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We consider the asymptotic normalcy of families of random 
variables X which count the number of occupied sites in some 
large set. If P (z) =

∑N
j=0 pjz

j is the generating function 
associated to the random sets (i.e., there are pj choices of 
random sets with j occupied sites), we will consider the 
probability measures Prob(X = m) = pmzm/P (z), for z real 
positive. We give sufficient criteria, involving the location of 
the zeros of P (z), for these families to satisfy a central limit 
theorem (CLT) and even a local CLT (LCLT); the theorems 
hold in the sense of estimates valid for large N (we assume that 
Var(X) is large when N is). For example, if all the zeros lie 
in the closed left half plane then X is asymptotically normal, 
and when the zeros satisfy some additional conditions then X
satisfies an LCLT. We apply these results to cases in which X
counts the number of edges in the (random) set of “occupied” 
edges in a graph, with constraints on the number of occupied 
edges attached to a given vertex. Our results also apply to 
systems of interacting particles, with X counting the number 
of particles in a box Λ whose size |Λ| approaches infinity; P (z)
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is then the grand canonical partition function and its zeros are 
the Lee–Yang zeros.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this note we investigate the asymptotic normalcy of the number X of elements in 
a random set M when the expected size of M is very large. We shall be concerned in 
particular with the case in which M is a random set of edges, called occupied edges, in 
some large graph G, under certain rules which constrain the admissible configurations of 
occupied edges. Our analysis is however not restricted to such examples; in particular, 
it includes many cases of interest in statistical mechanics, for which X is the number of 
occupied sites in some region Λ ⊂ Z

d (or the number of particles in Λ ⊂ R
d).

The probability that X = m is written as

Prob{X = m} := pmzm0
P (z0)

, (1.1)

where

P (z) :=
N∑

m=0
pmzm (1.2)

is a polynomial of degree N and z0 is a strictly positive parameter; we will often take 
z0 = 1. The coefficient pm will be, in the graph counting case, the number of admissible 
configurations of occupied edges of size m. By convention we take pm = 0 if m > N or 
m < 0. In some cases we will consider P as the fundamental object of study and will 
then write XP and NP for X and N .

A simple example is that in which a configuration is admissible if the number of occu-
pied edges attached to each vertex v, dM (v), is zero or one. In this case the polynomial 
P (z) coincides with one of several definitions of the matching polynomial of the graph, 
properties of which have been studied extensively in the graph theory literature. In par-
ticular, a local central limit theorem (see below) for X has been proved in the case z0 = 1
[15]. Our primary examples in this paper will be graph-counting polynomials, which arise 
when the restriction dM (v) ∈ {0, 1} discussed above is generalized to dM (v) ∈ C(v) for 
some set C(v); we will obtain a local central limit theorem for X when C(v) = {0, 1, 2}
for all v.

The above examples are also natural objects of study in equilibrium statistical me-
chanics; there one refers to the case with dM(v) ∈ {0, 1} as a system of monomers and 
dimers, and to that with dM (v) ∈ {0, 1, 2} as a system of monomers and unbranched poly-
mers. In this setting one thinks of the edges belonging to M as occupied by particles, and 



J.L. Lebowitz et al. / Journal of Combinatorial Theory, Series A 141 (2016) 147–183 149
the parameter z0 is then the fugacity of these particles. The restriction dM (v) ∈ C(v)
with C(v) = {0, 1, . . . , cv} corresponds to hard core interactions between the particles, 
and is a special or limiting case of a more general model for which a configuration M
is assigned a Gibbs weight wM := e−βU(M), with U(M) the interaction energy of M
and β the inverse of the temperature, and pm :=

∑
{M | |M |=m} wM . pm is then called 

the canonical partition function for m particles and P (z) the grand canonical partition 
function of the system.

In this statistical mechanics setting the graph G is usually a subset of a regular lattice. 
For example, the vertices may be the sites of the lattice Zd which belong to some cubical 
box B = {1, . . . , L}d ⊂ Z

d, with edges, usually called bonds, joining nearest-neighbor 
sites; one also considers such a box with periodic boundary conditions, in which an addi-
tional bond joins any pair of sites whose coordinate vectors differ in only one component, 
in which the values for the two sites are 1 and L. Such a box contains |B| vertices and 
∼ d|B| edges. The particles are most often thought of as occupying the sites of the lattice, 
that is, the vertices of the graph, but for our examples they occupy the bonds, as noted 
above. For the monomer–dimer problem on such a box B one would have N ∼ |B|/2. 
Considering potentials U for the periodic box which are translation invariant and suffi-
ciently regular we are then in the usual situation for equilibrium statistical mechanics, 
see e.g. [32,13].

In the statistical mechanics setting there are many cases in which one can prove that 
E[X] ∼ c1N and Var(X) ∼ c2N for some c1, c2 > 0 and that X satisfies a central limit 
theorem (CLT), that is, that

Prob
{
X ≤ E[X] + x

√
Var(X)

}
∼ G(x) (1.3)

when N → ∞, where G(x) is the cumulative distribution function of the standard normal 
random variable. A discussion of different proofs is given in [13, p. 469]; most of these 
make use of the approximate independence of distant regions of Zd to write X as a sum 
of many approximately independent variables, and do not extend directly to general 
graphs without any spatial structure. See also [7] for a broad review of proof methods in 
the context of combinatorial enumeration. Here, inspired by a proof due to Iagolnitzer 
and Souillard [19] in a statistical mechanics context, we prove a CLT that requires only 
that for large N there be no zeros of P (z) in some disc of uniform size around z0, and 
that Var(X) grow faster than N2/3 as N → ∞. We describe the method in Section 2
and in Section 6 verify the variance condition, and thus obtain a CLT, for the random 
variables associated with a certain class of graph-counting polynomials; in Section 7 we 
discuss applications to statistical mechanical systems. We note here and will show later 
that when the zeros of P (z) lie in the left half plane it is sufficient for the CLT that 
Var(X) → ∞ as N → ∞.

Once one has a CLT for X, in the usual sense (1.3) of convergence of distributions, 
one would like also a local CLT (LCLT), that is, one would like to show that for large N ,
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Prob{X = m} ∼ 1√
2πVar(X)

e−(m−E[X])2/2 Var(X). (1.4)

If (1.4) holds for m belonging to some set S of integers then one speaks of an LCLT on S, 
but in the cases we will consider we will prove an LCLT on all of Z. In the statistical me-
chanics setting such a result was established for certain systems in [9]; see also [8,13]. An 
LCLT for dimers on general graphs was given by Godsil [15], with a very different proof. 
Earlier Heilmann and Lieb [18] proved that all the zeros of the attendant matching poly-
nomial P (z), whose coefficients pm enumerate incomplete matchings (monomer–dimer 
configurations) by the number m of edges (dimers), lie on the negative real axis. Harper 
[17] was the first to recognize—in a particular case of Stirling numbers—that such a 
property of a generating function P (z) meant that the distribution of the attendant 
random variable is one of a sum of independent, (0, 1)-valued, random variables; it in-
stantly opened the door for his proof of asymptotic normality of those numbers. Godsil 
used Heilmann–Lieb’s result and Harper’s method to prove a CLT for {pm}, under a 
constraint on the ground graph guaranteeing that the variance tends to infinity. Signifi-
cantly, since Heilmann–Lieb’s result and Menon’s theorem [26] implied log-concavity of 
{pm}, Godsil was able to prove the stronger LCLT by using the quantified version of 
Bender’s LCLT for log-concave distributions [3] due to Canfield [6]. We refer the reader 
to Kahn [20] for several necessary and sufficient conditions under which the variance of 
the random matching size tends to infinity, and to Pitman [28] for a broad range survey 
of the probabilistic bounds when the generating function has real roots only.

Years later Ruelle [33] found that the polynomial P (z) whose coefficients enumerate 
the unbranched subgraphs (2-matchings) of a general graph G has roots in the left half 
of the z-plane, but not necessarily on the negative real line. This result followed from 
a general localization theorem based on a classic Grace’s Theorem, the notion of Asano 
contraction and the Asano–Ruelle Lemma. (Later Wagner [37] proved counterparts of 
Ruelle’s results for a more general case of subgraphs with weighted edges by using the 
Grace–Szegö–Walsh Coincidence Theorem.) Our key observation is that here again the 
related random variable X is, in distribution, a sum of independent random variables, this 
time each having a 3-element range {0, 1, 2}. Since the range remains bounded, a CLT 
for unbranched polymers follows whenever Var(X) goes to infinity with the degree of P . 
However, only when the roots are within a certain wedge enclosing the negative real axis 
can we prove log-concavity of the distribution of X. Still we are able to prove an LCLT, 
with an explicit error term, under certain mild conditions on G.

We now summarize briefly some of our results. Assuming that the mean E[X] and 
variance Var(X) go to infinity as N → ∞, then:

1. For all z0 > 0 the random variable X satisfies an LCLT, with additive error 
O(1/ Var(X)), when all roots ζ of P lie in a wedge of opening angle 2α, α < π/2, 
centered on the negative real axis. For example, if z0 = 1 then the error is at most 
25/(πVar(X)) when Var(X) is large enough so that
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Var(X)
log3 Var(X)

≥ 25π6

33 (1 + secα)3;

the inequality is satisfied if Var(X) > 5.5 ×107 for α = 0 and if Var(X) > 2.2 ×108 for 
α = 2π/3. (We single out 2π/3 since for α < 2π/3 the distribution of X is provably 
log-concave, an extension of the classic result for the case of negative roots.)

