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Abstract
We consider a random matrix model of interaction between a small n-level
system, S, and its environment, a N-level heat reservoir, R. The interaction
between S and R is modeled by a tensor product of a fixed n n× matrix and a
N N× Hermitian random matrix. We show that under certain ‘macro-
scopicity’ conditions on R, the reduced density matrix of the system

TrS R S R
(eq)ρ ρ= ∪ , is given by Hexp{ }S

c
S

( )ρ β∼ − , where HS is the Hamiltonian of
the isolated system. This holds for all strengths of the interaction and thus
gives some justification for using S

c( )ρ to describe some nano-systems, like
biopolymers, in equilibrium with their environment (Seifert 2012 Rep. Prog.
Phys. 75 126001). Our results extend those obtained previously in (Lebowitz
and Pastur 2004 J. Phys. A: Math. Gen. 37 1517–34); (Lebowitz et al 2007
Contemporary Mathematics (Providence RI: American Mathematical Society)
pp 199–218) for a special two-level system.

Keywords: open systems, Gibbs distribution, random matrices

1. Introduction

The properties of a system S, in contact with a thermal reservoir R, is an old yet perennial
problem of statistical mechanics. Writing the Hamiltonian of the composite system S R∪ as

H H H V1 1 , (1.1)S R S R S R SR∪ = ⊗ + ⊗ +

where HS and HR are the Hamiltonians of the system and of the reservoir and VSR is the
interaction between them, the canonical Gibbs density matrix of S R∪ is given by
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{ }H Zexp . (1.2)S R
c

S R S R
( )
∪ ∪ ∪ρ β= −

The corresponding reduced density matrix of the system is

{ }H ZTr exp . (1.3)S R S R
c

S S
( )
∪ρ ρ β= = − ͠ ∼

Here HS͠ is the ‘effective’ Hamiltonian of S, which will have the form

H H V (1.4)S S S= +͠ ∼

and VS
∼

will in general depends on β, H H,S R and VSR unless VSR is ‘negligible’ and Sρ can be
replaced by

{ }H Zexp . (1.5)S
c

S S
( )ρ β= −

The use of (1.5) for the density matrix of S may be appropriate even when VSR is not small, if
the system S is macroscopic, e.g., a system in a large box ,Λ and the interaction VSR takes place
only along the boundary Λ∂ . Then the calculations of the properties of the system far from the
boundary are approximately independent of the interaction VSR, becoming rigorously so when
Λ → ∞ (there are exceptions when the system is at a first order phase transition). Our concern
here is however with the case when S is small so the above considerations do not apply.

Recent technological advances, making it possible to create and manipulate meso- and
nanosystems, including biopolymers, colloidal particles, etc have brought the problem of a
micro-system in contact with a reservoir to the fore. Likewise, in recent studies of the
foundation of quantum statistical mechanics [6–8, 19, 21, 23], where the approach to equi-
librium is related to the system–reservoir entanglement the notion of an equilibrium state for
non macroscopic systems also plays an important role. In all such cases the nature of the
interaction VSR between the system and the reservoir is clearly important and Sρ is not
necessarily of the Gibbs form (1.5). A specific example of this importance is the collapse
transition in polymers, which depends strongly on the nature of solvent not just on its
temperature [10].

We note here that the distinction between the cases (1.3) and (1.5 ) was made clearly by
Jarzynski [12] who showed that his equality between the work done on the system by
changing a parameter in HS from A to B is given by the difference of the free energies FS

∼

given by Zlog S
∼

in (1.3) evaluated at the values of the parameter A and B. This means that
when VSR is not negligible then this difference will depend on HR and VSR and not just on the
temperature 1β− of the environment. This distinction is sometimes blurred in the literature
both experimental and theoretical where various aspects of this problem are considered. Many
of them go under the name of stochastic thermodynamics, where the equilibrium state of a
nano-system in contact with an environment at temperature 1β− is sometimes implicitly
assumed to be described by the distribution (1.5), see, e.g. reviews [13, 24, 26] and references
therein. In fact however these studies do not consider the whole microstate of the small
system. Instead, one argues that the reservoir degrees of freedom as well as some ‘internal’
degrees of freedom of the small system change very rapidly compared to those observed,
which we denote by X. They can therefore be assumed to be in thermal equilibrium and their
effect on the evolution of X is then just described via some stochastic term (noise). This
means in particular that the only effect of the reservoir on the equilibrium state of the X
variables is to specify its temperature, similar to the situation for macroscopic systems. This
seems reasonable in some cases (but not in situations like those in the example of the polymer
described earlier). One may think then of the interaction term as fluctuating so rapidly that its
detailed nature ‘washes out’ as far as its effect on the equilibrium properties, or even the time
evolution, of its slow variables are concerned.
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In this paper we consider a simple model of such a situation. We do this by making the
interaction between the system and reservoir random. We obtain the Gibbs distribution for an
arbitrary finite-level quantum system S using the frameworks of equilibrium statistical
mechanics and assuming that the reservoir has certain macroscopic properties.

Note that in this situation we can start, instead of (1.2), which itself requires some
justification [12, 13], with the microcanonical distribution for the composite system at a fixed
interval Δ around a macroscopic energy ES R∪ , i.e., with

( ) ( ) ( )E H E , (1.6)S R S R S R S R S R∪ ∪ ∪ ∪ ∪ρ χ Ω= Δ

where χΔ is the indicator of the energy interval

( )E E E2, 2 , , (1.7)S R S R S R∪ ∪ ∪Δ δ δ δ= − + ≪

and

( ) ( )E HTr . (1.8)S R S R S R S R∪ ∪ ∪ ∪Ω χ= Δ

We then obtain Sρ of (1.4) with the inverse temperature given by [15]

E
, (1.9)R

R


β =

∂
∂

where

( )Elog (1.10)R R R Ω=

is the entropy of the reservoir and ER is its energy (since for a reservoir which is very large
compared to the size of system we have S SR S R≃ ∪ and E E ,R S R≃ ∪ ).

