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Abstract. We consider a one-dimensional translation invariant point process
of density one with uniformly bounded variance of the number NI of particles
in any interval I . Despite this suppression of fluctuations we obtain a large
deviation principle with rate function F(ρ) ' −L−1 log Prob(ρ) for observing a
macroscopic density profile ρ(x), x ∈ [0, 1], corresponding to the coarse-grained
and rescaled density of the points of the original process in an interval of length
L in the limit L → ∞. F(ρ) is not convex and is discontinuous at ρ ≡ 1, the
typical profile.
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1. Introduction

One dimensional point processes of bounded variability (or controlled vari-

ability) are translation invariant probability measures describing systems of par-
ticles in R for which the variance of the particle number NI in an interval I is
uniformly bounded: for some constant C <∞ which is independent of I ,

Var(NI) ≤ C. (1.1)

In this paper we describe a particular class of such processes, which we call G

processes and which are a special case of the self-correcting processes introduced
by Isham and Westcott [1]. We compute some elementary properties of these
systems and then show that they satisfy a large deviation principle.

Point processes satisfying (1.1) have been studied in the statistics literature;
see [1–4]. They were also investigated in [5]; the analysis in that paper and
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in the references given there was motivated by, and presented in terms of, the
statistical mechanics of infinite particle systems. The main result of [5] is that
the measure µ on the space of locally finite subsets of R for a process satisfying
(1.1) with density ρ̄ is a superposition of mutually singular translates of some
periodic measure µ0 with period ρ̄−1:

µ = ρ̄

ρ̄−1

∫

0

dxµx. (1.2)

Here µx is the translate of µ0 by x; the measures µx are called the periodic

components of µ. (The actual condition required in [5] is tightness of the family
of all random variables NI − ρ̄|I |, which is weaker than (1.1).)

The constant C of (1.1) must satisfy C ≥ 1/4; in fact, if E(NI) = k+ θ with
k an integer and 0 ≤ θ < 1 then,

Var(NI) = 〈(NI − k)2〉 − θ2 (1.3)

= θ(1 − θ) + E
(

(NI − k)(NI − k − 1)
)

≥ θ(1 − θ),

where the last inequality follows from the fact thatNI is an integer (see [6]). The
lower bound (1.3) is obtained by taking µ0 to be the point mass on a lattice with
period ρ̄−1. In general, however, µ0 need not be so rigid; it can have arbitrarily
large fluctuations in particle number as long as these have small probability.

One such example, the (a, b) process discussed by Lewis and Govier [2], is
obtained by displacing the point ai in the lattice aZ of period ρ̄−1 = a by a
random amount bi, where the variables bi are independent and have a common
continuous distribution with finite first moment; see also [4]. This periodic
process has bounded variances in the sense of (1.1); denoting by µ0 the measure
describing it one may thus construct a (translation invariant) process of bounded
variability as a superposition of translates µx of µ0 by x ∈ [0, 1), as in (1.2).
These translates can be shown to be mutually singular, so that the construction
provides an explicit decomposition of the process into its periodic components.
There are alternate constructions for which the periodicity is not built in a priori.
An example of such a point process given in [5] is that corresponding to the
equilibrium state for positive point charges in a uniform negative background,
usually referred to as the one-dimensional one-component plasma or Jellium.
This system has very long range interactions between the particles, with the
pair potential growing like |xi − xj |. The self-correcting processes of [1] are
other examples; the particular class of these which is the main focus of this
paper will be described in Section 2, and a brief description of the general class
is given in Remark 3.1.

One may of course also consider point processes satisfying conditions similar
to but less restrictive than (1.1), or satisfying analogues of these conditions in
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higher dimensions. We define superhomogeneous processes [7] to be translation
invariant point processes in d-dimensions (on either Rd or Zd) for which the
variance of the number NB of particles in a ball B grows more slowly than the
volume |B| of B, i.e., for which

lim
|B|→∞

|B|−1Var(NB) = 0. (1.4)

It was shown by Beck [8] that Var(NB) cannot grow more slowly (in the Cesaro
mean sense) than the surface area |∂B| of B; it is thus only in one dimension
that one can have translation invariant point processes with bounded variance
in a ball, as in (1.1). Hyperuniform systems [9] are then defined as ones which
realize this bound:

Var(NB) ≤ C|∂B|. (1.5)

Thus, hyperuniform systems in one dimension are the controlled variability pro-
cesses defined earlier.

Examples of hyperuniform systems in dimensions d > 1 are the analogues of
the (a, b) process, analyzed in [4], and the one-component plasma with log |xi −
xj | interactions in d = 2 and |xi − xj |−(d−2) interactions in d > 2 [10, 11]. A
well known example of a superhomogeneous but not hyperuniform process in
d = 1 is the Dyson gas with logarithmic interactions, whose measure µ is (after
some normalization) the same as the distribution of the eigenvalues of a random
Gaussian Hermitian matrix [12]. For this system Var(NI) ∼ log |I |. For other
examples see [5, 13].

Given their definition, it is reasonable to expect that superhomogeneous
systems will have a tendency to suppress also large deviations in NB . This is in
fact true for most of the examples discussed above but, as we shall see, there are
exceptions, at least in one dimension. We will discuss this question primarily in
the context of large deviations of NI in one-dimensional systems.

To obtain more information about the probability of large fluctuations in NI

for |I | large we may ask, for example, for what increasing functions φ(u), u > 0,
it is true that

Prob(|NI − E(NI)| ≥ φ(|I |)) → 0 as |I | → ∞. (1.6)

For processes for which the NI satisfy a standard central limit theorem — for
example, the Poisson process — (1.6) holds only if φ(u) grows faster than u1/2.
For a process of bounded variability, on the other hand, it follows immediately
from (1.1) that (1.6) holds whenever φ(u) → ∞ as u→ ∞.