2. For all z0 > 0 the random variable X satisfies a CLT, with additive error 
O(1/

√
Var(X)), when all roots ζ satisfy Re ζ ≤ 0.

3. The random variable X satisfies a CLT if there are no zeros of P in a disc of radius 
δ > 0 around z0 and Var(X) grows faster than N2/3; the additive error is then 
O(N1/3/ Var(X)1/2). This extends and makes completely rigorous results of [19].

4. Finally, certain of the above conditions are satisfied by many graph-counting polyno-
mials and statistical mechanical systems—for example, unbranched polymers—and 
we give an explicit LCLT or CLT in some of these cases.

The result mentioned in 1 above has also been used in [12] to establish an LCLT for 
determinantal point processes.

We should mention here the papers by Borcea and Brändén [4,5]. Though disjoint 
in content from the present paper, they contain an elegant characterization of lin-
ear operators on multivariate polynomials that preserve the property of non-vanishing 
on a prescribed open circular domain, which is the paradigm at the core of [28]. 
In a broader context our paper is not far from the field of algebraic combinatorics; 
see, for instance, Bender [3], Canfield [6] and Flajolet and Soria [11]. A key differ-
ence is that while we deal with spanning subgraphs of general graphs, the setup in 
these papers is based on the notion of a component structure having lots of symme-
try, with the focus on deriving asymptotic distributions from the analytical properties 
of a single generating function, whose coefficients enumerate the components by their 
sizes.

The outline of the rest of the paper is as follows. In Section 2 we apply the method 
of [19] to derive a CLT for the random variable X from rather weak hypotheses on the 
location of the zeros of P (z), and in Section 3 we obtain an LCLT under the stronger 
hypothesis that the zeros lie in the left half plane. In Section 4 we describe more precisely 
the class of graph-counting polynomials and what can be said about the location of 
their zeros. In Section 5 we obtain central limit theorems and, in some cases, local 
central limit theorems for graph-counting polynomials from the results of Section 3, and 
in Section 6 obtain, from the results of Section 2, central limit theorems for further 
graph-counting examples. In Section 7 we discuss briefly the applications to statistical 
mechanics. Throughout our discussions we will, rather than considering sequences of 
polynomials, say that a family P of polynomials, of unbounded degrees, satisfies a CLT 
or an LCLT when one can give estimates for the errors in the approximations (1.3) and 
(1.4), respectively, which are valid for all polynomials in P and which vanish as the 
degree N of the polynomial goes to infinity.
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2. A central limit theorem

In this section we first consider a fixed polynomial P (z) =
∑N

m=0 pmzm, as in (1.2), 
and assume throughout that pm ≥ 0 and that pN > 0, i.e., that P is in fact of degree N . 
We fix also a number z0 > 0 (a fugacity, in the language of statistical mechanics) and 
let X be a random variable with probability distribution given by (1.1). We will let ζj , 
j = 1, . . . , N , denote the roots of P .

Our first result is an estimate corresponding to an (integrated) central limit theorem. 
To state it we define, for x ∈ R,

FP (x) := 1
P (z0)

∑
m≤E[X]+x

√
Var(X)

pmzm0 = Prob
{
X − E[X]√

Var(X)
≤ x

}
, (2.1)

G(x) := (2π)−1/2
x∫

−∞

e−u2/2 du. (2.2)

Theorem 2.1. Suppose that there exists a δ > 0 such that z0 ≥ δ and |z0 − ζj | ≥ δ for 
all j, j = 1, . . . , N . Then there exist constants N0, B1, B2 > 0, depending only on δ
and z0, such that for N ≥ N0,

sup
x∈R

|FP (x) −G(x)| ≤ B1N

Var(X)3/2
+ B2N

1/3

Var(X)1/2
. (2.3)

Remark 2.2. We record here some standard results, adopting the notation of Theorem 2.1. 
For z in the disk D := {z ∈ C | |z − z0| < δ} we will fix a canonical branch of logP (z)
by defining

logP (z) := log pN +
N∑
j=1

log
(
z − ζj

)
, (2.4)

with log pN real and

log(z − ζj) := log(z0 − ζj) + log z − ζj
z0 − ζj

, (2.5)

where

Im log(z0 − ζj) ∈ (−π, π) and Im log z − ζj
z0 − ζj

∈ (−π/2, π/2). (2.6)

In (2.6) the first specification is possible since ζj cannot be a positive real number and 
the second since 

∣∣(z− ζj)/(z0 − ζj) −1
∣∣ < 1 for z ∈ D; in particular, log(z− ζj)/(z0 − ζj)

is analytic for z ∈ D. Moreover, logP (z) is real for real z, because non-real roots occur 
in complex conjugate pairs, and furthermore
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logP (z) − logP (z0) =
N∑
j=1

log z − ζj
z0 − ζj

, z ∈ D. (2.7)

Then for all z in D,

z
d

dz
logP (z) =

∑
m mpmzm

P (z) ,

(
z
d

dz

)2

logP (z) =
∑

m m2pmzm

P (z) −
(∑

m mpmzm

P (z)

)2

, (2.8)

and so

z
d

dz
logP (z)

∣∣∣
z=z0

= E[X],
(
z
d

dz

)2

logP (z)
∣∣∣
z=z0

= Var(X), (2.9)

which can be restated as

d

du
logP (euz0)

∣∣∣
u=0

= E[X], d2

du2 logP (euz0)
∣∣∣
u=0

= Var(X). (2.10)

To state the next lemma we observe that there exists an ε > 0, depending only on δ
and z0, such that if |u| ≤ ε then |euz0 − z0| ≤ min{δ/2, |z0|}, so that for |u| ≤ ε we may 
define, as in Remark 2.2,

f(u) := logE[euX ] = logP (euz0) − logP (z0)

=
N∑
j=1

log euz0 − ζj
z0 − ζj

. (2.11)

Lemma 2.3. Let δ be as in Theorem 2.1 and let ε = ε(z0, δ) be as above. Then for 
K = 2 log 2/ε3,

f(u) = uE[X] + u2

2 Var(X) + u3R(u), with |R(u)| ≤ NK. (2.12)

Proof. Suppose that |u| ≤ ε/2. Then we have, by Cauchy’s integral formula and (2.10),

f(u) = f(0) + uf ′(0) + u2

2 f ′′(0) + u3R(u)

= uE[X] + u2

2 Var(X) + u3R(u), (2.13)

where

R(u) := 1
2πi

∮
f(v)

v3(v − u) dv. (2.14)

|v|=ε
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Then from (2.11),

|R(u)| ≤
N∑
j=1

∣∣∣∣∣∣∣
1

2πi

∮
|v|=ε

log
(
evz0 − ζj
z0 − ζj

)
dv

v3(v − u)

∣∣∣∣∣∣∣
≤ 2

ε3

N∑
j=1

sup
|v|=ε

∣∣∣∣log evz0 − ζj
z0 − ζj

∣∣∣∣ < 2
ε3

N log 2. (2.15)

Here we have used |(evz0 − ζj)/(z0 − ζj)| < (δ/2)/δ = 1/2 for |v| = ε and |log(1 − t)| ≤
− log(1 − |t|) for |t| < 1; the latter is easily verified for example from the expansion 
log(1 − t) = − 

∑
k≥1 t

k/k. �
Proof of Theorem 2.1. The proof follows closely the proof of the Berry–Esseen Theorem 
given in Feller [10, Section XVI.5] and in particular is based on the “smoothing inequali-
ty” [10, Section XVI.4, Lemma 2]. If we specialize to the particular application we need, 
then the latter implies that for any T > 0,

sup
x∈R

|FP (x) −G(x)| ≤ 1
π

T∫
−T

∣∣∣∣∣ψ(t) − e−t2/2

t

∣∣∣∣∣ dt + 24
π
√

2πT
, (2.16)

where ψ(t) = E[eitY ] is the characteristic function of Y = (X − E[X])/σ, with σ =√
Var(X). We will apply this inequality with T = σ/N1/3. For |t| ≤ T , then, |t/σ| ≤

N−1/3, so that for N ≥ N0 := 8/ε3 we have t/σ ≤ ε/2 and, from Lemma 2.3,

ψ(t) = e−itE[X]/σef(it/σ) = e−t2/2−it3R(it/σ)/σ3
, (2.17)

with |R(it/σ)| ≤ NK and hence |it3R(it/σ)/σ3| ≤ K. Now let K∗ = max|u|≤K |(eiu −
1)/u|, so that

|e−it3R(it/σ)/σ3 − 1| ≤ |t/σ|3NKK∗ for N ≥ 8/ε3 and t ≤ T. (2.18)

Then

T∫
−T

∣∣∣∣∣ψ(t) − e−t2/2

t

∣∣∣∣∣ dt ≤ NKK∗
σ3

T∫
−T

t2e−t2/2 dt

≤ NKK∗
σ3

∞∫
t2e−t2/2 dt = NKK∗

√
2π

σ3 . (2.19)

−∞
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Inserting this estimate into (2.16) we obtain (2.3) with

B1 :=
√

2
π
KK∗, B2 := 24

π
√

2π
. � (2.20)

In Section 6 we will apply Theorem 2.1 to obtain central limit theorems for families 
of graph-counting polynomials and for families of polynomials arising from statistical 
mechanics. To do so we must establish that, for P in the family under consideration, 
Var(XP ) grows faster than N2/3

P . Our tool for this will be a result due to Ginibre [14], 
which we recall as Theorem 6.2 below; our next result, which is similar to Theorem 2.1, 
will be needed in the application of Ginibre’s result to graph-counting polynomials.