The rest of the paper is organized as follows. The model is described in section 2, the
results and discussion are given in section 3. Sections 4 and 5 contain the proofs. The model
is an extension of that introduced and studied in our works [16, 17], where a simple case of a
2-level S was considered both in the equilibrium and non-equilibrium setting. Here we restrict
ourselves to the equilibrium and leave dynamic considerations for a future work.

According to the above, the proofs are given for the microcanonical distribution (1.6)–
(1.10) of the composite system. The results for the canonical distribution (1.2) of the com-
posite prove to be a simple corollary of those for the microcanonical distribution and require a
version of a standard (in statistical mechanics) saddle point argument.

Note also that large random matrices have been widely used to model a variety of
complex quantum systems, including heavy nuclei and atoms, mesoscopic particles, quantum
networks, graphs etc, i.e., not necessarily macroscopic, systems [1, 9, 22]. Thus, our setting
could model a qubit or a microcluster in a mesoscopic (or even nanoscopic) particle, a
quantum dot, small quantum network, etc.

2. Model

We describe now the model and quantities that will be considered. Let HR be a N N×
hermitian matrix, E{ }j j

N
1= be its eigenvalues and

( )E N E E E E( ) , ( )d 1 (2.1)N

j

N

j N
1

1

∫∑ν δ ν= − =−

= −∞

∞

be its density of states normalized to unity. We assume that Nν converges as N → ∞ to a
continuous density ν in the sense that for any continuous and bounded function f we have:
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f E E E f E E E E Elim ( ) ( )d ( ) ( )d , ( )d 1. (2.2)
N

N∫ ∫ ∫ν ν ν= =
→∞ −∞

∞

−∞

∞

−∞

∞

Let WR be a random Hermitian matrix, distributed according to the Gaussian unitary
invariant law given by probability density

{ }Wexp Tr 2 , (2.3)R R
1 2 −−

where R is the normalization constant. In other words, we assume that the entries of
W W W W{ } ,R jk j k

N
kj jk, 1= == are complex and independent for j k N1 ⩽ ⩽ ⩽ Gaussian

random variables such that

{ }{ } ( ){ }W W WE E E0, 1 . (2.4)jk jk jk jk
2 2 δ= = = +

This is known as the Gaussian unitary ensemble (see e.g. [22], section 1.1).
Let also HS and SΣ be arbitrary n n× Hermitian matrices. We define the Hamiltonian of

our composite system S R∪ as a random nN nN× matrix (cf (1.1))

H H H W N1 1 , (2.5)S R S N n R S R
1 2∪ Σ= ⊗ + ⊗ + ⊗

where 1l is the unit l l× matrix.
It should be noted that our results are valid not only for the special Gaussian distributed

interaction (2.3)–(2.4), but for any real symmetric or Hermitian random matrix in (2.5), whose
entries W j k N, 1jk ⩽ ⩽ ⩽ are independent and satisfy (2.4). However, in this case the
techniques are more involved requiring an extension of those of random matrix theory for so
called Wigner matrices (see [22], section 18.3).

In addition, our results are also valid in the case, where HR is random and independent of
WR for all N. In this case we have to assume that the sequence H{ }R of random matrices is
defined for all N → ∞ on the same probability space as the sequence W{ }R , is independent of
W{ }R and satisfies (2.2) with probability 1.

Having HR and WR random, we can view the second term in (2.5 ) as the Hamiltonian of
a ‘typical’ N-level reservoir and the third term as a ‘typical’ interaction between the system
and its reservoir. It is worth mentioning that the notion of typicality has recently been used in
the studies of the foundations of quantum statistical mechanics, including the form of reduced
density matrix in equilibrium [7, 8, 19, 21, 23]. In addition, the randomness (frozen disorder)
is a basic ingredient of the theory of disordered systems. Its successful and efficient use is
justified by establishing the selfaveraging property of the corresponding results, i.e., their
validity for the overwhelming majority of realizations of randomness for macroscopically
large systems, see e.g. [18].

In our case the selfaveraging property is valid in the limit N → ∞ and is given by result I
below. This suggests that in our model the N → ∞ limit plays the role of the macroscopic
limits in statistical mechanics and condensed matter theory. Note however that in statistical
mechanics the density of states of a macroscopic reservoir is multiplicative in its volume and/
or in its number of degrees of freedom. This and the macroscopicity of the system lead to the
Gibbs form (1.5) of its reduced density matrix, if the system–reservoir interaction is of short
range and confined to the boundary of S [15].

If, however, the system is small, then, as is already noted, its reduced density matrix is
not (1.5) in general even if the reservoir is macroscopically large. This is well understood in
statistical mechanics and in principle in the stochastic thermodynamics community [12, 13].
This is especially in the frameworks of dynamical approach where the problem was first
studied by Bogolyubov [4] for a classical system consisting of a harmonic oscillator inter-
acting linearly with the macroscopic reservoir of harmonic oscillators, and then in a number
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of interesting and rather general quantum models with macroscopic many-body reservoirs,
see, e.g., [2, 3, 5]. Taking into account that according to (2.1) and (2.2) the density of states
N Nν of our reservoir is asymptotically additive (but not multiplicative) in N, we conclude that
the Gibbs form of the reduced density matrix seems to be even less likely in our case than in
the spin-boson model and that one needs additional conditions and procedures to obtain the
Gibbs distribution (1.5). We will discuss such conditions below. Here we only mention that
an asymptotically additive in volume density of states is the case in the one-body approx-
imation of solid state physics.

According to [16] the Gibbs distribution for the two-level (n = 2) version of our model
can be obtained if we assume that the reservoir consists of large number J N1 ≪ ≪ of
independent or weakly dependent parts, more precisely, that the normalized density of states

Nν of the reservoir has a special ‘quasi-multiplicative’ form (3.17). One can view this
assumption as an effort to obtain the multiplicativity of the density of states of the reservoir on
a scale which is intermediate (mesoscopic) between the microscopic and macroscopic scales.
It is shown below that the same assumption on Nν allows one to obtain the Gibbs distribution
(1.5) for an arbitrary finite dimensional S.