When (1.6) does hold, we may ask for the rate of decay of the probability
in (1.6) as |I | increases. Of particular interest is the case φ(u) = κu, for which
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we will study the probability of deviations of specific sign; with L = |I | we write

pL(κ) ≡











Prob
(

NI − E(NI) ≥ κL
)

, if κ > 0,

1, if κ = 0,

Prob
(

NI − E(NI) ≤ κL
)

, if − ρ̄ ≤ κ < 0.

(1.7)

The random variables NI satisfy a large deviation principle with rate function
ψ(κ) if pL(κ) decays as pL(κ) ' exp[−Lψ(κ)]. Many processes — again, the
Poisson case is typical — do satisfy such a principle, with ψ(κ) ∼ cκ2 for κ
small. What then of processes of bounded variability?

(i) For the (a, b) processes, − log pL(κ) grows faster than L, so that ψ(κ) does
not exist. For example, in order to have NI = 0 (corresponding to κ = −ρ̄),
each of the L/3 points in the central third of I must be displaced at least L/3
units, so that

Prob(NI = 0) ≤ [Prob(bi ≥ L/3)]L/3. (1.8)

More generally, a fluctuation of size κL in NI can occur only if at least order
L particles are displaced a distance at least of order L; an estimate as in (1.8),
supplemented with some simple counting of the ways these displacements can
occur, then verifies the result.

(ii) For the one-component plasma it is believed that pL(κ) ' exp[−c(κ)L3],
so that again ψ(κ) does not exist (although of course c(κ) is a rate function
on a different scale). In d dimensions the corresponding quantity pR(κ) de-
scribing large fluctuations in NB , with B a ball of radius R, satisfies pR(κ) '
exp[−c(κ)Rd+2] (see [14] for the heuristic derivation of the result in 2 and 3
dimensions). We expect similar behavior for most superhomogeneous processes,
for example with pL(κ) ' exp[−c(κ)L2] for the Dyson gas in d = 1 (see [12] for
a discussion of the case κ = −ρ̄, i.e., NI = 0).

(iii) For the G process, on the other hand, we will establish in Section 4 that
there does exist a rate function ψ(κ), with ψ(κ) ∼ c|κ| when κ → 0. This is a
consequence of the more general large deviation theorem given in Section 3. We
believe that certain other self-correcting process also satisfy a large deviation
principle, as we discuss in Remark 3.1.

2. Construction and simple properties of the G process

In this section we construct the G processes with density 1; these are pa-
rameterized by a real number α > 1 (the construction for arbitrary density
ρ̄ is similar, and the parameter satisfies α > ρ̄). As a first step we define a
real-valued Markov process Yλ(t), for t ≥ 0, satisfying Yλ(t) > −1; here λ is a
probability measure on (−1,∞). Yλ(t) is defined by two conditions: Yλ(0) is
distributed according to λ, and Yλ(t) increases at rate 1 as t increases, except at
the points of a Poisson process of density α on R+, at which it jumps down by



Large deviations for a point process 239

one unit — unless this jump would violate the condition Yλ > −1, in which case
no jump occurs. It is easy to verify explicitly (see below) that this process has
a unique stationary single-time distribution λ = λ0. The corresponding trans-
lation invariant process (obtained for example by imposing the initial condition
λ0 at time τ and then taking the Cesaro limit as τ → −∞) we denote by Y (t).
Having defined Y , we take the points of the G process to be those points at
which Y jumps; in other words, the G process is the distribution of the jump
points of the Y process. We remark that the points of the G process may be
viewed as the output of a so-called D/M/1 queue [15].

Let NI denote the number of points of the G process in the interval I , and
write Prob for the probability measure of the Y process (e.g., on path space)
and E for expectation with respect to this measure. Then clearly

N(s,t] = t− s− (Y (t) − Y (s)), (2.1)

and
Var(N(s,t]) = E[((Y (t) − Y (s))2]. (2.2)

Since from (2.3) below Y (t) has finite mean and variance, (2.1) and (2.2) imply
that the process has density 1 and is of bounded variability.

In the remainder of this section we compute some simple properties of this
process, including the asymptotic value of Var(N(s,t]) for t − s large. We first
note that if λ is a probability distribution with density fλ(y) then the density
fλ(y, t) for Yλ(t) satisfies fλ(y, 0) = fλ(y) and

∂fλ

∂t
(y, t) +

∂fλ

∂y
(y, t) =

{

αfλ(y + 1, t) − αfλ(y, t), if y > 0,

αfλ(y + 1, t), if y ≤ 0.

The stationary probability density for Y is then seen to be

f(y) =

{

1 − β1+y, if − 1 < y < 0,

(1 − β)βy , if y ≥ 0,
(2.3)

where β is the unique root of the equation

β = e−α(1−β) (2.4)

lying in the interval 0 < β < 1. From (2.3),

E(Y (t)) =
1

| logβ|
−

1

2
, (2.5)

E(Y 2(t)) =
1

3
−

1

| logβ|
+

2

log2 β
. (2.6)

To obtain the decomposition (ref1.2) of the process into its periodic compo-
nents we introduce the random variable U = Y (n) − bY (n)c, n ∈ Z, where for
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x ∈ R, bxc denotes the integer part of x. The value of U is independent of the
choice of the integer n and the periodic components of the process are obtained
by conditioning on the value u of U , 0 ≤ u < 1. Under this conditioning we
have that the possible values of Y (t) are of the form k + v, with k ≥ −1 an
integer and v = u+ t− bu+ tc, and from (2.3) that

Prob(Y (t) = k + v | U = u) =

{

1− βv , if k = −1,

(1 − β)βk+v , if k ≥ 0.
(2.7)

Thus

E(Y (t) | U = u) = v − 1 +
βv

1 − β
. (2.8)