Proposition 2.4. Suppose that p0 and p1 are nonzero and that c1 and δ1 are positive 
constants such that (i) p1 ≥ c1p0N and (ii) |ζj | ≥ δ1, j = 1, . . . , N . Then there exists a 
constant M > 0, depending only on c1, δ1, and z0, such that E[X] ≥ MN .

Proof. For z real and nonnegative, logP (z) is well defined by the requirement that it be 
real; further,

E[X] = z
d

dz
logP (z)

∣∣
z=z0

(2.21)

and

z0
d

dz0
E[X] = Var(X) > 0, (2.22)

so that E[X] is an increasing function of z0. Thus it suffices to verify the conclusion for 
sufficiently small z0. Now we allow z to be complex, and for |z| < δ1 define as in (2.7)

g(z) := logP (z) − logP (0) =
N∑
j=1

log ζj − z

ζj
, (2.23)

where again Im log((ζj − z)/ζj) ∈ (−π/2, π/2). Now for |z| < δ1/4 we have

zg′(z) = z
d

dz

⎛
⎜⎝g(0) + zg′(0) + z2

2πi

∮
|y|=δ1/2

g(y)
y2(y − z) dy

⎞
⎟⎠

= z
p1

p0
+ z2R1(z), (2.24)

with

R1(z) := 1
2πi

∮ (2y − z) g(y)
y2(y − z)2 dy. (2.25)
|y|=δ1/2
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Since for |y| = δ1/2 and |z| ≤ δ1/4 we have 1/|y|2 = 4/δ2
1 , 1/|y − z| ≤ 4/δ1, |2y − z| <

5δ1/4, and |g(y)| ≤ log 2 (see (2.15)), we find that

|R1(z)| ≤
40
δ2
1
N log 2. (2.26)

Let z∗ = min{δ1/4, c1δ2
1/(80 log 2)}; then for 0 < z0 ≤ z∗,

E[X] = zg′(z)
∣∣∣
z=z0

≥ z0
p1

p0
− 40z2

0
δ2
1

N log 2 ≥ z0c1N

2 . (2.27)

Thus E[X] ≥ MN holds with M = z0c1/2 for z0 ≤ z∗ and with M = z∗c1/2 other-
wise. �
3. Polynomials with zeros in the left half plane

In this section we again consider a polynomial P (z) as in (1.2), and continue to 
assume that P is of degree N and that all the coefficients pm are nonnegative. Moreover, 
we assume that all roots of P lie in the closed left-half plane, and no root is zero, i.e., 
p0 > 0. For convenience we now write these roots as −ηj , so that

Re(ηj) ≥ 0 (j = 1, . . . , N), and P (z) = pN

N∏
j=1

(z + ηj). (3.1)

We will take the fugacity z0 to be 1, but our results extend easily to any z0 > 0.

3.1. A central limit theorem

Under the assumption (3.1) the derivation of a CLT given in Section 2 can be sim-
plified; moreover, the result is strengthened since we require only that Var(XP ) → ∞
as NP → ∞, in contrast to the power growth condition needed to apply Theorem 2.1. 
The key idea is to write XP as a sum of independent random variables; the central limit 
theorem then follows, for example from the Berry–Esseen theorem. In the case in which 
all the ηj are nonnegative the method goes back to Harper [17].

To decompose XP as such a sum, we partition {1, . . . , N} as J1∪J2∪J ′
2, where j ∈ J1

iff ηj is real and j ∈ J2 (respectively j ∈ J ′
2) iff Im(ηj) > 0 (respectively Im(ηj) < 0); 

the corresponding factorization of P (z) is

P (z) = pN
∏
j∈J1

(z + ηj)
∏
j∈J2

(z2 + 2 Re(ηj)z + |ηj |2). (3.2)

We then introduce independent random variables Xj , j ∈ J1 ∪ J2, where if j ∈ J1
(respectively j ∈ J2) then Xj takes values 0 and 1 (respectively 0, 1, and 2). With 
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Pj(z) = z + ηj for j ∈ J1 and Pj(z) = z2 + 2z Re(ηj) + |ηj |2 for j ∈ J2, the individual 
distribution of these random variables is

Pr{Xj = 0} = 1
Pj(1)

, Pr{Xj = 1} = ηj
Pj(1)

(j ∈ J1);

Pr{Xj = 0} = |ηj |2
Pj(1) , Pr{Xj = 1} = 2 Re(ηj)

Pj(1) ,

Pr{Xj = 2} = 1
Pj(1)

⎫⎪⎪⎬
⎪⎪⎭ (j ∈ J2).

Then E[zXj ] = Pj(z)/Pj(1) and so

E[z
∑

j∈J1∪J2
Xj ] =

∏
j∈J1∪J2

Pj(z)
Pj(1) = P (z)

P (1) = E[zXP ] (3.3)

for all z. Thus XP and 
∑

j∈J1∪J2
Xj have the same distribution, and we may identify 

these two random variables.

Theorem 3.1. Let P be a family of polynomials as in (1.2), of unbounded degrees, all of 
which satisfy (3.1). Then for each P ∈ P,

sup
x∈R

|FP (x) −G(x)| ≤ 12√
Var(XP )

. (3.4)

Consequently, if Var(XP ) → ∞ as NP → ∞ in P then P satisfies a CLT in the sense 
described in Section 1.

Proof. From [10, Section XVI.5, Theorem 2] and |Xj | ≤ 2 we have immediately that the 
left hand side of (3.4) is bounded by

6
Var(X)3/2

∑
j∈J1∪J2

E
(∣∣Xj −E(Xj)

∣∣3) ≤ 12
Var(X)3/2

∑
j∈J1∪J2

Var(Xj). � (3.5)

This theorem calls for explicit bounds for Var(XP ). From Remark 2.2,

Var(XP ) =
(
z
d

dz

)2
⎛
⎝pN

N∏
j=1

(z + ηj)

⎞
⎠
∣∣∣∣∣∣
z=1

=
N∑ ηj

(1 + ηj)2
=

N∑ Re(ηj)(1 + |ηj |2) + 2|ηj |2
|1 + ηj |4

. (3.6)

j=1 j=1
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Then since |1 + ηj |2 = 1 + 2 Re(ηj) + |ηj |2 ≥ 1 + |ηj |2 and |ηj |/(1 + |ηj |2) ≤ 1/2,

Var(XP ) ≤
N∑
j=1

(
Re(ηj)

1 + |ηj |2
+ 1

2

)
≤ N. (3.7)

On the other hand, (3.6) also yields

Var(XP ) ≥ W (XP ) := 1
4

N∑
j=1

Re(ηj)
1 + |ηj |2

. (3.8)

In our proof of the general case of the LCLT we will need Var(XP ) (respectively W (XP )) 
to bound 

∣∣E[eitXP ]
∣∣ for “small” |t| (respectively for “large” |t|). Here is a useful upper 

bound for Var(XP ). Introduce αP = maxj |arg(ηj)| (αP ∈ [0, π/2]). If α < π/2, then

Var(XP ) ≤ 4(1 + secαP )W (XP ). (3.9)

Indeed, denoting rj = Re(ηj), αj = |arg(ηj)|, we bound the j-th term in (3.6) by

rj
1 + r2

j sec2 αj
+

2r2
j sec2 αj

(1 + r2
j sec2 αj)2

≤ rj
1 + r2

j sec2 αj
+

2r2
j sec2 αj/(2rj secαj)

1 + r2
j sec2 αj

≤ Re(ηj)
1 + |ηj |2

· (1 + secαj),

and (3.9) follows. Thus, as NP → ∞, Var(XP ) and W (XP ) are of the same order of 
magnitude if αP is bounded away from π/2.

We will need a lower bound for W (XP ) that can make it easier to prove that W (XP )
diverges. To this end we define, for P ∈ P,

Δ (= ΔP ) := min
1≤j≤N

|ηj |2, f (= fP ) := p1

p0
. (3.10)

Let θj := 1/ηj , j = 1, . . . , N , be the roots of zNP (1/z). It is easy to establish that

f = p1

p0
=

N∑
j=1

θj =
N∑
j=1

Re(θj). (3.11)

Then the inequality

1
1 + |θj |2

≥ 1
2 min

j
min{1, |θj |−2}

yields
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4W (XP ) =
∑
j

Re(ηj)
1 + |ηj |2

=
∑
j

Re(θj)
1 + |θj |2

= f
∑
j

Re(θj)
f

1
1 + |θj |2

≥ f

2 min{1, |θj |−2} = f

2 min{1,Δ}. (3.12)

Thus we have proved

Lemma 3.2.

Var(XP ) ≥ W (XP ) := 1
4

N∑
j=1

Re(ηj)
1 + |ηj |2

,

W (XP ) ≥ f

8 min{1,Δ},

with Δ = ΔP and f = fP as defined in (3.10).