3. Results

We are interested in the asymptotic form as N → ∞ of the reduced density matrix

( )
( )

N H

N H

Tr

Tr
(3.1)S

N S S R

S R

( )
1

1
ρ

χ

χ
= ∪

∪

Δ

Δ

−

−

corresponding to the microcanonical distribution (1.6)–(1.8) of our model composite
system (2.5).

Our first result is:

(I) There exists a positive definite, trace one, non-random matrix Sρ such that for any fixed Δ
of (1.7) we have with probability 1

lim . (3.2)
N

S
N

S
( )ρ ρ=

→∞

The result is proved in section 4.

To describe the limiting density matrix Sρ , we start from the relation

( )H ( ), (3.3)S R HS R
∪χ Δ= ∪Δ

where HS R ∪ is the resolution of identity (spectral projection) of the hermitian operator HS R∪
(2.5) corresponding to the spectral interval Δ of (1.7). Denoting

e N(d ) Tr (d ), (3.4)S
N

R H
( ) 1

S R
λ λ= ∪

−

we can write, using (1.7), (3.3) and (3.1),

e

e

( )

Tr ( )
. (3.5)S

N S
N

S S
N

( )
( )

( )
ρ

Δ
Δ

=

Thus, we have to find the limit

e e( ) lim ( ) (3.6)S
N

S
N( )Δ Δ=

→∞
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of the n n× random hermitian matrix e ( )S
N( ) Δ and then we can write (3.2) as

e

e

( )

Tr ( )
. (3.7)S

S

S S
ρ

Δ
Δ

=

To find e ( )S Δ of (3.6) we will use the resolvent

( )G z H z z( ) , 0 (3.8)S R
1

∪≔ − ≠−
I

of HS R∪ . Indeed, we have, by the spectral theorem for hermitian matrices

G z
z

z( )
(d )

, 0, (3.9)
HS R


∫

λ

λ
=

−
≠∪

I

and we write here and below integrals without limits for those over the whole real axis. It
follows then from (3.4) and (3.9) that

g z N G z
e

z
z( ) Tr ( )

(d )
, 0. (3.10)S

N
R

S
N

( ) 1
( )

∫ λ
λ

≔ =
−

≠− I

Note that eS is the matrix valued measure assuming values in n n× positive definite matrices
and is uniformly bounded in N, since for any Δ ⊂  the matrix ( )HS R Δ∪ , being an orthogonal
projection in nN space S R ⊗ , is of norm one and according to (3.4)

e n( ) .S
N( ) Δ ⩽

Here A∣∣ ∣∣ is the standard matrix norm of a matrix A and we used the inequality

A nN ATr ,R ⩽

valid for any hermitian matrix A in S R ⊗ .
Recall now that for any non-negative finite measure m on the real axis one can define its

Stieltjes transform

s z
m

z
z( )

(d )
, 0, (3.11)∫ λ

λ
=

−
≠I

which is analytic for z 0≠I and such that

s z z z( ) 0, 0. (3.12)> ≠I I I

The correspondence between non-negative measures and their Stieltjes transforms is one-to-
one, in particular

m s( ) lim
1

( i )d . (3.13)
0

∫Δ
π

λ δ λ= +
δ Δ→ +

I

Besides, the correspondence is continuous with respect to the weak convergence of measures
(see e.g. (2.2)) and the uniform convergence of their Stieltjes transforms on a compact set of

⧹  (see e.g. [22], proposition 2.1.2).
It is easy to extend (3.11)–(3.13) to the matrix valued positive definite and bounded

measures and their matrix valued Stieltjes transforms, whose examples are (3.4) and (3.10)
respectively. Thus, to prove (3.7) it suffices to prove that for a compact set of ⧹  the matrix
valued functions (3.10) converge with probability 1 to a non-random limit on a compact set in

⧹ .
Correspondingly, we prove in sections 4 our second result:
(II) Let e g H( ), , ,S

N
S

N
S

( ) ( )Δ ν and SΣ be defined by (3.4), (3.9), (3.10), (2.1), (2.2) and
(2.5). Then:
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(i) the limit e ( )S Δ of (3.6) exists with probability 1, hence (3.2) and (3.7) hold with the same
probability;

(ii) if fS is the matrix Stieltjes transform of eS, i.e.,

e f( ) lim
1

( i )d (3.14)S S
0

∫Δ
π

λ δ λ= +
δ Δ→ +

I

then fS is a unique solution of the matrix equation

( )f z E H z f z E E( ) ( ) ( )d (3.15)S S S S S
1∫ Σ Σ ν= + − − −

in the class of matrix valued functions analytic for z 0≠I and such that (cf (3.12))

( )f z f z z z z( ) ( ) ( ) 0, 0, (3.16)S S
*− − > ≠I

and for any hermitian matrix A we write A 0> if A is positive definite.

Remark. The case n = 1 of the above assertion corresponds to a particular case of the
deformed Gaussian ensembles of random matrix theory (see [22], section 2, theorem 2.2.1 in
particular). The case n = 2, H s s, 0S zσ= > , and S zΣ σ= , where xσ and zσ are the
corresponding Pauli matrices, was considered in [16, 17], while studying a random matrix
model of quantum relaxation dynamics.

The obtained limiting reduced density matrix Sρ (see (3.2) and (3.7)) is generally not of
the Gibbs form (1.5). We thus need additional assumptions on the structure of reservoir in
order to obtain the Gibbs distribution in the frameworks of our model. In our previous work
[16], where the case n = 2 was considered, it was assumed that the reservoir consists of a large
number J → ∞ of practically non-interacting ‘macroscopically infinitesimal’ but also suffi-
ciently large parts (i.e., a kind of ‘coarse grained’ structure of reservoir). This can be
implemented by writing the density of states (2.2) of reservoir as the convolution of J copies
of a certain density q:

q* . (3.17)J
Jν ν≔ =

The fact that we are going to consider the asymptotic regime J → ∞ after the limit N → ∞
can be interpreted as a formalization of the inequality determining our intermediate scale

n J N, (3.18)≪ ≪
or, denoting n N Jq = the parameter characterizing the ‘size’ of infinitesimal parts, as the
condition n 1q ≫ .

