f(t) is computed. Then y is

evaluated by Eq. (4a) which is also used for X(t) when s is

replaced by zero. A similar graph can be made for the case

Va¼ 1 above when the virtual cathode is realized there and

f(t)< 0, say for the case illustrated by the lower curve in

Fig. 4.

The evolution of the potential of the virtual cathode is

shown in right figure. For smaller initial velocity the space

charge is denser and thus the potential is more negative. On

the next time intervals the potential goes deeper and

approaches to its stationary value. In Fig. 6 we see that a

larger initial velocity x makes T1 shorter and curves stop at

corresponding values T1.

V. ON THE VALIDITY OF THE METHOD USED

We present now a simple sufficient condition which

roughly indicates the limitation for the method used here of

analyzing the flow when j is fixed externally. Let us consider

at time t two electrons emitted at s1 and s2> s1 and assume

that xðs1; tÞ � xðs2; tÞ, i.e., a later emitted electron can over-

come an earlier emitted one. Thus Eq. (4a) implies for them

xðs1; tÞ � xðs2; tÞ ¼
ðs2

s1

j
ðt� t0Þ2

4
þ f ðt0Þ t� t0

2

� �
dt0

þ xðs2 � s1Þ � 0;

or

j
ðt� s1Þ3 � ðt� s2Þ3

6
þ 2xðs2 � s1Þ � �

ðs2

s1

f ðt0Þðt� t0Þdt0:

(26)

In particular Eq. (26) means that there are exist two close s1,

s2 (such that d¼ s2 – s1 	 t), which satisfy this inequality.

Then Eq. (26), by keeping only linear in d terms, can be

reduced approximately to

j
t� s

2
þ 2

x
t� s

� �f ðsÞ; where s ¼ ðs2 þ s1Þ=2: (27)

Equation (27) can be satisfied even on the initial time inter-

val t< T1.

This situation is illustrated in Fig. 7 where the current

j¼ 1.5 is formed by the flow with the initial velocity only

x¼ 0.3.

In this case T1¼ 2.557 and when, for example, s¼ 1.1,

Eq. (27) holds for the emission time on the interval

1.022< s< 2.37. If s¼ 1.022 the curve only touches the line

�f(s) at t¼ 1.86. In the case s¼ 1.1 in Fig. 7 the electrons

pass some of them emitted earlier when 1.7< t<T1. Such

regime cannot be treated by our method. The violation of our

assumption on this subject takes place also for x signifi-

cantly larger than 0.3, especially for t>T1, we show here

only a simplest situation. Note that the left side of Eq. (27)

has its minimum 2
ffiffiffiffiffi
jx
p

when t� s ¼ 2
ffiffiffiffiffiffiffiffi
x=j

p
which means

that ifFIG. 5. Cathode electric field evolution when j¼ 1.5 and x¼ 0.8, 1, 1.4.
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�f ðtÞ < 2
ffiffiffiffiffi
jx

p
; 0 < t <1; (28)

the technique of this work is valid.

Otherwise the inequality (27) can hold for some t, s
where the point (x, t) in the Eulerian variables corresponds to

at least two different points (s1, t) and (s2, t) when the flow is

described by the Lagrangian coordinates. This undermines

our method for the case with j¼ const.

VI. DISCUSSION

In conclusion we note that the approximate treatment of

the large scale flow variation developed above is based on

computations within short time intervals T1, T2,… . In each of

them we have five equations which make possible the approx-

imate evaluation of four flow parameters and provide the IC

for the next interval. Computations on the first time interval

0< t< T1 can be performed in closed form using Eq. (12)

which makes them more precise especially in the case of an

injected current j¼ const. Our techniques are illustrated only

for the case when the system was turned on, but its generaliza-

tion for any given initial state is straightforward: exactly as it

was performed in the paper in transitions between the time

intervals Hn–1 and Hn. The field emission model is more diffi-

cult: errors of computations are larger on the first interval

where f(t) varies significantly and Eq. (12) is not very helpful;

the results for later times are more accurate.

All our work was performed in dimensionless units

which easily can be converted into the physical variables

using corresponding equations in Refs. 7 and 8. The limita-

tions of our techniques are outlined and some estimates are

performed. The method of flow evolution is realized in our

paper for an externally injected current and for a simple

model of the field emission law, but it clearly can be

extended to more realistic emission dependences, and we are

working presently in this direction.
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APPENDIX: EXACT SOLUTION FOR j 5 const

Evolution of the cathode electric field in the case of

externally injected current is described by Eq. (23) which

can be solved analytically for t� T1. By differentiating Eq.

(23) we have

d2f

dt2
ðtÞ � jt

2
f ðtÞ ¼ xjþ j2t2

4
� hðtÞ: (A1)

If xa¼Va¼ 1 the IC for f(t) found earlier

f ð0Þ ¼ 1; f 0ð0Þ ¼ �j: (A2)

Using standard procedures,12 we find13 two independent sol-

utions of the homogeneous equation

f1ðtÞ ¼
ffiffi
t
p

K1=3

ffiffiffiffi
2j

p
t3=2=3

	 

; f2ðtÞ ¼

ffiffi
t
p

I1=3

ffiffiffiffi
2j

p
t3=2=3

	 

;

FIG. 6. (a) Plots of X(t), y(t). (b)

Virtual cathode potential uðy; tÞ.

FIG. 7. Left L and right R sides of Eq. (27) for electrons emitted at s¼ 1.1.
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where K�ðzÞ; I�ðzÞ are the modified Bessel functions, whose

Wronskian is

WfK�ðzÞ; I�ðzÞg ¼ 1=z:

By a simple calculation we find

Wff1; f2g ¼ f1ðtÞf 02ðtÞ � f2ðtÞf 01ðtÞ ¼ 3=2: (A3)

Using Eq. (A3) the solution of Eq. (A1) can be written12 in

the form

f ðtÞ ¼ C1f1ðtÞ þ C2f2ðtÞ þ
2

3

ðt

0

½f2ðtÞf1ðsÞ � f1ðtÞf2ðsÞ�hðsÞds:

(A4)

We satisfy the IC (Eq. (A2)) for Va¼ 1 by taking

C1 ¼
ffiffiffi
3
p

Cð2=3Þ
p

j

18

� �1=6

;

C2 ¼ Cð2=3Þ j

18

� �1=6

� Cð4=3Þð18j5Þ1=6:

Calculation show that �f(t) can be large if x is small. These

Maple calculations by the polynomial approximation for Eq.

(23) are faster than using the exact Eq. (A4). Both functions

f1 and f2 are non-negative and t� s in Eq. (A4). It is easy to

show that the integral term in Eq. (A4) is positive:

f2ðtÞ=f1ðtÞ � f2ðsÞ=f1ðsÞ � 0 because the ratio f2(t)/f1(t) is an

increasing function as its derivative has the same sign as

W{f1, f2} (see Eq. (A3)). When Va¼ 0 we have

C1 ¼ 0; C2 ¼ �Cð4=3Þð18j5Þ1=6:

This is the case studied in Ref. 14 by numerical simulations

where however j(t) increased linearly before becoming

constant.
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