3.2. A local central limit theorem: log-concavity case

Let us show that the CLT proved in Section 3.1 implies an LCLT when the locations 
of the roots ζj of the polynomials P (see (3.1)) are further confined to a sharp wedge 
enclosing the negative axis in the complex plane.

Definition 3.3. A sequence an, n ≥ 0, of nonnegative real numbers is log-concave if for 
all n ≥ 1, a2

n ≥ an−1an+1.

In the factorization (3.2) of P the coefficients ηj and 1 of each linear factor, augmented 
from the right with an infinite tail of zeros, obviously form a log-concave sequence, and 
so do the coefficients |ηj |2, 2 Re(ηj), and 1 of each quadratic factor, provided that

4(Re(ηj))2 ≥ |ηj |2 ⇔ |arg(ηj)| ≤ π/3. (3.13)

In terms of the roots ζj = −ηj , the last condition is equivalent to

|arg(ζj)| ∈ [2π/3, π], (3.14)

for all non-zero roots ζj . Since the convolution of log-concave sequences is log-concave 
(Menon [26]), we see that, under the condition (3.13), the coefficients of P are also 
log-concave. This result appears as a special case in Karlin [21] (Theorem 7.1, p. 415). 
(See Stanley [36] for a more recent, comprehensive, survey of log-concave sequences.)

We say that a random variable X taking nonnegative integer values is log-concave 
distributed if the sequence {Pr{X = n}} is log-concave. Bender [3] discovered that 
an LCLT holds for a sequence {Xn} of log-concave distributed random variables if 
limn→∞ supx∈R

|FXn
(x) −G(x)| = 0 (where here FX(x) corresponds to FP (x) in (2.1)); 
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remarkably, Xn does not have to be a sum of independent random variables. Later 
Canfield [6] quantified Bender’s theorem. For this he needed a stronger notion of log-
concavity.

Definition 3.4. A sequence an, n ≥ 0, of nonnegative real numbers is properly log-concave 
if

(a) there exist integers L and U such that an = 0 iff n < L or n > U (in the terminology 
of [36], {an} has no internal zeros);

(b) for all n ≥ 1, a2
n ≥ an−1an+1, with equality iff an = 0.

Canfield showed that the convolution of properly log-concave sequences is also prop-
erly log-concave. Observe that the linear and quadratic factors of our polynomial P (z)
are properly log-concave iff |arg(ζj)| ∈ (2π/3, π]. Subject to this stronger condition, the 
coefficients of P (z) form therefore a properly log-concave sequence.

Here is a slightly simplified formulation of Canfield’s result.

Theorem 3.5 (Canfield). Suppose that X has a properly log-concave distribution and that

sup
x∈R

|FX(x) −G(x)| ≤ K√
Var(X)

.

If K > 7, K/ Var(X)1/2 < 10−7, K/ Var(X)1/4 < 10−2, then

sup
m

∣∣∣∣∣Pr(X = m) − 1√
2πVar(X)

exp
(
− (m− E[X])2

2 Var(X)

)∣∣∣∣∣ ≤ c

Var(X)3/4
,

with c := 14.5K + 4.87.

This theorem and Theorem 3.1 imply an LCLT for XP with the roots ζj satisfying 
the condition |arg(ζj)| ∈ (2π/3, π].

Corollary 3.6. If the roots ζj of P (z) satisfy |arg(ζj)| ∈ (2π/3, π], and Var(XP ) > 144 ×
107, then

sup
m

∣∣∣∣∣Pr(XP = m) − 1√
2πVar(XP )

exp
(
− (m− E[XP ])2

2 Var(XP )

)∣∣∣∣∣ ≤ 180
Var(XP )3/4

.

3.3. A local central limit theorem: the general case

While we proved the LCLT for the roots ζj in the wedge |arg(ζj)| > 2π/3 under 
a single condition, Var(XP ) → ∞, we cannot expect this condition to be sufficient 
in general. A trivial example is P (z) with purely imaginary, non-zero roots, in which 
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case the distribution of XP is supported by the positive even integers only. We will see 
shortly, however, that a stronger condition, fP min{1, ΔP } → ∞ fast enough, does the 
job perfectly.

We first state the fundamental estimate, in terms of the variance Var(XP ) and its 
lower bound W (XP ) defined in (3.8).

Theorem 3.7. Suppose Var(XP ) ≥ 1. Then setting X := XP ,

sup
m

∣∣∣∣∣Pr(X = m) − 1√
2πVar(X)

exp
(
− (m−E[X])2

2 Var(X)

)∣∣∣∣∣
≤ π

42/3
Var(X)1/3

W (X) exp
(
−41/3

π2
W (X)

Var(X)2/3

)
+ 24

πVar(X) . (3.15)

Corollary 3.8. If

W (XP ) ≥ π2

3 · 21/3 Var(XP )2/3 log(Var(XP )), (3.16)

then for X := XP ,

sup
m

∣∣∣∣∣Pr(X = m) − 1√
2πVar(X)

exp
(
− (m−E[X])2

2 Var(X)

)∣∣∣∣∣ ≤ 25
πVar(X) .

Remark 3.9. (a) For |arg(ζj)| ≡ π, we have W (XP ) ≥ (1/8)Var(XP ), see (3.9). Therefore 
the condition (3.16) is satisfied for Var(XP ) > 5.5 × 107, the last number being a close 
upper bound for the larger root of

v = 8π2

3 · 21/3 v2/3 log v.

An LCLT with the error term C/ Var(X), C left unspecified, was proved by Platonov 
[29] back in 1980.

(b) For |arg(ζj)| ∈ (2π/3, π], we have W (XP ) ≥ (1/12)Var(XP ), see (3.9). Therefore the 
condition (3.16) is satisfied for Var(XP ) > 2.2 × 108, an upper bound for the larger root 
of

v = 12π2

3 · 21/3 v2/3 log v.

The resulting error estimate, 25/(πVar(XP )), is noticeably better than the estimate 
180/Var(XP )3/4 in Corollary 3.6.

(c) In general, by (3.7) and Lemma 3.2,

Var(XP ) ≤ NP , W (XP ) ≥ p1 min{1,ΔP } (ΔP := min |ηj |2).
8p0 j
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So the condition (3.16) is certainly met if

p1

p0
min{1,ΔP } ≥ 8π2

3 · 21/3 N
2/3
P logNP . (3.17)

For the proof of Theorem 3.7 we introduce the characteristic functions φ(t) of X and 
φ∗(t) of X∗ = X − E[X]: φ(t) := E[eitX ] and φ∗(t) := E[eitX∗ ] = e−itE[X]φ(t). The 
next two lemmas give estimates for these functions. In Lemma 3.10 we use crucially the 
fact that all roots of P (z) lie in the left hand plane; this is also used in the proof of 
Lemma 3.11, although some version of this result could be obtained as in Section 2, 
using only the fact that a neighborhood of z0 = 1 is free from zeros of P (z).

Lemma 3.10. For all t ∈ [−π, π],

|φ(t)| ≤ exp
(
−4t2

π2 W (XP )
)
. (3.18)

Proof. First of all,

φ(t) = P (eit)
P (1) =

∏
j

ηj + eit

ηj + 1 . (3.19)

So, using 1 + u ≤ eu for u real, 1 − cos t = 2 sin2(t/2) ≥ 2t2/π2 for t ∈ [−π, π], and 
|1 + ηj |2 ≤ 2(1 + |ηj |2),

|φ(t)|2 =
∏
j

|ηj + eit|2
|ηj + 1|2

=
∏
j

(
1 + 2 Re ηj(cos t− 1) + 2 Im ηj sin t

|ηj + 1|2
)

≤ exp

⎛
⎝∑

j

Re(ηj)(cos t− 1)
1 + |ηj |2

⎞
⎠

≤ exp

⎛
⎝−2t2

π2

∑
j

Re(ηj)
1 + |ηj |2

⎞
⎠ .

Invoking the definition of W (XP ) in (3.8) then yields the bound (3.18) immediately. �
Unlike Lemma 3.10, the next claim and its proof are more or less standard; we give 

the argument to make the presentation more self-contained.
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Lemma 3.11. If |t| ≤ 1 then

φ∗(t) = exp
(
− t2

2 Var(X) + D(t)
)

with |D(t)| ≤ 3|t|3 Var(X). (3.20)

Proof. We write X =
∑

j∈J1∪J2
Xj as in Section 3.1. It is easy to check that Var(Xj) ≤ 1, 

and Var(Xj) = 1 iff Pr(Xj = 0) = Pr(Xj = 2) = 1/2. Introducing X∗
j = Xj − E[Xj ], 

j ∈ J1 ∪ J2, we write

φ∗(t) =
∏

j∈J1∪J2

φ∗
j (t), φ∗

j (t) := E[eitX
∗
j ]; (3.21)

here, see Feller [10, Section XVI.5],

φ∗
j (t) = 1 − t2

2 Var(Xj) + Rj(t), |Rj(t)| ≤
|t|3
6 E
[
|X∗

j |3
]
≤ |t|3

3 Var(Xj),

as |X∗
j | ≤ 2. Denoting uj := t2

2 Var(Xj) −Rj(t), and using Var(Xj) ≤ 1, we see that, for 
|t| ≤ 1,

|uj | ≤
t2

2 Var(Xj) + |t|3
3 Var(Xj) ≤

5
6 t

2 Var(Xj) ≤
5
6 .

So, using log(1 − u) = − 
∑

j>0 u
j/j, we obtain

φ∗
j (t) = exp

[
log(1 − uj)

]
= exp

[
−uj + Sj(t)

]
,

where

|Sj(t)| ≤
∑
�≥2

|uj |�


≤
u2
j

2(1 − |uj |)
≤ 3u2

j ≤ 25
12 t4 Var(Xj).