A simple example of the above is the Gaussian density

( )
q

a a
( )

1

2
exp

( )

2
, (3.19)

2 1 2

0
2

2
ε

π

ε ε
= −

−⎧⎨⎩
⎫⎬⎭

where 0ε is assumed to be of the order of magnitude of the characteristic energies of
‘macroscopically infinitesimal’ parts of R, and a is their energy spread. In this case the density
of states (3.17) of the reservoir is also Gaussian

( )
( )

E
Ja

E J

Ja
( )

1

2
exp

2
. (3.20)J

2 1 2

0
2

2
ν

π

ε
= −

−⎪ ⎪
⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭
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The formula makes explicit one more property of our ‘macroscopic’ reservoir: its
characteristic energies are of order of J 0ε with the spread Ja( )2 1 2, while those of HS and

SΣ are independent of J, hence, much smaller.
The Gaussian ‘ansatz’ (3.19), (3.20) was used in [16, 17]. In this paper we study the

equilibrium properties of (2.5) with an arbitrary finite n and n n× hermitian HS and SΣ in
(2.5). As already noted, our results are valid for a wide and natural class of distributions q in
(3.17), see section 5. In particular, one can mention the densities

( )q q q, ( ) ( ) , 0 , (3.21)d
d

1
*

1 0
1

0ε π ε ε ε ε ε= = − ⩽ ⩽
−

where q1 is the density of states of the one-dimensional harmonic chain and qd is the density
of states of the d-dimensional harmonic cubic lattice. Different choices of q can model
different types of reservoirs. For carrying out the proofs we shall require two conditions
on q:

(i) q decays superexponentially at −∞;
(ii) there exists a1 2< ⩽ such that

q ( )d . (3.22)a∫ ε ε < ∞

The conditions seem fairly natural. Indeed, condition (i) requires a rather ‘thin’ if any
spectrum of negative energies of large absolute value, thereby it is closely related to the
stability of the reservoir. Furthermore, since (3.22) is valid by definition for a = 1 (recall that q
is a probability density), condition (ii) requires a certain regularity of the density of states, also
usually assumed in statistical mechanics. Note also that if q is zero for large negative energies,
then one can use the polynomial decay of the Fourier transform of q as another condition of
its regularity.

Here are simple examples of the above. The first is the Gaussian density (3.19), for
which the validity of the Gibbs distribution in the asymptotic regime (3.18) for n = 2 was
proved in [16]. Here a is any real number of (1, 2]. The second example is the exponential
density q ( ) e 0

10ε ε= ε ε− − , where again a (1, 2]∈ . The third example is the density of states
(3.21) of the simple cubic d-dimensional crystal. Here a (1, 2)∈ for d = 1 and a (1, 2]∈
for d 2⩾ .

Viewing the density of states (3.17) as the partition function of the microcanonical
ensemble of an ideal gas of J particles having each the partition function q one can introduce
an analog of the entropy per particle

s J J( ) lim log ( ). (3.23)
J

J
1ε ν ε≔

→∞
−

The existence of the limit, its continuity and convexity can be proved by now standard
argument of statistical mechanics (see e.g. [20, 25]).

One can also introduce an analog of the inverse temperature (cf (1.9))

s( ) ( ). (3.24)β ε ε= ′
The corresponding quantities for the canonical ensemble of ‘macroscopically infinitesimal’
parts of our reservoir are the analogs of the partition function and the free energy per
particle

Z E E f J Z( ) e ( )d ( ), ( ) ( ) log ( ) log ( ), (3.25)J
E

J
J

J
1 1∫β ν ψ β β β β β ψ β≔ = ≔ − = −β− − −
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where

q( ) e ( )d . (3.26)∫ψ β ε ε= βε−

In writing the partition function (3.25) we took into account that the Laplace transform of the
J-fold convolution Jν of (3.17) is Jth power of the Laplace transform of q. Condition (i) above
ensures that ψ is well defined for all non-negative β.

We have also from (3.23) and (3.25), (3.26)

f s( ) min{ ( )} (3.27)β β εβ ε= −
ε

and

s h h f( ) min ( ), ( ) ( ). (3.28)ε β β εβ β β= = −
β

ε ε

Note that fβ and s are convex. The convexity of fβ is immediate, since (3.25) and (3.26)
imply

f Q( ) d, d ( ) ( )d 0, (3.29)
2

2 0
2∫β ψ

ψ
ψ
ψ

ε ε ε ε″ = −
″

−
′

= − ≔ − >
⎛
⎝⎜

⎞
⎠⎟

where

( )( )Q q q( ) e ( ) e d 0 (3.30)
1

∫ε ε ε ε= ′ ′ ⩾′βε βε− −
−

and 0ε is the first moment of Q. As for the convexity of s, it follows from the proof of
(3.23) [20, 25].

We have also from (3.25)–(3.28)

h h(0) 0, (0) , (3.31)ε ε= ′ = −ε ε

where

q ( )d∫ε ε ε ε=

is the mean energy of the macroscopically infinitesimal components of the reservoir. We will
assume that

, (3.32)ε ε>
since then the convexity of hε and (3.31) imply that the minimum s ( )ε of hε in (3.28) is
positive, hence our temperature (3.24) is positive as well

( ) 0, (3.33)β ε >
although negative temperatures can also be considered in the frameworks of our model.

It turns out, however, that the above standard formulas of statistical mechanics of
macroscopic systems are not accurate enough to obtain the Gibbs form (1.5) of the reduced
density matrix (3.14), (3.15) of S in our model (3.17) of reservoir. This is because of the
‘logarithmic accuracy’ of the formulas, see e.g. (3.23), giving the large J leading term of

Jlog ( )Jν ε , while we will need below the more accurate asymptotics formula:

( )J o J Js( ) ( )(1 (1)), , ( ) 2 ( ) e .

(3.34)

J J J
Js1 2 ( )ν ε μ ε μ ε π ε= + → ∞ ≔ ″ ε− −
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This formula can be viewed as the Darwin–Fawler version of the equivalence of the
microcanonical and canonical ensembles in statistical mechanics (see e.g. [11]).