Now we evaluate the variance of N(s,t] for t− s large, from (2.2). Note that
if we condition on U = u then the process Y (n), n ∈ Z, is a transitive Markov
chain on the values k+u, where k = 0, 1, . . . if u = 0 and otherwise k = −1, 0, . . .
Thus Y (n) and Y (m) will be independent in the n → ∞ limit, and so will be
Y (s) and Y (t) as t→ ∞. Taking for simplicity s = 0 and setting t = n+ θ with
n ∈ Z and 0 ≤ θ < 1, this leads to

lim
n→∞,n∈Z

E(Y (0)Y (n+ θ) | U = u) = E(Y (0) | U = u) E(Y (θ) | U = u),

with the approach to the product being exponentially fast. It thus follows
from (2.8) that

lim
n→∞,n∈Z

E(Y (0)Y (n+ θ))

=

1
∫

0

E(Y (0) | U = u) E(Y (θ) | U = u) du

=
1

3
−
θ(1 − θ)

2
−

1

| logβ|
+

2

log2 β
−

βθ + β1−θ

(1 − β)| log β|
. (2.9)

Finally, from (2.2), (2.6), and (2.9),

W (θ) ≡ lim
n→∞,n∈Z

Var(N(0,n+θ]) = θ(1 − θ) + 2
βθ + β1−θ

(1 − β)| log β|
. (2.10)

Thus, for large t, Var(N(0,t]) is not constant but is periodic in t with period 1.
The first term in (2.10) is just the variance of the rigid lattice. The second

term goes to zero as α↗ ∞, when the process tends to that of the lattice, and
goes to infinity as α ↘ 1, when the process becomes Poisson; see Figure 1. The
average W of W (θ) over the interval 0 ≤ θ ≤ 1 is, from (refbeta),

W =
1

6
+

4

log2 β
'











1

(α − 1)2
, as α ↘ 1,

1

6
+

4

α2
, as α ↗ ∞.
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In terms of Y (t), the limit α ↘ 1 corresponds to an unbinding transition: for
any t, Y (t) ↗ ∞ with probability 1 as α↘ 1.

 = 1.01

 = 1.1

 = 2

 = 11

 = 101

 = 1.0 (Poisson)

α

α

α

α

α

α

Figure 1. Sample configurations of the G process at density ρ̄ = 1 in an in-
terval of size L = 140, for α = 1.0 (the Poisson process) and α = 1 + 10k,
k = −2,−1, 0, 1, 2.

3. Large deviations

In the introduction we discussed briefly the problem of large deviations for
the number of points of a point process in an interval. We will return to this
question in Section 4, but we must first consider the sharper problem of large
deviations in the density profile exhibited by the process. Suppose then that
we are given a nonnegative integrable function ρ(x) on the unit interval [0, 1].
We are interested in the event that the macroscopic empirical density profile —
the coarse-grained and rescaled density for the point process in the region [0, L]
(where L is considered to be very large) — agrees, approximately, with the
function ρ(x), i.e. that, roughly,

N(0,xL] ∼ L

x
∫

0

ρ(ξ) dξ for all x in [0, 1]. (3.1)

We say that the process satisfies a large deviation principle if the probability of
the event (refseerho) decays with L as exp[−LG(ρ)] for some rate function G.
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We will refer to the given function ρ(x) as a density profile. Since the G
process has density 1, the typical macroscopic empirical density profile will be
approximately given by the constant density profile ρ(x) = 1; we are asking
about the probability of seeing significant deviation from this behavior.

One way to formalize this notion is to demand that

lim
ε→0

lim
L→∞

1

L
log Prob

[

sup
0≤x≤1

∣

∣

∣

∣

L−1N(0,xL] −

x
∫

0

ρ(ξ) dξ

∣

∣

∣

∣

< ε

]

= −G(ρ). (3.2)

In Theorem 3.3 below we give a slightly weaker version of (3.2) for the G process,
in which the L → ∞ limit is replaced by either a lim sup or a lim inf. For the
G process we may, by (2.1), restate (3.2) as

lim
ε→0

lim
L→∞

1

L
log Prob

[

sup
0≤x≤1

∣

∣

∣

∣

1

L
Y (xL)

−

(

1

L
Y (0) +

x
∫

0

(1 − ρ(ξ)) dξ

)∣

∣

∣

∣

< ε

]

= −G(ρ). (3.3)

We will approach (3.3) by first obtaining a large deviation principle for the
probability that the rescaled Y process L−1Y (xL) be uniformly close to some
specified function y(x). It is this problem which we discuss next.

We first describe precisely the probability space on which our processes are
most conveniently regarded as defined. Since (3.2) involves N(0,t] only for t ≥ 0
we may realize the relevant part of the G process as the jumps of the process
Yλ0

introduced in Section 2; here and below we write Yλ0
(t) ≡ Y (t). These

jump points are a subset of the points of a Poisson process N̂ with rate α > 1;
this process is (for any α > 0) defined on the space Ω̂ of locally finite point
configurations in (0,∞) and is given by a probability measure ν̂ on Ω̂, with
the distribution of N̂I(ω), the number of points of the configuration ω ∈ Ω̂ in
the interval I , satisfying ν̂(N̂I = k) = (α|I |)k exp(−α|I |)/k!. Y is then defined
on the probability space Ω ≡ (−1,∞) × Ω̂ with measure ν = λ0 × ν̂ by the
conditions

(i) Y (v, ω)(t) is right continuous, with left-hand limits, in t;

(ii) Y (v, ω)(0) = v;

(iii) (dY (v, ω)/dt)(t) = 1 unless t ∈ ω;

(iv) if t ∈ ω, then Y (v, ω)(t) = Y (v, ω)(t−) − 1 unless Y (v, ω)(t−) ≤ 0, in
which case Y (v, ω)(t) = Y (v, ω)(t−).