Therefore

φ∗
j (t) = exp

[
− t2

2 Var(Xj) + Dj(t)
]
,

where

|Dj(t)| = |Rj(t) + Sj(t)|

≤ |t|3 Var(Xj) + 25t4 Var(Xj) ≤ 3|t|3 Var(Xj).
3 12
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Consequently, for |t| ≤ 1,

φ∗(t) =
∏
j

φ∗
j (t) = exp

⎛
⎝− t2

2
∑
j

Var(Xj) + D(t)

⎞
⎠

= exp
(
− t2

2 Var(X) + D(t)
)
, (3.22)

with D(t) :=
∑

j Dj(t), and

|D(t)| ≤
∑
j

|Dj(t)| ≤ 3|t|3 Var(X). � (3.23)

Proof of Theorem 3.7. For any T ∈ [0, π] we write
∣∣∣∣∣Pr(X = m) − 1√

2πVar(X)
exp (m−E[X])2

2 Var(X)

∣∣∣∣∣
=

∣∣∣∣∣∣
1
2π

π∫
−π

φ(t)e−itm dt− 1
2π

∞∫
−∞

e−t2 Var(X)/2e−it(m−E[X]) dt

∣∣∣∣∣∣
≤ 1

2π

∣∣∣∣∣∣∣
∫

T≤|t|≤π

φ(t)e−itm dt

∣∣∣∣∣∣∣
+ 1

2π

∣∣∣∣∣∣∣
∫

|t|≥T

e−t2 Var(X)/2e−it(m−E[X]) dt

∣∣∣∣∣∣∣
+ 1

2π

∫
|t|≤T

∣∣∣φ∗(t) − e−t2 Var(X)/2
∣∣∣ dt. (3.24)

Let us denote the three terms in the final expression in (3.24) by I1, I2, and I3, respec-
tively. Then from Lemma 3.10 and the inequality

∫
|y|≥x

e−ay2/2 dy ≤ 2
ax

e−ax2/2 (3.25)

we have, for any T ∈ (0, π],

I1 ≤ π

8W (X)T exp
(
−4T 2

π2 W (X)
)

;

I2 ≤ 1 exp
(
−T 2

Var(X)
)
. (3.26)
πVar(X)T 2
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We now turn to I3. Let us pick T = (4 Var(X))−1/3; then T < 1 since Var(X) ≥ 1. 
Also, for |t| ≤ T , |D(t)| in Lemma 3.11 is at most 3/4 < 1. So using that lemma and the 
inequality

|ex − 1| ≤ |x|
1 − |x| (|x| < 1),

we have that for |t| ≤ T ,

∣∣φ∗(t) − e−t2 Var(X)/2∣∣ ≤ e−t2 Var(X)/2 D(t)
1 − |D(t)|

≤ 24Var(X)|t|3e−t2 Var(X)/2.

Therefore

I3 ≤ 12 Var(X)
2π

∞∫
−∞

|t|3e−t2Var(X)/2 dt = 24
πVar(X) . (3.27)

For this choice of T , the bounds (3.26) become

I1 ≤ π41/3

8
Var(X)1/3

W (X) exp
(
−41/3

π2
W (X)

Var(X)2/3

)
;

I2 ≤ 41/3

π
Var(X)−2/3 exp

(
−41/3

8 Var(X)1/3
)
. (3.28)

We notice that the bound on I1 exceeds the one on I2 since Var(X) ≥ W (X) and 
π2 > 8. Adding the bound (3.27) and twice the bound (3.28), we get the bound claimed 
in Theorem 3.7. �
4. Graph-counting polynomials

Let G be a finite graph with vertex set V and edge set E; each edge e ∈ E connects 
distinct vertices v1(e) and v2(e) (i.e., G contains no loops) and different edges may 
connect the same two vertices. We identify the (spanning) subgraphs of G with the 
subsets M ⊂ E. For v ∈ V we let dv be the degree of v in G and dM (v) be the degree of 
v in the subgraph M ; to avoid trivialities we assume that dv > 0 for all v.

Now suppose that for each v ∈ V we choose a finite nonempty subset C(v) of non-
negative integers and define a set (C) of subgraphs of G, associated with the family 
(C(v))v∈V , by

M ∈ (C) ⇔ dM (v) ∈ C(v) for all v ∈ V. (4.1)
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We assume throughout that (C) = ∅. Then the graph-counting polynomial associated 
with (C) is

P(C)(z) =
∑

M∈(C)

z|M |. (4.2)

For example, as discussed in Section 1, if C(v) = {0, 1} for each v ∈ V then (C) cor-
responds to the set of matchings in G or, in the language of statistical mechanics, to 
the set of monomer–dimer configurations on G, while if C(v) = {0, 1, 2} for all v then 
(C) is the set of unbranched polymer configurations. If C(v) = {0, 2} for all v then the 
subgraphs in (C) are unions of disjoint circuits.

The proofs of the CLT and LCLT given in later sections depend on information 
about the locations of the zeros of the polynomials P(C), and this can be obtained 
from corresponding information for certain subsidiary polynomials associated with the 
vertices. Given a nonempty finite set C of nonnegative integers and a positive integer d
we define

pC,d(z) =
∑
k∈C

(
d

k

)
zk; (4.3)

we will often write pv = pC(v),dv
. The next two results control respectively the mag-

nitudes and arguments of the roots of P(C) in terms of corresponding information for 
the roots of the pv; the proofs rely on known results, some of which are reported in 
Appendix A.

Theorem 4.1. Suppose that, for each v ∈ V , there is a constant rv > 0 such that |ζ| ≥ rv
for each root ζ of pv. Then every root ξ of P(C) satisfies |ξ| ≥ R, where

R = min
e∈E

rv1(e)rv2(e). (4.4)

Notice that pC,d(0) = 0 if and only if 0 /∈ C, so that the hypotheses of Theorem 4.1
imply that 0 ∈ C(v) for each v ∈ V .

Proof of Theorem 4.1. The proof uses Grace’s Theorem, the notion of Asano contraction, 
and the Asano–Ruelle Lemma; these topics are reviewed in Appendix A. Let Ev ⊂ E be 
the set of edges of G incident on the vertex v. To each polynomial pv there corresponds 
a unique symmetric multi-affine polynomial qv in the dv variables (zv,e)e∈Ev

such that 
qv(z, . . . , z) = pv(z). Since pv(z) = 0 for |z| < rv, Grace’s Theorem implies that qv = 0
if |zv,e| < rv, ∀e ∈ Ev. Now we define a multi-affine polynomial

Q(0)((zv,e)v∈V, e∈Ev

)
=
∏

qv
(
(zv,e)e∈Ev

)
(4.5)
v∈V
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and generate, by repeated Asano contractions (zv1(e),e, zv2(e),e) → ze, a sequence of 
polynomials Q(0), Q(1), . . . , Q(|E|), where Q(k) depends on k variables ze and (|E| − k)
pairs of uncontracted variables ze,v1(e), ze,v2(e). From the Asano–Ruelle Lemma and an 
inductive argument, Q(k)((ze), (zv,e)) = 0 when the variables satisfy |ze| < rv1(e)rv2(e), 
|ze,v| < rv. In particular, Q(|E|)((ze)e∈E) = 0 when |ze| < R for all e ∈ E. But P(C)(z) =
Q(|E|)(z, z, . . . , z), completing the proof. �
Theorem 4.2. (a) Suppose that there is an angle φ ∈ [0, π/2] such that, for each v ∈ V , 
each nonzero root ζ of pv satisfies |arg(ζ)| ∈ [π − φ, π]. Then every nonzero root ξ of 
P(C) satisfies |arg(ξ)| ∈ [θ0, π], where θ0 = π − 2φ.

(b) Suppose that the graph G is bipartite, so that V may be partitioned as V = V1 ∪ V2
with each e ∈ E satisfying v1(e) ∈ V1, v2(e) ∈ V2. Suppose further that there are angles 
φ1, φ2 ∈ [0, π/2] such that, for each v ∈ Vi, each nonzero root ζ of pv satisfies |arg(ζ)| ∈
[π − φi, π] for i = 1, 2. Then every nonzero root ξ of P(C) satisfies |arg(ξ)| ∈ [θ0, π], 
where θ0 = π − φ1 − φ2.

Proof. We adopt the notations qv and Q(k) from the proof of Theorem 4.1, and for ε > 0
define also pv,ε(z) = pv(z + ε) and qv,ε((zv,e)e∈Ev

) = qv((zv,e + ε)e∈Ev
); then qv,ε is 

the unique symmetric multi-affine polynomial such that qv,ε(z, . . . , z) = pv,ε(z). We also 
define

Q(0)
ε

(
(zv,e)v∈V, e∈Ev

)
=
∏
v∈V

qv,ε
(
(zv,e)e∈Ev

)
, (4.6)

and let Q(0)
ε , Q(1)

ε , . . . , Q(|E|)
ε be obtained by Asano–Ruelle contractions, as in the proof 

of Theorem 4.1. Finally, we define Pε by Pε(z) = Q
(|E|)
ε (z, z, . . . , z).