In fact, we do not need to know that ( )Jμ ε is the asymptotic (3.34) of J( )Jν ε to prove our
third result below, i.e., the validity of the Gibbs form of the energy distribution of the system
in our model (3.17) of the reservoir. Instead, we will just use Jμ of (3.34) as an ansatz. Since,
however, our proof is applicable to all finite n 1⩾ and all n n× hermitian HS and SΣ in (2.5)
and since the case n = 1, and H 0S SΣ= = corresponds to the reservoir itself, thus, in this
case E E( ) ( )J Jγ ν= , we obtain the asymptotic formula (3.34) as the simplest case n = 1 of
(3.36). Thus, we prove in section 5 our third result.

(III) Under the conditions of validity of results (I) and (II) above and for the density of
states of reservoir given by (3.17) with q satisfying conditions (i) and (ii), (5.2) and (3.22) in
particular, we have:

(i) the reduced density matrix of (3.2) and (3.7) has a well defined limit as the width δ of the
energy shell Δ of (1.7) tends to zero, i.e., E{ }Δ → and J is large enough:

E
E

E
E e( ) lim

( )

Tr ( )
, ( ) lim ( ), (3.35)J

E
S

J

S J
J

E
S

{ } { }
ρ ρ

γ
γ

γ Δ≔ = =
Δ Δ→ →



where e ( )S Δ is given by (3.6);

(ii) the limiting relation

Jlim ( ) ( ) e , (3.36)
J

J J
HSγ ε μ ε = β

→∞
−

with Jμ given in (3.34), hence the Gibbs form (1.5) of the limit (in view of (3.35)).

Jlim ( )
e

Tr e
, (3.37)

J
J

H

S
H

S

S
ρ ε =

β

β→∞

−

−


in which ( )β β ε≔ is defined by (3.23), (3.24) and (3.32), (3.33).

Remark. The above result concerns the microcanonical energy distribution (1.6)–(1.8) of
the composite system and the corresponding reduced density matrix (3.1). The case of the
canonical distribution (1.2) of the whole system and the corresponding reduced density
matrix, i.e., the passage from (1.4) to (1.5) can be readily obtained from (3.35), (3.37). Indeed,
we have from (1.2), the spectral theorem for HS R∪ , (3.4) and (3.35) that with probability 1:

e E

e E

E E

E E
lim

Tr e

Tr Tr e
lim

e (d )

e Tr (d )

e ( )d

e Tr ( )d
.

(3.38)

N

R
H

S R
H N

E
S

E
S S

E
J

E
S J

S R

S R

∫
∫

∫
∫

γ

γ
= =

β

β

β

β

β

β→∞

−

− →∞

−

−

−

−

∪

∪

Using then (3.34), (3.36) and a simple saddle point argument for integrals on the rhs of (3.38)
yield

J

J
lim

e ( ) ( )d

e Tr ( ) ( )d

e

Tr e
, (3.39)

J

J s
J J

E
S J J

H

S
H

( ( )) 1

1

S

S

∫
∫

γ ε μ ε ε

γ ε μ ε ε
=

βε ε

β

β

β→∞

− − −

− −

−

−

i.e., the Gibbs distribution again.
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4. Selfaveraging property and limiting reduced density matrix

In this section we prove results (I) and (II) above. We note that the corresponding assertions
as well as their proofs are generalizations of those for the deformed semicircle law (DSCL) of
random matrix theory, see [22], sections 2.2 and 18.3. Just as in the case of DSCL the passage
from the positive definite matrix measures (positive measures in the case of DSCL) to their
Stieltjes transforms (see (3.5) and (3.10)) reduces the proof of (3.1), (3.2) to that of (3.15),
(3.16). The latter facts will follow if we prove that the variance of all the entries of (3.10)
vanish fast enough as n → ∞ and that the expectation of (3.10) converges to a unique
solution of (3.15) as n → ∞.

We will use the Greek indices varying from 1 to n to label the states of the systems and
the Latin indices varying from 1 to N to label the states of reservoir.

Then we can write n n× and nN nN× matrices of (3.10) and (3.8) as

{ }g z g z G z( ) ( ) , ( ) (4.1)S
N

n
j j j k

n N( )

, 1
, , 1; , 1

,= αβ α β
α β α β

=
= =

⎧⎨⎩
⎫⎬⎭

and

g z
N

G z( )
1

( ). (4.2)
j

N

j j

1

,∑=αβ α β
=

We will prove now the bound

{ } { }g z g z g z C z NVar E E( ) ( ) ( ) ( ) , (4.3)S
2 2

2≔ − ⩽αβ αβ αβ
⎧⎨⎩

⎫⎬⎭
and we write here and below C z( )S for quantities which do not depend on N and are finite for

z 0≠I .
To this end we view every gαβ as a function of the Gaussian random variables W{ }jk j k

N
, 1=

of (2.3), (2.4) and use the Poincaré inequality (see [22], proposition 2.1.6), yielding

{ }g z
g

W
Var E( ) . (4.4)

j k

N

jk, 1

2

∑⩽
∂

∂αβ
αβ

=

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

The derivatives on the right can be found by using the resolvent identity for G

( )

( )

g z

W N
G z G z

N
G z G z

( ) 1
( ) ( )

1
( ) ( ) ,

jk

n

jk

n

jk

n

3 2
, 1

3
, 1

2

, 1

2
1 2

∑

∑ ∑

Σ

Σ

∂

∂
= −

⩽

αβ

γ δ
δβ αγ γδ

γ δ
δβ αγ

γ δ
γδ

=

= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where Gαβ denotes the N N× matrix

{ }G z G z( ) ( ) .j k
j k

N
,

, 1
=αβ α β =

The n n× matrix { }S
n

, 1Σ Σ= αβ α β= is defined by (2.5) and the second line results from
Schwarzʼs inequality. Taking into account the bounds

G z z G z G z z( ) , ( ) ( ) (4.5)j k
1

,
1⩽ ⩽ ⩽α β

− −I I
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valid for the resolvent of any hermitian matrix, it is easy to find an analogous bound for the
matrix G z( )αβ :

G z z( ) . (4.6)1⩽αβ
−I

The above relations imply for the rhs of (4.4)

{ } ( )g z
N

G G G GVar ( )
1

Tr TrS S

n

R3
2

, 1

* *∑Σ⩽αβ
γ δ

δβ αγ αγ δβ
=

and using now (4.6) and the inequality A N ATr∣ ∣ ⩽ ∣∣ ∣∣ valid for any N N× matrix, we
obtain

{ }g z
n

N z
Var ( ) Tr ,S S S

2

2 4
*Σ Σ⩽αβ

I

i.e., the bound (4.3) with C z n z( ) TrS S S
2 2 4Σ= ∣ ∣I .