In this context we formulate the problem posed at the end of the previous
paragraph as follows. Let D denote the space of real-valued cadlag functions —
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functions which are right continuous with left-hand limits at each point — on
[0, 1], furnished with the Skorohod topology [16]. Then with ΦL : Ω → D
defined by ΦL(v, ω)(x) = L−1Y (v, ω)(Lx), we want to determine the L → ∞
asymptotics of the probability ν(Φ−1

L (S)) for open and closed subsets S ⊂ D.
In particular the specific question raised below (3.3), which involves uniform

neighborhoods of the continuous function y(x), can be answered in terms of
Skorohod neighborhoods, since every Skorohod neighborhood of y contains a
uniform neighborhood, and vice versa.

We will adopt the standard terminology of the theory of large deviations [17].
Let X be a topological space. A function F : X → [0,∞] is a good rate function

on X if it is lower semicontinuous (l.s.c.) and the level sets F−1([0, a]), a ∈ R+,
are compact. A family {µL}L≥0 of Borel measures on X satisfies the large

deviation principle (LDP) with rate function F if

lim inf
L→∞

1

L
logµL(S) ≥ − inf

y∈S
F̂(y), if S ⊂ X is open, (3.4)

lim sup
L→∞

1

L
logµL(S) ≤ − inf

y∈S
F̂(y), if S ⊂ X is closed. (3.5)

The large deviation theory for the Poisson process N̂ itself, for any α > 0,
may be conveniently stated in this framework. For L > 0 define Φ̂L : Ω̂ → D
by Φ̂L(ω)(x) = x − L−1N̂(0,Lx]; note that we consider sample paths which, in
parallel with those of the Y process, drift upward at unit velocity and take
downward jumps at points of the Poisson process. We write AC for the set of
absolutely continuous paths in D, and define the rate function F̂ : D → [0,∞]
by

F̂(y) =















1
∫

0

g(1 − y′(x)) dx, if y ∈ AC, y(0) = 0, and y′(x) ≤ 1 a.e.,

∞, otherwise,

(3.6)

where
g(r)(= gα(r)) = r log

r

α
− r + α. (3.7)

Theorem 3.1. For any α > 0, F̂ is a good rate function onD and the measures

ν̂ ◦ Φ̂−1
L on D satisfy the LDP with rate function F̂ .

Proof. This result is an easy consequence of Exercise 5.2.12 of [17]; in particular,
the measures ν̂ ◦ Φ̂−1

L , regarded there as measures on L∞([0, 1]), are supported
on D and are Borel measures there. 2

Now we formulate the corresponding result for the G process. The rate
function F(y), for which (essentially) −LF(y) is the log of the probability that
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the rescaled Y process ΦL(x) = L−1Y (Lx) follows the path y(x) in D, is

F(y) =











y(0) | logβ| +

∫

{x∈[0,1]|y(x)>0}

g(1 − y′(x)) dx, if y ∈ AC, y ≥ 0,

and y′(x) ≤ 1 a.e.,

∞, otherwise.

(3.8)
This formula may be understood intuitively as follows. First, F(y) is finite
only if y ≥ 0 because Y > −1 and hence ΦL(x) > −1/L. Second, during
any time interval in which Y (t) is strictly positive the Poisson and G processes
are the same, and the contribution of such an interval to the rate function for
the G process should correspond to (3.6); on the other hand, wherever Y (t) is
nonpositive the Poisson process is free to produce points at its natural rate α, so
the contribution to the rate function from such a region should vanish. Finally,
the term y(0)| logβ| arises from (2.3) as the cost of “preparing” the system at
time 0 with L−1Y (0) ∼ y(0).

More formally, we will establish a result parallel to Theorem 3.1; the proof
is given in Section 5.

Theorem 3.2. For any α > 1, F is a good rate function onD, and the measures

ν ◦Φ−1
L on D satisfy the LDP with rate function F .

The rate function G(ρ) for a density profile ρ ∈ L1([0, 1]), ρ ≥ 0, is now
obtained via

G(ρ) ≡ inf
y∈Jρ

F(y), (3.9)

where Jρ ≡ {y ∈ AC | y′ = 1 − ρ}; from (3.8) it follows that the infimum in
(3.9) is achieved for y = yρ, with

yρ(x) ≡

x
∫

0

(

1 − ρ(ξ)
)

dξ − inf
x′∈[0,1]

x′
∫

0

(

1 − ρ(ξ)
)

dξ.

We justify (3.9) by proving a version of equation (3.2):

Theorem 3.3. Suppose that ρ ∈ L1([0, 1]) with ρ ≥ 0 and that for ε > 0,

EL,ε(ρ) ⊂ Ω is the event that

sup
0≤x≤1

∣

∣

∣

∣

L−1N(0,xL] −

x
∫

0

ρ(t) dt

∣

∣

∣

∣

≤ ε.

Then

lim
ε→0

lim inf
L→∞

1

L
log ν(EL,ε(ρ)) = lim

ε→0
lim sup
L→∞

1

L
log ν(EL,ε(ρ)) = −G(ρ).
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The proof is given in Section 5. In fact, (3.2) can also be proven, but the
proof is considerably more complicated than that of Theorem 3.3 and provides
no better justification of the interpretation of G.

Remark 3.1. As indicated in the introduction, the G process studied here is a
special case of the self-correcting processes of Isham and Westcott [1]. In the
more general model the points of the process are again the jump points of an
auxiliary process Y (t). For the density 1 case Y again increases at rate 1 except
at its jump points, and these occur randomly at rate γ(Y (t)) for some specified
nonnegative function γ. The G process is obtained by taking γ(v) = α for v > 0
and γ(v) = 0 for v ≤ 0. More generally, [1] requires that lim supv→−∞ γ(v) < 1
and lim infv→∞ γ(v) > 1 and that γ(v) be strictly bounded away from 0 for
v > 0. We expect that these processes will satisfy a large deviation principle in
D whenever α± ≡ limv→±∞ γ(v) exist, with rate function similar to that of the
G process (see (3.8): finite only for y ∈ AC with y′ ≤ 1 and, for such y,

F(y) = |y(0) logβsgn y(0)| +

∫

{ y(x)>0}

gα+
(1 − y′(x)) dx

+

∫

{ y(x)<0}

gα−(1 − y′(x)) dx, (3.10)

where gα is defined in (3.7) and β± is the non-unit root of β± = exp[−α±(1 −
β±)].