We assume that θ0 > 0, since otherwise the conclusion is trivial, and fix θ with 
|θ| < θ0. We claim that if, for each e ∈ E, ze belongs to the ray ρθ = {eiθx | x > 0}, 
then Q(|E|)

ε

(
(ze)e∈E

)
= 0. It follows then that Pε(z) = 0 for z ∈ ρθ, so that Pε does not 

vanish on the open set

G := { z ∈ C | z = 0, |arg(z)| < maxS }. (4.7)

But limε→0 Pε = P(C) uniformly on compacts, and P(C) does not vanish identically since 
(C) = ∅. So, by an application on G of the theorem of Hurwitz, P(C)(z) = 0 if z ∈ G. 
This is the desired conclusion.

We now prove the claim. For each vertex v we define angles φv and θv by φv = φ for 
part (a) and φv = φi, if v ∈ Vi, for part (b), and then θv = (π/2 − φi)(θ/θ0). Clearly 
|θv| < π/2 − φv and θ = θv1(e) + θv1(e) for each edge e.

Now let H and H denote respectively the open and closed right half planes, and for 
ε > 0 and v ∈ V define

Kε(v) = −(ε + eiθvH). (4.8)
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No root ζ of pv(z) can belong to eiθvH; for ζ = 0 this is trivial and for ζ = 0 follows 
from |arg(ζ)| ∈ [π − φv, π] and |θv| < π/2 − φv. Thus pv,ε(z) = 0 if z + ε ∈ eiθvH, that 
is, if z + ε /∈ −eiθvH or equivalently if z /∈ Kε(v). Grace’s Theorem then implies that 
qv,ε((zve)e∈Ev

) = 0 if zv,e /∈ Kε(v) for all e ∈ Ev. Repeatedly using the Asano–Ruelle 
Lemma, as in the proof of Theorem 4.1, we then conclude that Q(|E|)((ze)e∈E

)
= 0 if 

ze /∈ −Kε(v1(e)) ×Kε(v2(e)) for all e ∈ E.
Now, the set −Kε(v1(e)) ×Kε(v2(e)) and the ray ρθv1(e)+θv2(e) = ρθ do not intersect. 

Otherwise there would exist (s1 ≥ 0, t1), (s2 ≥ 0, t2) and x > 0 such that

−(ε + eiθv1(e)(s1 + it1))(ε + eiθv2(e)(s2 + it2)) = xei(θv1(e)+θv2(e)),

or equivalently

y1y2 = ρeiπ, yj = e
−iθvj(e)ε + (sj + itj), j = 1, 2. (4.9)

But Re(yj) ≥ 0, since sj ≥ 0 and |θj | < π/2, and hence |arg(yj)| < π/2; this is inconsis-
tent with the first equation in (4.9). This completes the proof of the claim. �
Remark 4.3. If G is disconnected and has one or more bipartite components then the 
zero-free region for P(C) obtained by applying Theorem 4.2 to each component, and using 
the fact that P(C) is the product of the polynomials for the components, may be larger 
than that obtained by applying the theorem to G as a whole.

5. Local central limit theorems for graph-counting polynomials

In this section we consider various infinite families of graphs, each with an associated 
assignment (C(v))v∈V of finite sets to vertices; we let G denote such a family and P =
P(G) denote the class of associated graph polynomials, which we now denote by PG. 
We will measure the size of a graph G by the size of its edge set E = E(G) and let 
dmax = dmax(G) denote the maximum degree of any vertex of G; for convenience we 
assume that dmax ≥ 2 (the case dmax = 1 is trivial to analyze).

For simplicity we restrict our attention to the two cases implicit in Theorem 4.2, and 
thus assume that either (a) there is a fixed angle φ ∈ [0, π/2] such that for each graph 
in G ∈ G and each v ∈ V (G), every nonzero root ζ of pv satisfies |arg(ζ)| ∈ [π − φ, π], 
or (b) each graph in G is bipartite, with V (G) partitioned as V1(G) ∪ V2(G), and there 
are fixed angles φ1, φ2 ∈ [0, π/2] such that for each G and each v ∈ Vi(G), i = 1, 2, every 
nonzero root ζ of pv satisfies |arg(ζ)| ∈ [π − φi, π]. We will give examples in which the 
results of Section 4 imply that the roots of each P ∈ P lie in the left half plane, and 
then apply the results of Section 3 to obtain a CLT or LCLT for P.

Note that the proofs of CLT and LCLT in Section 3 require two sorts of hypotheses: 
on the one hand, the roots of the polynomials must lie in the left hand plane, or in 
some more restricted region; on the other, the variance of the random variable XP , or 
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more precisely the related quantity W (XP ), must grow sufficiently fast with NP (see, 
for example, Remark 3.9). When the graphs in the family under consideration have 
bounded vertex degree the latter condition is, in our examples, automatically satisfied. 
For the more general situation with unbounded degrees one must impose conditions on 
their growth to obtain the result; we will work this out in detail only for some of our 
examples.

Example 5.1. When C(v) = C = {0, 1} for each vertex v the admissible edge configura-
tions are matchings or monomer–dimer configurations, as discussed in the introduction. 
It is well known [18] that in this case all roots of P (z) lie on the negative real axis. This 
follows also from Theorem 4.2(a); one may take φ = 0 there, using the fact that for 
any vertex v the vertex polynomial pv(z) = 1 + dvz has negative real root −1/dv. To 
obtain an LCLT from Corollary 3.6 we need to find the quantities Δ and f defined in 
(3.10). Theorem 4.2 implies that the roots −ηj of PG are negative real numbers satisfy-
ing ηj > 1/d2

max , so that Δ = min1≤j≤N |ηj |2 ≥ 1/d4
max. Further, p0 = 1 and p1 = |E|, 

since any subgraph with exactly one edge is admissible, so that f = p1/p0 = |E|. Then 
from Lemma 3.2 we have Var(X) ≥ |E|

8 d4
max

. In fact Godsil [16] (Lemma 3.5) had used 

a powerful result of Heilmann and Lieb [18] to obtain a qualitatively stronger bound 
Var(XP ) ≥ |E(G)|

(4dmax(G)−3)2 . So, using Godsil’s bound, an LCLT follows immediately from 

Corollary 3.8 and Remark 3.9(i), whenever dmax(G) grows slower than |E(G)|1/2 in the 
class of graphs G:

Theorem 5.1. If for each G ∈ G, C(v) = {0, 1} for each vertex v, and |E(G)| ≥ 2.2 ×
107 d2

max(G), then

sup
m

∣∣∣∣∣∣∣Pr(XP = m) − e
− (m−E[XP ])2

2 Var(XP )√
2πVar(XP )

∣∣∣∣∣∣∣ ≤
25 d2

max(G)
π|E(G)| .

We note that Godsil [16] used his bound for Var(X) in conjunction with Canfield’s 
theorem for log-concave distributions to get his LCLT for XP with the error bound 
O
(
d
3/2
max/|E|3/4

)
, weaker than the bound in Theorem 5.1.

Example 5.2. When C(v) = {0, 1, 2} for each vertex v the admissible edge configurations 
are unbranched subgraphs, as discussed in the introduction. In this case the vertex 
polynomial is

pv(z) = 1 + dvz + dv(dv − 1)
2 z2. (5.1)

If dv = 1 then pv has root ζv = −1, while if dv ≥ 2 the roots are

ζ±v :=
−dv ± i

√
d2
v − 2dv

. (5.2)

dv(dv − 1)
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From |ζ±v |2 = 2/
(
dv(dv − 1)

)
we see that each root ζ of pv satisfies

|ζ|2 ≥ 2
dmax(dmax − 1) ; (5.3)

note that when dv = 1 this follows from our convention dmax ≥ 2. Thus from Theorem 4.1
each root −ηj of PG satisfies

|ηj | ≥
2

dmax(dmax − 1) . (5.4)

Similarly, each root ζ of pv satisfies |arg(ζ)| = π − φv with

φv ≤ φmax := sin−1

√
dmax − 2

2(dmax − 1) ; (5.5)

when dv = 1 this is trivial and for dv ≥ 2 follows immediately from (5.2). Thus Theo-
rem 4.2(a) gives |arg(−ηj)| ≥ π − 2φmax. Since

cos(2φmax) = 1 − 2 sin2 φmax = 1
dmax − 1 > 0, (5.6)

all the roots −ηj lie in the open left-half plane; moreover, from (3.10), (5.4)

Δ = min
j

|ηj |2 ≥ 4
d2
max(dmax − 1)2 . (5.7)

As in Example 5.1, f = p1/p0 = |E|, so that from Lemma 3.2,

Var(X) ≥ |E|
2 d2

max(dmax − 1)2 . (5.8)

An LCLT then follows from Corollary 3.8 and Remark 3.9(iii) when dmax(G) grows 
logarithmically slower than |E(G)|1/12 in the class of graphs G (the precise condition 
is (5.9)).