Denote

{ } { }f z f z f z g zE( ) ( ) , ( ) ( ) . (4.7)S
N

n( )

, 1
= =αβ α β αβ αβ=

We will now prove that for any compact set K ⊂ ⧹  there is a subsequence f{ }( )
S

N
N

i
i of

analytic matrix functions, which converges on K as Ni → ∞ to a solution of (3.15). Repeating
almost literally the argument, which leads to equation (2.2.8) of [22], we obtain

( )( )G z H f z H z R zE 1 1 1{ ( )} ( ) ( ), (4.8)S S S
N

S R S R S R N
( ) 1

∪Σ Σ= − ⊗ + ⊗ − +
−

where the nN nN× matrix R z( )N admits the bound

R z C z N( ) ( ) . (4.9)N S
2⩽

Applying to (4.8), (4.9) the formula

( ) ( )A B A b1 1Tr ,R S R S R

l

N

S l

1

∑φ φ⊗ + ⊗ = +
=

valid for any function φ, any n n× matrix AS and any N N× hermitian matrix BR with
eigenvalues b{ }l l

N
1= and using the definition (2.1) of the density of states of the reservoir, we

obtain for the expectation (4.7)

f z
E E

E H z f z
r z( )

( )d

( )
( ), (4.10)S

N N

S S S
N

S
N

( )
( )∫ ν

Σ Σ
=

+ − −
+

where

r z C z N z( ) ( ) .N S
2 3⩽ I

It follows from (4.7) and (4.5) that

f z z( ) .S
N( ) 1⩽ −I

Hence, for any compact set K ⊂ ⧹  there exists a subsequence f{ }( )
S

N
N

i
i of bounded analytic

matrix functions, which converges uniformly on K to an analytic matrix function f and
passing to the limit N → ∞ in (4.10) we obtain (3.15) for z K∈ . The validity of the equation
for any z ∈ ⧹  follows from the analyticity of f in ⧹ .
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Let us show that (3.15) is uniquely solvable in the class of analytic matrix functions
(3.16). Choose

{ }K z z: (4.11)S
2Σ⊂ ∈ > I

and assume that there are two different solutions fS
′ and fS

′, i.e., f z f zmax ( ) ( ) 0.
z K

S S
(1) (2)∣∣ − ∣∣ >

∈
It follows then from (3.15) and (3.16) that

( )( )E E E H z f E H z f1 d ( ) · .

(4.12)

S S S S S S S S S
2 1 1∫Σ ν Σ Σ Σ Σ⩽ − − − ′ − − − ″− −

In addition, (3.16) implies the bounds E H z f z( )S S S S
1 1Σ Σ∣∣ − − − ′ ∣∣ ⩽ ∣ ∣− −I and

E H z f z( )S S S S
1 1Σ Σ∣∣ − − − ∣∣ ⩽ ∣ ∣″ − −I (see (5.4) for details). This and (4.12) yield the

inequality z1 S
2 2Σ⩽ ∣∣ ∣∣ ∣ ∣I , which contradicts (4.11).

The unique solvability of (3.15), (3.16) implies that the whole sequence f{ }S
N

N
( ) con-

verges to the limit f, a unique solution of (3.15), (3.16) everywhere in ⧹ .
It remains to prove that this fact together with (4.3) imply the convergence with prob-

ability 1 of the sequence g{ }S
N

N
( ) of random analytic matrix functions to the solution of

(3.15), (3.16).
It follows from the Tchebyshev inequality and (4.3) that for any 0δ > and any non-real z

{ } { }f z g z g z C z z NP Var( ) ( ) ( ) ( ) .S
N

S
N

S
N

S
( ) ( ) ( ) 2 2 4 2δ δ δ− > ⩽ ⩽ I

Hence, for any non-real z the series

{ }f z g zP ( ) ( )
N

S
N

S
N

1

( ) ( )∑ δ− >
=

∞

converges for any 0δ > , and by the Borel–Cantelli lemma and the convergence of f{ }S
N

N
( ) to

fS we have with probability 1 for any non-real z

g z f zlim ( ) ( ). (4.13)
N

S
N

S
( ) =

→∞

Let us show that gS
N( ) converges to fS uniformly on any compact set of ⧹  with probability

1. Because of the uniqueness of analytic continuation it suffices to prove that with the same
probability the limiting relation g z f zlim ( ) ( )

N
S

N
j S j

( ) =
→∞

is valid for all points of an infinite

sequence z z{ } , 0j j j1 0η⩾ >⩾ I , possessing a finite accumulation point. Denote z( )Ω the set
of realizations, where (4.13) is valid. According to the above z jP{ ( )} 1,jΩ = ∀ . Hence,

{ }zP ( ) 1.j j1 Ω⋂ =⩾

This proves the uniform convergence of gS
N( ) to fS on any compact set of ⧹  with

probability 1.
It is known that the one-to-one correspondence between the non negative measures and

the Stieltjes transforms is continuous in the topology of vague convergence of measures and
the uniform convergence on a compact set of ⧹  [22], proposition 2.1.2. An analogous
assertion can be easily proved for the positive definite matrix measures and their Stieltjes
transforms. By using this fact and the uniform convergence with probability 1 of gS

N( ) to fS
proved above, we obtain (3.6).
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5. Gibbs Distribution

We will prove here our result (III), i.e., relation (3.37), by using result (II) (see (3.15), (3.16))
and our model (3.17) of the reservoir. Recall that we assume that the density q of (3.17)
satisfies the conditions (i) and (ii) of section 3, (3.22) in particular.