4. Applications of the large deviation principle

In this section we consider the question, originally posed in the introduction,
of a large deviation principle for the number NI of points of the G process in
an interval I . We want to evaluate limL→∞ L−1 log pL(κ), where (see (1.7))

pL(κ) ≡











ν
(

N(0,L] ≥ (1 + κ)L
)

, if κ > 0,

1, if κ = 0

ν
(

N(0,L] ≤ (1 + κ)L
)

, if − 1 ≤ κ < 0,

(4.1)

Consider first κ ≥ 0. By (2.1), N(0,L] ≥ (1 + κ)L if and only if Y (L) ≤
Y (0) − κL; setting S0 = D and Sκ = {y ∈ D | y(1) ≤ y(0) − κ} for κ > 0 we
see that pL(κ) = ν(Φ−1

L (Sκ)). Let ψ(κ) ≡ infy∈Sκ
F(y); we will compute ψ(κ)

below and show that it is continuous for κ ≥ 0. Since for any ε > 0, Sκ+ε is
contained in the interior of Sκ, Theorem 3.2 implies that

−ψ(κ) ≥ lim sup
L→∞

log pL(κ) ≥ lim inf
L→∞

1

L
log pL(κ) ≥ −ψ(κ+ ε).
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Since ε is arbitrary,

lim
L→∞

1

L
log pL(κ) = −ψ(κ). (4.2)

A similar argument shows that (4.2) holds also for −1 ≤ κ < 0, with ψ(κ) ≡
infy∈Sκ

F(y), where Sκ = {y ∈ D | y(1) ≥ y(0) − κ}.
We next compute ψ(κ) = infSκ

F(y). Certainly ψ(0) = infD F = 0; the
infimum is obtained by the function y ≡ 0. In general, since if y ∈ D is
nonnegative, F(y) ≥ F(y − inf y), and since if y ∈ Sκ then also y − inf y ∈ Sκ,
in computing infSκ

F we need only consider nonnegative functions y in Sκ which
vanish at some point.

We now take κ > 0 and determine the function y ∈ Sκ which realizes infSκ
F .

Let a = inf{x ∈ [0, 1] | y(x) = 0}. From (3.8), y must vanish on [a, 1], and by
the convexity of g and Jensen’s inequality, y must be affine on [0, a]; thus, setting
y(0) = b,

ψ(κ) = inf
0≤a≤1,

κ≤b

[

b | logβ| + ag
(a+ b

a

)]

. (4.3)

Since g ≥ 0, ψ(κ) ≥ κ| logβ|, and since g(α) = 0, this minimum is achieved
when κ ≤ α − 1 by taking b = κ and (a + b)/a = α, i.e., a = κ/(α− 1). When
κ > α− 1 the minimum for fixed a is achieved at b = κ, since g is increasing on
[α,∞), and the global minimum ψ(κ) = κ| logβ| + g(1 + κ) is then at a = 1.
The minimizing function y is shown in Figure 2.

Figure 2. Function y(x) minimizing F(y) subject to y(1) ≤ y(0)− κ, for κ ≥ 0.

The analysis for −1 ≤ κ < 0 begins in a similar way. The minimizing y in
Sκ must vanish on some interval [0, a] and be affine, with y′ ≤ 1, on [a, 1], and
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b = y(1) must satisfy b ≥ |κ|, so that

ψ(κ) = inf
0≤a≤1−|κ|
|κ|≤b≤1−a

[

(1 − a)g
(1 − a− b

1 − a

)]

. (4.4)

Since g is decreasing on [0, α] the minimum for fixed a ≤ 1 − |κ| is at b = |κ|.
For |κ| ≤ 1 − αβ the global minimum ψ(κ) = |κ|| logβ| is achieved at a =
(1 − αβ − |κ|)/(1 − αβ); for |κ| > 1 − αβ the global minimum ψ(κ) = g(1 + κ)
is achieved at a = 0; see Figure 3. Thus

ψ(κ) =











g(1 + κ), if − 1 ≤ κ ≤ αβ − 1,

|κ|| logβ|, if αβ − 1 ≤ κ ≤ α− 1,

κ| logβ| + g(1 + κ), if α− 1 < κ.

(4.5)

Figure 3. Function y(x) minimizing F(y) subject to y(1) ≥ y(0)− κ, for κ ≤ 0.

Remark 4.1. Formula (4.5) for κ < 0 can perhaps be better understood by
considering the time reversal of the Y process with respect to the stationary
measure with density given in (2.3). This process involves unit jumps upward
at the rate αβ, yielding

ψ(κ) =

{

|κ|| logβ| + gαβ(1 + κ), if − 1 ≤ κ < αβ − 1.

|κ|| logβ|, if αβ − 1 ≤ κ ≤ 0,
(4.6)

which agrees with (4.5); gαβ was defined in (3.7). (In more detail: the reversed
process drifts downward with unit velocity and takes unit jumps upward, at rate
αβ when y > 0 and at rate α(1 − β)βy+1/(1 − βy+1) when −1 < y ≤ 0.)
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We may compare (4.5) with the corresponding result for the Poisson process
of density 1. Defining p∗κ(L) as in (4.1) but with N(0,L] replaced by N∗

(0,L], the

number of points of this process in (0, L], we have

lim
L→∞

1

L
log p∗κ(L) = ψ∗(κ) ≡ g1(1 + κ),

where g1 is defined in (3.7). This follows from a simple computation with
Stirling’s formula; it may also be obtained from Theorem 3.1, and we then find
that the minimizing y∗ ∈ D is y∗(x) = −κx, corresponding to constant density
1 + κ for the points of the Poisson process. Figure 4 compares ψ and ψ∗.