Theorem 5.2. Suppose that for each G ∈ G and vertex v of G, C(v) is {0, 1} or {0, 1, 2}. 
If |E(G)| is large enough so that

|E(G)| ≥ 22/3π2

3 d4
max(G)λ(G)2/3 log λ(G)(

λ(G) := min{|E(G)|, |V (G)|}
)

(5.9)
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(for instance, if |E(G)| ≥ 150 d12
max(G) log3 |V (G)|), then

sup
m

∣∣∣∣∣∣∣Pr(XP = m) − e
− (m−E[Xp])2

2 Var(XP )√
2πVar(XP )

∣∣∣∣∣∣∣ ≤
50 d 4

max(G)
π|E(G)| . (5.10)

Proof. By Lemma 3.2 and Var(XP ) ≤ NP (see (3.7)), the condition of Corollary 3.8 is 
met if

p1

p0
min{1,ΔP } ≥ 8π2

3 · 21/3 N
2/3
P logNP .

By p1/p0 = |E(G)| and (5.7), this inequality is satisfied if

4|E(G)|
d4
max(G) ≥ 8π2

3 · 21/3N
2/3
PG

logNPG
. (5.11)

Now NPG
≤ λ(G) = min{|E(G)|, |V (G)|}, since 2NPG

≤
∑

v cv ≤ 2|V (G)|. Therefore 
(5.11) follows from the condition (5.9). Thus when (5.9) is satisfied the condition of 
Corollary 3.8 holds, and with (5.8) this implies (5.10). �
Remark 5.3. If dmax(G) ≤ 3 for all G ∈ G, for example if the graphs in G are all finite 
subgraphs of the planar hexagonal lattice, then φmax = π/6 in the above analysis and all 
roots −ηj of PG satisfy the condition (3.14) that |arg(−ηj)| ∈ [2π/3, π]. (It follows from 
(3.13) and (3.14) in Section 3.2 that the distribution {Pr(X = m)}m≥0 is log-concave.) 
Then from Corollary 3.8, Remark 3.9(ii), and (5.8) we obtain an LCLT with the error 
bound 1800

π|E| , provided that |E| > 1.6 · 1010.

In the next four examples we consider families of bipartite graphs, assuming, as 
discussed above, that the vertex set V (G) of each graph G is partitioned as V (G) =
V1(G) ∪ V2(G). We assume that Cv ≡ C(i), v ∈ C(i), where C(1) may differ from C(2). 
We also assume that there is a uniform bound on the vertex degrees; specifically, dv ≤ di
for v ∈ Vi(G), i = 1, 2, G ∈ G. In some cases this assumption is made for simplicity 
and one could, in principle, dispense partially or completely with it, but in others it is 
strictly necessary, at least for our methods.

Example 5.3. Here we take Cv = {0, 1} for v ∈ V1(G) and, for v ∈ V2(G), Cv =
{0, 1, . . . , c2} with c2 either 2, 3, or 4. For v ∈ V1, pv(z) = 1 + dvz as in Example 5.1, 
with a single negative real root. Moreover, for v ∈ V2, each root ζ of pv(z) satisfies 
|arg(ζ)| ∈ [π − φv, π], where φv ≤ φmax < π/2 for some angle φmax which depends on 
c2 and d2; for c2 = 2 this was shown in Example 5.2 above (with φmax = π/4) and for 
c2 = 3 or 4 was shown in [23] (see Theorem 5.1 there). Thus taking φ1 = 0 and φ2 = φmax
in Theorem 4.2(b) we see that the roots −ηj of PG satisfy |arg(−ηj)| ∈ [π − φmax, π]. 
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On the other hand, each root ζ of any pv will satisfy |ζ| ≥ r0 for some r0 > 0, so that 
Δ = min1≤j≤N |ηj |2 ≥ Δ0 > 0 uniformly for all graphs in G; for notational simplicity we 
may assume that Δ0 ≤ 1. We still have f = p1/p0 = |E(G)|, so that Var(XPG

) ≥ Δ0|E|/8
from Lemma 3.2. Furthermore, by (3.9),

Var(XPG
) ≤ (1 + secφmax)W (XPG

),

and therefore the condition (3.16) of Corollary 3.8 is satisfied if Var(XPG
) ≥ v∗, where 

v∗ is the larger root of

v1/3 = π2(1 + secφmax)
3 · 21/3 ln v.

So for Var(XPG
) ≥ v∗ from Corollary 3.8 we obtain an LCLT in the form

sup
m

∣∣∣∣∣∣∣Pr(XP = m) − e
− (m−E[XP ])2

2 Var(XP )√
2πVar(XP )

∣∣∣∣∣∣∣ ≤
C

|E(G)| , (5.12)

with C = 200/πΔ0.
With more precise information on the location of the roots of pv for v ∈ V2(G) one 

could extend this result to families in which the vertex degrees are not bounded, in the 
style of Theorem 5.2. For c2 = 2 the necessary information was obtained in the discussion 
of Example 5.2; for c2 = 3, 4 one would have to determine the locations of roots of cubic 
and quartic polynomials, respectively.

Example 5.4. Here Cv = {0, 1, 2} for v ∈ V1(G) and Cv = {0, 1, 2, 3} for v ∈ V2(G), with 
d1 arbitrary and d2 ≤ 4 (the cases C2 = {0, . . . , c2} with c2 = 1 or 2 are covered by 
earlier examples). For v ∈ V1(G) a root ζ of pv(z) satisfies |arg(ζ)| < π/4; for v ∈ V2(G)
all roots of pv(z) are ζ = −1 when dv ≤ 3, while when dv = 4 the roots of pv(z) =
1 + 4z + 6z2 + 4z3 are −1/2 and (−1 ± i)/2, so that all roots ζ satisfy |arg(ζ)| ≤ π/4. 
Thus from Theorem 4.2(b) the roots −ηj of PG satisfy |arg(−ηj)| ∈ [π − φmax, π] for 
some φmax < π/2. As in Example 5.3 we find again Δ > Δ0 for some d1-dependent Δ0, 
leading to an LCLT of the form (5.12). Again, one may also find as in Example 5.2 an 
LCLT for a family of graphs in which d1(G) can increase with |E(G)|.

Example 5.5. This example relies on numerical computations, although one could prob-
ably justify these by obtaining rigorous bounds. We take Cv = {0, 1, 2} for v ∈ V1(G)
and, for v ∈ V2(G), Cv = {0, 1, . . . , c2} with c2 either 3 or 4. The possible values of d1
and d2 are shown in Table 1; for example, one may take d1 = 3, c2 = 3, and d2 = 5, 6, 
or 7. There are a total of five possible examples. Also shown are angles φ1, φ2, obtained 
by computation with Maple, such that for v ∈ Vi (i = 1, 2), each root ζ of pv(z) lies in 
[π−φi, π]. Since in each case φ1 +φ2 < π/2 we obtain an LCLT of the form (5.12) as in 
the two previous examples.
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Table 1
Possible values of d1 and d2 with corresponding values of φ1 and φ2.

c2 = 3 c2 = 4
d1 φ1 d2 φ2 d2 φ2

3 0.1666666666 · · ·π 5, 6, 7 0.3276761158 · · ·π 5 0.30π
4 0.1959132762 · · ·π 5 0.2932617986 · · ·π

Example 5.6. In the examples considered above, each Cv has been of the form {0, 1, . . . , k}
for some k. Now we take Cv = {0, 1} for v ∈ V1(G), but for v ∈ V2(G) take Cv to be 
either {0, 2} or {0, 2, 4}. To avoid vertices which are effectively disconnected from the 
rest of the graph we assume that dv ≥ 2 for v ∈ V2(G), and again assume that dv ≤ di
for v ∈ Vi(G), i = 1, 2, with d1 and d2 fixed. Again pv(z), v ∈ V1, has a single negative 
real root, while for v ∈ V2(G), pv(z) = p̃v(z2), and one finds easily that p̃(w), which is 
either linear or quadratic, has only negative real roots, so that pv has purely imaginary 
roots. Thus taking φ1 = 0 and φ2 = π/2 in Theorem 4.2(b) we see that the roots −ηj
of PG satisfy Re(−ηj) ≤ 0, so that a CLT will follow from Theorem 3.1 once we verify 
that Var(XP ) → ∞ as NP → ∞ in the family P under consideration.

Since in this case the roots −ηj of P may lie on the imaginary axis, the estimates that 
we have been using for the variance, which begin with (3.8), are no longer effective. On 
the other hand, from (3.6) we have

Var(XP ) ≥ 1
2

NP∑
j=1

|ηj |2
(1 + |ηj |2)2

≥ NP

2 min
j

{
|ηj |2, |ηj |−2}. (5.13)

Since d1 and d2 are fixed we have upper and lower bounds 0 < r ≤ |ζ| ≤ R on the 
magnitudes of the roots ζ of the pv(z), and Theorem 4.1, together with a corresponding 
result, with a similar proof, for upper bounds, implies that r2 ≤ |ηj |2 ≤ R2. NP is the 
size of the largest admissible configuration of occupied edges in G; let M ⊂ E be an 
admissible configuration with |M | = NP . Each edge of M is incident on a unique vertex 
of V1, and every vertex of V2 must be joined by an edge of E to one of these vertices, 
since if v ∈ V2 were not so joined then two edges incident on v could be added to M . 
Thus |V2| ≤ d1NP , and since |E| ≤ d2|V2|, NP ≥ |E|/d1d2. From (5.13) we thus have

Var(XP ) ≥ |E|
d1d2

min
{
r2, R−2}. (5.14)

Remark 5.4. Families of graphs described in Examples 5.3 and 5.6 may be used to 
model the absorption of dimers, trimers, or certain more complicated molecules on the 
two-dimensional square lattice (see, e.g., [27]) and thus obtain LCLTs for the associated 
graph counting polynomials. For example, let GΛ be the graph whose vertices are the 
points of a rectangle Λ ∈ Z

2, with edges connecting nearest-neighbor vertices; GΛ is 
bipartite with partition determined by vertex parity. Subgraphs obtained from C(1) =
{0, 1} and C(2) = {0, 1, 2} may be interpreted as configurations of absorbed dimers 
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and trimers, with the trimers centered on vertices of V2; the trimers, in contrast to those 
considered in [27], may be either straight or bent. Taking C(2) = {0, 2} as in Example 5.6
gives configurations involving trimers only. Other molecular shapes may be included by 
enlarging C(2).