We will now use the matrix identity (see formulas (5.4) for its justification)

t
1

i e d , 0,t

0

i∫ζ
ζ− = >ζ

∞
I

with z f z E H( )S S S Sζ Σ Σ= + − − to write the basic equation (3.15) with z 0>I as

( )f z t t H H f z( ) ie ( )d , ( ) , (5.1)S
t H z J

S S S S
0

i∫ φ Σ Σ= = −͠
∞

− +͠

where

t q t( ) e ( )d , (0) 1, ( ) 1, (5.2)ti∫φ ε ε φ φ= = ⩽ε−

and we took into account that the Fourier transform of the convolution (3.17) is Jφ . Our
proofs in this section are based on the above integral representation of fS.

Let us prove first that the limit

f E f E( ) lim ( i ) (5.3)S S
0

δ≔ +
δ→ +

exists and is bounded for all real E if J is large enough. To this end we first use the bounds

( }M t( ) , 0; e 1, 0, (5.4)tM1 1 iζ ζ ζ− ⩽ > ⩽ >− − −I I

valid for any complex matrix such that M 0>I . Indeed, in this case M( i ) 0− ⩾R . Matrices
with this property are known as accretive and for them the corresponding bounds

M t( i } ( ) , 0; e 1, 0tM1 1ζ ζ ζ∣∣ − + ∣∣ ⩽ > ∣∣ ∣∣ ⩽ >− − −R R are valid (see e.g. [14], section
IX.1.6). Noting that f z( ) 0,S >I z 0>I implies f z( ) 0SΣ Σ >I zfor 0>I and using the
second bound of (5.4), we obtain from (5.1)

f z t t z( ) ( ) d , 0. (5.5)S
J

0
∫ φ⩽ >

∞
I

It follows then from (3.22) and the Hausdorff–Young inequality that

( )t t q J a a( ) d ( )d , ( 1) (5.6)J a
J a

0
0

0∫ ∫φ ε ε⩽ < ∞ = −

and we obtain from (5.2), (5.5) and (5.6)

f z t t J J( ) ( ) d , . (5.7)S
J

0
0

0∫ φ⩽ < ∞ ⩾
∞

It is important that the rhs of the above bound is independent of z for z 0⩾I and J J0⩾ , thus
the same bound holds for f E( )S of (5.3) with any real E and uniformly in J J0⩾ .

We will use now a stronger version of the inversion formula (3.13) corresponding to
measures with a bounded density m′:

m m s( ) lim ( ) lim ( i ). (5.8)
{ } 0

1λ Δ Δ π λ δ′ ≔ = +
Δ λ δ→ →

−
+
I

Since the same formula holds also in the matrix case, we will divide the numerator and
denominator of (3.7) by Δ∣ ∣ and pass to the limit E{ }Δ → to obtain (3.35).

J. Phys. A: Math. Theor. 48 (2015) 265201 J L Lebowitz and L Pastur

14



In fact, an elaboration of the above argument allows us to proves the relation

f Jlim ( ) 0, (5.9)
J

S ε =
→∞

valid for the limit (5.3) with any ε varying over a finite interval which will be used below.
Indeed, it is shown in the appendix that if φ satisfies (3.22), then for any t 00 >

tmax ( ) 1. (5.10)
t t 0

0
0

φ φ= <
⩾ >

Choose a 0δ > and write the integral in (5.5) as the sum of integrals over (0, )δ and ( , )δ ∞ .
Then it follows from (5.2), (3.22) and (5.6) that the first integral is bounded by δ and the
second is bounded by

t t C J J( ) d , , (5.11)J J J J
0 0 0

0 0∫φ φ φ⩽ ⩾
δ

−
∞

where C is independent of J and δ. Thus, passing to the limit J → ∞ and then 0δ → , we
obtain (5.9).

In fact, a bit more careful calculation yields that the rhs of (5.9 ) is of the order J 1 2− if the
first moment of q is zero, and J 1− if the first moment is not zero. This can be seen also in
examples (3.19 ) and (3.21).

Introduce the real and imaginary part of f J( )S ε (note that f J( )S ε is well defined in view
of (5.5)):

f J( ) i (5.12)S  ε = +

and take into account that according to our assumptions the function φ of (5.2) can be
analytically continued into the lower half-plane in t. This allows us to write the integral for  ,
which determines Jγ of (3.35) according to (5.8), as the sum

f J I I( ) (5.13)S 1 2 ε≔ = +I

of integrals over (0, i ( ))β ε− and ( i ( ), i ( ) )τβ ε β ε− − + ∞ , where ( ) 0β ε > is the point where
the function hε of (3.28) achieves its minimum, see (3.31)–(3.33):

Changing t to iτ− in I1 we obtain

I e ( )d , (5.14)Jh
1

0

( )∫ τ τ=
β

τε

where we write

e ( ) i ( ). (5.15)H  τ τ= +τ− ͠

for H͠ of (5.1) and β instead of ( )β ε . Write also

H R I R H Ii , , 0. (5.16)S S S S S Σ Σ Σ Σ= + = − = ⩾͠

If H͠ were a complex number but not a matrix (e.g., if n = 1), then

I I c c( ) e sin e ( ), ( ) (5.17)R R τ τ τ τ τ= − = − ⩽τ τ− −

and

I I ce e ( )d . (5.18)Jh R
1

0

( )∫ τ τ= −
β

τ τ−ε

This and the inequality (see (3.28)–(3.32))

h ( ) ( ) , (5.19)τ ε ε τ⩾ −
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would imply the bound

( )I I Je e d e ( ) . (5.20)R J R
S1

0

2 2∫ τ τ Σ ε ε⩽ ⩽ −β
β

ε ε τ β− −

Comparing this with (5.13), we would conclude that the contribution of I1 in  of (5.13) is
negligible as J → ∞, i.e.,

I o J(1 (1)), . (5.21)2 = + → ∞
We are going now to find a matrix analog of the above asymptotic relation.