Figure 4. Rate functions for the event N(0,L] ∼ (1+κ)L: ψ(κ) for the G process
(solid line) and ψ∗(κ) for the Poisson process (dashed line).

One may also ask a related question, for either the Poisson or the G process:
what is the rate function for the probability of a constant density profile ρ(x) =
1+κ (which of course gives rise to (1+κ)L points in the interval (0, L]; compare
(4.1)? For the Poisson process of rate 1 this is just g1(1+κ), since, as remarked
above, the constant profile is the typical one when we condition on the total
number of particles in the interval. For the G process, however, the rate function
is ψ0(κ) ≡ G(ρ) as obtained from (3.9), which yields

ψ0(κ) =











g(1 + κ), if − 1 ≤ κ < 0;

0, if κ = 0,

κ| logβ| + g(1 + κ)(= gαβ(1 + κ)), if 0 < κ.

(4.7)

Since g(1) = α− 1− logα > 0, ψ0(κ) is nonconvex and discontinuous at κ = 0.
See Figure 5.
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Figure 5. Rate function ψ0(κ) for the event ρ(x) ∼ (1 + κ), 0 ≤ x ≤ 1, in the G
process.

5. Proofs of the main results

We will prove Theorem 3.2 via the contraction principle [17]: if X and Y are
Hausdorff spaces, {µL} is a family of Borel measures on X satisfying the LDP
with good rate function F , and f : X → Y is continuous at each point x ∈ X
for which F(x) < ∞, then the family {µL ◦ f−1} satisfies the LDP on Y with
good rate function F̄(y) = infx∈f−1(y) F(x).

To proceed we first derive an LDP for a family of measures on D obtained
from those of the Poisson process. Define Φ0L : R → R by Φ0L(v) = v/L; it is
easy to see that if F0 : R → [0,∞] is defined by

F0(a) =

{

a | logβ|, if a ≥ 0,

∞, if a < 0,

then the measures λ0 ◦ Φ−1
0L on R satisfy the LDP with rate function F0. Now

define Φ̃L : Ω → D by Φ̃L(v, ω)(x) = Φ0L(v) + Φ̂L(ω)(x) and F̃ : D → [0,∞]
by F̃(y) = F0(y(0)) + F̂(y − y(0)). Finally, let P ⊂ D be defined by P =
⋃

L≥1 Φ̃L(Ω) and let P̄ be the closure of P in D.

Remark 5.1. We note that (i) ν(Φ̃−1
L (P )) = ν(Φ̃−1

L (P̄ )) = 1 for all L ≥ 1.
Clearly, any function z ∈ P̄ satisfies

z(x2) − z(x1) ≤ x2 − x1 whenever 0 ≤ x1 ≤ x2 ≤ 1; (5.1)



250 S. Goldstein, J.L. Lebowitz and E.R. Speer

conversely, (ii) any continuous function z on [0, 1] which satisfies (5.1) may be
uniformly approximated, to accuracy 1/L, by functions in Φ̃L(Ω), and hence
belongs to P̄ , since one may apply to z̃, where z̃(t) = z(t) − t, the simple fact
that any continuous nonincreasing function can be uniformly approximated, to
accuracy 1/L, by a piecewise constant function whose jumps are down and of
size 1/L.

Lemma 5.1. The measures ν◦Φ̃−1
L on D, and on P̄ , satisfy the LDP with good

rate function F̃ .

Proof. The product measures (λ0 ◦Φ−1
0L )× (ν̂ ◦ Φ̂−1

L ) satisfy the large deviation

principle on R ×D with good rate function F∗(a, y) = F0(a) + F̂(y) (see [17];
the proof uses the fact that R and D are Polish spaces). The large deviation
principle for ν ◦ Φ̃−1

L on D is obtained from an application of the contraction
principle to the map f : R×D → D defined by f(a, y) = a+ y.

The LDP on P̄ follows at once from Remark 5.1(i) and the observation that
P̄ contains { ỹ ∈ D | F̃(ỹ) < ∞}, an immediate consequence Remark 5.1(ii).

2

Now for each L ≥ 1 we have defined two maps, ΦL and Φ̃L, of Ω into D,
obtained from the G process and the Poisson process, respectively. The next
lemma relates them by a map to which we can apply the contraction principle.

Lemma 5.2. There exists a map f : P̄ → D such that

(a) for every L ≥ 1, ΦL = f ◦ Φ̃L;

(b) if ỹ ∈ P̄ and F̃(ỹ) <∞ then f is continuous at ỹ;

(c) if y ∈ D then F(y) = inf ỹ∈f−1(y) F̃(ỹ).

Proof of Theorem 3.2. The theorem follows immediately from Lemma 5.1 and
Lemma 5.2, and the contraction principle. 2

Before proving Lemma 5.2 we establish two technical lemmas, for which we
need the following definitions. First, if y ∈ D is lower semicontinuous (which
means that y(x−) ≥ y(x) for all x ∈ (0, 1]) then we define Ky ⊂ D to be the
set of all ỹ such that ỹ(0) = y(0) and such that

φ(x) ≡ y(x) − ỹ(x) (5.2)

is nondecreasing on [0, 1] and is locally constant on the (open) set {x ∈ [0, 1] |
y(x) > 0 }. Second, we let H be the space of strictly increasing, continuous,
and onto functions h : [0, 1] → [0, 1], for h ∈ H set

‖h‖ = sup
x1 6=x2

∣

∣

∣
log

(h(x1) − h(x2)

x1 − x2

)∣

∣

∣
,
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and for y, z ∈ D define

d(y, z) = inf
h∈H

max{‖h‖, ‖y− z ◦ h‖∞}.

Then d is a metric for D and in this metric D is complete [16].

Lemma 5.3. Suppose that y1, y2 ∈ D are l.s.c., that ỹi ∈ Kyi
for i = 1, 2, and

that for some ε > 0, (i) y1, y2 > −ε and (ii) d(ỹ1, ỹ2) < ε. Then d(y1, y2) < 3ε.

Proof. By (ii) there is a h ∈ H with ‖h‖ < ε and ‖ỹ1−ỹ2◦h‖∞ < ε. We will show
below that that y1(x)−y2(h(x)) < 3ε for all x ∈ [0, 1]; interchanging the roles of
y1 and y2 and replacing h by h−1 we then have that also y2(x)−y1(h−1(x)) < 3ε
for all x, so that y2(h(x))− y1(x) < 3ε for all x and hence ‖y1 − y2 ◦ h‖∞ < 3ε.

Now we fix x ∈ [0, 1] and show that y1(x)−y2(h(x)) < 3ε. If y1 > 0 on [0, x]
then set x∗ = 0. Otherwise, define x∗ = sup{ t ∈ [0, x] | y1(t) ≤ 0}; since y1 is
l.s.c. and cadlag, y1(x

∗) = 0 in this case. Then from (5.2) and hypotheses (i)
and (ii) we have, with φi = yi − ỹi, i = 1, 2, as in (5.2),

y1(x) − y2(h(x)) =
(

y1(x
∗) − y2(h(x

∗))
)

+
(

ỹ1(x) − ỹ2(h(x))
)

−
(

ỹ1(x
∗) − ỹ2(h(x

∗))
)

+
(

φ1(x) − φ1(x
∗)

)

−
(

φ2(h(x)) − φ2(h(x
∗))

)

< ε+ ε+ ε+ 0 + 0. (5.3)

Note that the first term in (5.3) is bounded by ε from hypothesis (ii) if x∗ = 0
and from hypothesis (i) otherwise, and that φ1(x) = φ1(x

∗) because if x > x∗

then y1 is strictly positive on (x∗, x] and φ1 is right continuous. 2

Lemma 5.4. If y ∈ D is nonnegative and l.s.c., and some ỹ ∈ Ky is absolutely

continuous, then y is also absolutely continuous.

Proof. For any ε > 0 there is a δ > 0 such that if { [ui, vi] | i = 1, . . . , n } is a
collection of nonoverlapping intervals of total length less than δ then

∑

i

|ỹ(vi) − ỹ(ui)| < ε. (5.4)

But then also
∑

i

|y(vi) − y(ui)| < ε. (5.5)

To see this, note that if y does not vanish on [ui, vi] then y(vi) − y(ui) =
ỹ(vi) − ỹ(ui), and if it does then

|y(vi) − y(ui)| ≤ |y(vi) − y(v′i)| + |y(u′i) − y(ui)|,
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where u′i = inf
(

{y = 0} ∩ [ui, vi]
)

and v′i = sup
(

{y = 0} ∩ [ui, vi]
)

. But since
|y(vi)−y(v

′
i)| = |ỹ(vi)− ỹ(v

′
i)| and |y(u′i)−y(ui)| ≤ |ỹ(u′i)− ỹ(ui)|, we may then

bound (5.5) by a sum of the form (5.4) for the collection of intervals in which
[ui, vi] is sometimes replaced by [ui, u

′
i] and [v′i, vi]. 2

Proof of Lemma 5.2. The function f is unambiguously defined on P by condi-
tion (a). For each ỹ ∈ P which has at least one discontinuity is of the form
Φ̃L(v, ω) for a unique L and unique v = ỹ(0)L, and ω ∩ (0, L] is uniquely deter-
mined by ỹ. We may then define f(ỹ) = ΦL(v, ω), since this is determined by
ω ∩ (0, L]. The exceptional (continuous) ỹ ∈ P are those of the form ỹ = za for
some a ∈ (−1,∞), where za(x) ≡ a + x; note that za = Φ̃L(aL, ω0

L) for any L
such that aL > −1, with ω0

L any point configuration satisfying ω0
L ∩ (0, L] = ∅.

In this case, however, ΦL(v, ω0
L) = ỹ for all such L, so that we may define

f(ỹ) = ỹ and satisfy (a). We remark that it is easy to see that ỹ ∈ Kf(ỹ) for all
ỹ ∈ P .

To extend f to P̄ we suppose that ỹ ∈ P̄ \ P and that ỹ = limn→∞ ỹn for
ỹn ∈ Φ̃Ln

(Ω). Then necessarily limn→∞ Ln = ∞, for otherwise there would
exist L∗,M <∞ such that a subsequence of (ỹn) would belong to

⋃

1≤L≤L∗

Φ̃L(Ω) ∩ {z ∈ D | ‖z‖∞ ≤M}. (5.6)

But (5.6) is easily seen to be compact, so that we would have ỹ ∈ P , a contra-
diction. From this and Lemma 5.3 it follows that the sequence f(ỹn) is Cauchy
in D and we may thus define f(ỹ) by f(ỹ) = limn→∞ f(ỹn); it also follows easily
that f(ỹ) is nonnegative and that f is continuous at ỹ. The fact that Ln → ∞
also implies that ỹ and f(ỹ) are continuous; thus the convergence of ỹn and
f(ỹn) is uniform [16] and from this and the fact that ỹ ∈ Kf(ỹ) for ỹ ∈ P the
same conclusion follows for ỹ ∈ P̄ .