We note first that according to appendix the matrix analog of (5.17) is

I s s s s s I( ) e ( )d , ( ) e cosh( ), (5.22)s R s R

0

( )  ∫τ = − ⩽
τ

τ− −

hence the matrix analog of (5.18) is in view of (5.16)

I I s s

s s

e d e ( )d

e d e ( )d .

Jh s R

Jh s R
S S

1
0

( )

0

( )

0

( )

0

( )



 
∫ ∫

∫ ∫

τ

τ Σ Σ

= −

=

β
τ

τ
τ

β
τ

τ
τ

− −

− −

ε

ε

It is convenient to view the rhs of the above formula as the result of application to the n n×
matrix  of the linear operator A acting in the space ( )n  of complex n n× matrices, i.e.,
to write the formula as

I A( ). (5.23)1 =

Then we have from (5.22) just as in the scalar case (5.17)–(5.20):

( ) )( )I JA( ) e cosh ( .R
S S1

2 2 2  Σ β Σ ε ε= ⩽ −β

By using the bounds R H2∣∣ ∣∣ ⩽ ∣∣ ∣∣ and 1,∣∣ ∣∣ ⩽ which following from (5.9), we conclude
that the matrix analog of bound (5.21) is also valid, i.e., the contribution of I1 to the rhs of
(5.13) is negligible as J → ∞ in the matrix case as well. This fact can be expressed via the
operator A:

)( )C JA ( . (5.24)S
2ε ε⩽ −

Consider now I2 of (5.13). Changing the variable to t i 0τ σ= − + and using Jμ of (3.34), we
obtain

I s J( ) 2 ( ) e e e d , (5.25)J
H H J

2
0

i ( )∫μ ε π ε σ= ″ β σ χ σ−
∞

−͠ ͠
R

where

( ) i log ( ), ( ) ( i ) ( ). (5.26)χ σ ετ ψ σ ψ σ ψ β σ ψ β= + = +β β

We write the integral on the right of (5.25) as the sum of integrals over (0, )0σ and ( , )0σ ∞ ,
where 0σ is small enough:

I I I . (5.27)2 21 22= +
In the first integral we use the expansion s o( ) 2 ( ) (1 (1)), 01 2χ σ ε σ σ= ″ + →− of (5.26)
yielding
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I o Je (1 (1)), ,H
21 π= + → ∞β− ͠

R

and then (5.9) and (5.16) imply

I o Je (1 (1)), . (5.28)H
21

Sπ= + → ∞β−

To deal with the second term

I e e d( )H J
22

i ( )

0

0∫ σ=
σ

τ σ χ σ
∞

− + ͠
R

of (5.27) we use first (5.9) and (5.16) to obtain the bound Ke ( )H( i ) ε∣∣ ∣∣ ⩽β σ− + ͠ , where K ( )ε is
independent of J. This and (5.25), (5.26) yield

I s J K( ) 2 ( ) ( ) ( ) d , (5.29)J
J

22 ∫μ ε π ε ε ψ σ σ⩽ ″
δ

ε

∞

where

( ) ( i ) ( ).ψ σ ψ β σ ψ β= +β

To estimate the integral on the right of (5.29) we will follow the scheme of proof of (5.11),
which was based on the bounds (5.10) and (3.22). Thus, we have to prove the analogs of these
bounds for ψβ. To this end we use (3.26) and (3.30) to write

Q( ) e ( )d . (5.30)i∫ψ σ ε ε=β
εσ−

We conclude that the ψβ is the Fourier transform of a non-negative function of unit integral,
thus it satisfies (5.2), i.e., ( ) 1, (0) 1ψ σ ψ∣ ∣ ⩽ =β β . It follows then from appendix that in this
case we have an analog of (5.10) as well:

max ( ) 1. (5.31)
0

1
0

ψ σ κ≔ <
σ σ

β
⩾ >

Furthermore, according to (5.2) and (5.30), an analog of (3.22) for ψβ is

Q q( )d e ( )d .a a a∫ ∫ε ε ε ε= < ∞βε−

It is easy to see this is indeed true in view of conditions (i) and (ii) of section 3, (3.22) in
particular.

This, (5.27) and (5.28) yield I o Je (1 (1)),H
2

Sπ= + → ∞β− . Now use (5.23) to write
(5.13) as IA( ) 2 = + . Then (5.24) and (5.25) imply

I o J1 A( ) ( ) ( ) e (1 (1)), .J J
H1

2
S μ ε μ ε π= − = + → ∞β− −

This and (5.8) yield (3.36). It remains then to divide the numerator and the denominator in
(3.35) by jμ and to use (3.36) to obtain (3.37).
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Appendix

(i) Proof of (5.10). We prove here that if q is non-negative, continuous and of unit integral,
then we have (5.10) in addition to (5.2).

Indeed, the equality t( ) 0φ ′ = for some t 0′ ≠ implies the equality

( )t q1 cos ( )d 0,∫ ε ε ε− ′ =

which is impossible for any non-negative and non-zero q satisfying (3.22). This
implies (5.10).

(ii) Proof of (5.22). The Duhamel formula

B se e e e d ,A B A s A s A B

0

1
(1 ) ( )∫= ++ − +

valid for any two (generally non-commuting) matrices, yields the formulas for the terms of
the rhs of (5.15)

I s s( ) e ( )d ,s R

0

( ) ∫τ = −
τ

τ− −

and

C I s s( ) e e ( )dR s R

0

( ) ∫τ = +τ
τ

τ− − −

hence

s I s I s I s( ) e ( 1) e d e d ... e e d .sR

l

l
s

s s R
s

s s R
s

s s R s R
l

1
0

( )
1

0

( )
2

0

( )
2

l
l l l1

1
1 2

2 1
2 1 2 2 ∫ ∫ ∫∑= + −−

=

∞
− − − − − −−

−

These formulas combined with the standard upper bounds for the terms of the series lead
to (5.22).

In the commutative case the formulas are

I Ic c sI se sin e ( ), ( ) cos d ,R R

0
∫τ τ τ= =τ τ

τ
− −

i.e., coincide with (5.17)). The non-commutative analog (5.22) of (5.17) is more rough, since
we do not take into account the alternating signs in the above series, hence the effects of
strong cancelations of its terms.
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