The function f satisfies (a) on P̄ since it does so on P . Since we know that
f is continuous at all points of P̄ \ P we may verify (b) by showing that f is
continuous at points of P at which F̃ is finite. These points are precisely the
functions za with a ≥ 0, and it suffices to show that if za = limn→∞ ỹn with
ỹn ∈ Φ̃Ln

(Ω) then limn→∞ f(ỹn) = f(za) = za. In fact it suffices to consider
separately the cases Ln → ∞ and Ln bounded; the first of these is covered by
the argument given above for y ∈ P̄ \ P , and the second is possible only if, for
sufficiently large n, ỹn = zan

with an → a; then f(ỹn) = zan
→ za = f(za).

We have seen that if y = f(ỹ) then ỹ ∈ Ky. Conversely, when y and ỹ are
absolutely continuous, and y is nonnegative with y′ ≤ 1 a.e., we have that if
ỹ ∈ Ky then y = f(ỹ). For given ε > 0 we may by (5.2) and Remark 5.1(ii)
approximate ỹ to within ε by a function ỹ∗ ∈ ΦL(Ω) with L > 1/ε, and it follows
then from Lemma 5.3 that d(f(ỹ), f(ỹ∗)) < 3ε and d(f(ỹ∗), y) < 3ε. Note in
particular that y = f(y) in this case.
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We finally verify property (c). If y ∈ D is negative at some point then F(y) =
∞; if also y = f(ỹ) then either y = ỹ = za with a < 0 or ỹ is discontinuous,
and in either case F̃(ỹ) = ∞. If y is nonnegative and not absolutely continuous
then F(y) = ∞, and by Lemma 5.4 we cannot have y = f(ỹ) with F̃(ỹ) < ∞.
Suppose then that y is nonnegative and absolutely continuous. If y 6= f(ỹ) for
any ỹ then we cannot have y′ ≤ 1 a.e., since otherwise y = f(y); thus F(y) = ∞
in this case. Finally, suppose that y = f(ỹ) for some ỹ (which implies that y′ ≤ 1
a.e.). Then F(y) ≤ F̃(ỹ), for if F̃(ỹ) = ∞ this is trivial, while if F̃(ỹ) < ∞
then since ỹ ∈ Ky,

F̃(ỹ) = ỹ(0)| logβ| +

1
∫

0

g(1 − ỹ′(x)) dx

≥ ỹ(0)| logβ| +

∫

{ y>0 }

g(1 − ỹ′(x)) dx

= F(y).

Thus F(y) ≤ inf ỹ∈f−1(y) F̃(ỹ). On the other hand, for this y we may define
ỹ = y − φ with φ(0) = 0 and

φ′(x) =

{

0, if y(x) > 0,

α− 1, if y(x) = 0.
(5.7)

Then F̃(ỹ) = F(y) and f(ỹ) = y, since y′ ≤ 1 a.e. This completes the verifica-
tion of (c). 2

Remark 5.2. ODE There is another way to complete the proof of Lemma 5.2,
after defining f on P as above. If z is a real-valued function of bounded variation
we will write z = z+ − z− for the canonical decomposition of z as the difference
of two increasing functions, so that dz = dz+ − dz− is the Hahn decomposition
of the signed measure dz as the difference of two nonnegative measures; note
that if ỹ = Φ̃L(v, ω) ∈ P then ỹ is of bounded variation, with dỹ+ = dx,
dỹ− =

∑

{x|Lx∈ω}L
−1δx. Now it is easy to verify that for ỹ ∈ P , y ≡ f(ỹ)

satisfies the integral equation

y(x) = ỹ(0) +

x
∫

0

[dỹ+ − χydỹ−], (5.8)

where

χy(x) =

{

1, if y(x−) > 0,

0, if y(x−) ≤ 0.
(5.9)
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But one may also show directly that (5.8)–(5.9) has a unique solution y whenever
ỹ is continuous, of bounded variation, and satisfies ỹ(0) ≥ 0. Taking this solution
as the definition of f(ỹ) = y when ỹ ∈ P̄ \ P , one verifies the properties of
Lemma 5.2.

Finally, we give the

Proof of Theorem 3.3. From (2.1),

EL,ε(ρ) = Φ−1
L

(

B∞
ε (Jρ)

)

,

where Jρ was defined below (3.9) and B∞
ε denotes an ε-ball in the uniform

metric on D. Because each y ∈ Jρ is a translate of the continuous function yρ,
however, there is a δ > 0 such that Bδ(Jρ) ⊂ B∞

ε (Jρ); then by Theorem 3.2,

lim inf
L→∞

1

L
log ν(EL,ε(ρ)) ≥ lim inf

L→∞

1

L
log ν

(

Φ−1
L (Bδ(Jρ))

)

≥ −F(yρ) = −G(ρ),

and hence

lim inf
ε→0

lim inf
L→∞

1

L
log ν(EL,ε(ρ)) ≥ −G(ρ). (5.10)

Conversely, since B∞
ε (Jρ) ⊂ Bε(Jρ) ⊂ Bε(Jρ), F is l.s.c., and for y ∈ Bε(yρ),

F(y + c) −F(yρ + c) is independent of c for c > ε,

lim sup
ε→0

lim sup
L→∞

1

L
log ν(EL,ε(ρ)) ≤ lim sup

ε→0
lim sup
L→∞

1

L
log ν

(

Φ−1
L (Bε(Jρ))

)

≤ − lim inf
ε→0

inf
y∈Bε(Jρ)

F(y)

= − inf
y∈Jρ

F(y) = −G(ρ). (5.11)

Equations (5.10) and (5.11) together imply (3.3). 2

Added note

After this work was completed we were informed by Neil O’Connell that
our large deviation result for the G process could be deduced from the results
in the paper of A.A. Puhalski and Ward White, Functional Large Deviation
Principles for Waiting and Departure Processes, Probability in the Engineering

and Informational Sciences 12, 479–507, 1998. The purpose of that paper,
which is part of a series, is “to establish large deviation principles for waiting
and departure processes in single-server queues . . . ”. The focus of our paper,
the statistical mechanics of point processes with bounded variability, is quite
different, and should be of independent interest.
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