6. A central limit theorem for graph-counting polynomials

To obtain the LCLTs proved in Section 5 we had to assume conditions guaranteeing 
that the zeros of a graph-counting polynomial P all lie in the open left half-plane. As 
an application of Theorem 2.1 we will here show that a CLT holds under a much less 
stringent condition, satisfied by a broad class of graph-counting polynomials P : that the 
zeros of P avoid a neighborhood of the point z0 on the positive real line. To obtain a 
CLT from Theorem 2.1 we need also the condition that Var(XP ) � N

2/3
P . We will show 

that this latter condition holds, with room to spare, when, as we assume throughout this 
section, P (z) is the graph-counting polynomial for a graph G such that for each vertex 
v of G,

Cv = {0, 1, . . . , cv} (6.1)

for some cv ≥ 1.

Theorem 6.1. Fix z0 > 0 and suppose that for some δ with 0 < δ < z0, P (z) :=∑NP

m=0 pmzm satisfies P (z) = 0 if |z| < δ or |z − z0| < δ. Then with FP (x), G(x) as in 
(2.1), (2.2),

sup
x∈R

|FP (x) −G(x)| ≤ BN
−1/6
P , (6.2)

where the constant B depends only on z0, δ, and dmax(G).

Proof. From the given hypotheses and the fact that p0 = 1 and p1 = |E(G)| ≥ NP we can 
apply Proposition 2.4 (with c1 = 1) to conclude that E[X] ≥ B1N , where B1 depends 
on δ. Then we obtain (6.2) from Theorem 2.1 once we show that Var(XP ) ≥ B2E[XP ], 
where B2 may depend on dmax(G). For this we use

Lemma 6.2. (See Ginibre [14].) Let X be a random variable taking nonnegative integer 
values and let Tm := m! Pr(X = m). If for some A > −1 and all m, 0 ≤ m ≤ N − 2,

Tm+2

Tm+1
≥ Tm+1

Tm
−A, (6.3)

then

Var(X) ≥ E[X]
1 + A

. (6.4)
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Proof. We give the proof for completeness. Observe first that

E

[
TX+1

TX

]
=
∑
m≥0

(m + 1) Pr(X = m + 1) = E[X]. (6.5)

So

(1 + A)2E[X]2 =
(
E

[
TX+1

TX
+ XA

])2

≤ E

[(
TX+1

TX
+ XA

)2
]

= E

[(
TX+1

TX

)2
]

+ 2AE

[
X

TX+1

TX

]
+ A2E[X2]

=: R1 + R2 + R3. (6.6)

Here, since mTm+1/Tm = (m + 1)m Pr(X = m + 1)/ Pr(Xm),

R2 = 2A
∑
m≥0

(m + 1)mPr(X = m + 1) = 2AE
[
X(X − 1)]. (6.7)

Furthermore, using (6.3) and (6.5),

R1 ≤ E

[
TX+1

TX
·
(
TX+2

TX+1
+ A

)]

=
∑
m≥0

(m + 2)(m + 1) Pr(X = m + 2) + AE[X]

= E
[
X(X − 1)

]
+ AE[X]. (6.8)

Combining (6.6), (6.7) and (6.8), we conclude that

(1 + A)2E[X]2 ≤ (1 + A)2 E[X2] − (1 + A)E[X],

which is equivalent to (6.4). �
Naturally our next step is to prove that the distribution of XP meets the condition 

of (6.3) of Lemma 6.2.

Proposition 6.3. For all z0 > 0 the quantities Tm = m!pmzm0 /P (z0) satisfy (6.3) with 
A = (2α + 1)z0, where α := maxv∈V [dv − cv]+.

To prove Proposition 6.3 we first establish a lemma relating pm+1 and pm+2 to pm. 
Let Mm be the set of admissible subgraphs with m edges, so that pm = |Mm|, and 
for each M ∈ Mm let K1(M) and K2(M) be the numbers of subgraphs in Mm+1 and 
Mm+2, respectively, which contain M ; equivalently, we may introduce
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E1(M) = {e | e ∈ E \M, {e} ∪M ∈ Mm+1},

E2(M) = {{e1, e2} | e1, e2 ∈ E \M, {e1, e2} ∪M ∈ Mm+2},

with e1 = e2 in the second line, and define K1(M) = |E1(M)|, K2(M) = |E2(M)|. We 
will regard K1 and K2 as random variables, furnishing Mm with the uniform proba-
bility measure Prob(M) = 1/pm. It turns out that the ratios pm+1/pm, pm+2/pm are 
proportional to the expectations E[K1] and E[K2] respectively.

Lemma 6.4.

pm+1 = 1
m + 1

∑
M⊂Mm

K1(M) = E[K1]
m + 1 pm, (6.9)

pm+2 = 2
(m + 2)(m + 1)

∑
M⊂Mm

K2(M) = 2E[K2]
(m + 2)(m + 1) pm. (6.10)

Proof. Let S1 = {(M, e) | M ∈ Mm, e ∈ E1(M)} and notice that |S1| =∑
M∈Mm

K1(M). S1 may be put in bijective correspondence with S′
1 = {(M ′, e) |

M ′ ∈ Mm+1, e ∈ M ′}, via the correspondence (M, e) ↔ (M ′, e) with M ′ = M ∪ {e}; 
here we use the fact that each C(v) has the form (6.1), which implies that the sub-
graph obtained by deleting an edge from an admissible subgraph is admissible. Clearly 
|S′

1| = (m + 1)pm+1, and (6.9) follows from |S1| = |S′
1|. Similarly, (6.10) is obtained 

from the correspondence of S2 = {(M, {e1, e2}) | M ∈ Mm, {e1, e2} ∈ E2(M)} with 
S′

2 = {(M ′, {e1, e2}) | M ′ ∈ Mm+2, e1, e2 ∈ M ′, e1 = e2}. �
Proof of Proposition 6.3. By Lemma 6.4 and the definition of Tm in Proposition 6.3,

Tm+2

Tm+1
− Tm+1

Tm
= z0

(
2E[K2]
E[K1]

−E[K1]
)
.

Let us bound E[K2] from below. To this end notice that we may obtain E2(M) by 
choosing a pair {e1, e2} of distinct edges from E1(M) and then rejecting this pair if 
{e1, e2} ∪M is not admissible, which can happen only if e1 and e2 share a vertex v with 
dM (v) ≥ cv − 1. Thus if we first choose e1 with endvertices v, v′ we will reject at most 
dv − cv + dv′ − cv′ ordered edge pairs (e1, e2); this counts unordered edge pairs twice, 
and so we find that

K2(M) ≥
(
K1(M)

2

)
− αK1(M), α := max

v∈V
[dv − cv].

Consequently, as E[K2
1 ] ≥ E[K1]2,

2E[K2] −E[K1]2 ≥ E[(K1)2] − 2αE[K1] − E[K1]2 ≥ −(2α + 1)E[K1],
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and thus

Tm+2

Tm+1
− Tm+1

Tm
≥ −(2α + 1)z0,

proving Proposition 6.3. �
By Ginibre’s result, we then have

Var(XP ) ≥ E[XP ]
1 + (2α + 1)z0

.

This completes the proof of Theorem 6.1. �
Corollary 6.5. Suppose that G is a family of graphs such that for each vertex v of a graph 
G ∈ G, dv ≤ dmax for some fixed dmax and Cv has the form (6.1) with cv ≤ 4. Then for 
G ∈ G and P = PG,

sup
x∈R

|FP (x) −G(x)| ≤ B0N
−1/6
P , (6.11)

where the constant B0 depends only on z0 and dmax.

Proof. We must verify that the hypotheses of Theorem 6.1 are satisfied with some uni-
form choice of δ. First, as discussed in Example 5.3, it follows from cv ≤ 4 that there is 
then an angle φmax (which may depend on dmax), with 0 ≤ φmax < π/2, such that, for 
any v, each root ζ of pv(z) satisfies |arg(ζ)| ∈ [π − φmax, π]. Thus taking φ = φmax in 
Theorem 4.2(a) we see that the roots ζj of P satisfy |arg(ζj)| ∈ [π − 2φmax, π], and so 
for any z0 > 0 there will be a neighborhood of z0, which can be chosen uniformly in G, 
which is free from zeros of P . Moreover, the condition dv ≤ dmax implies that the roots 
of pv(z) are uniformly bounded away from zero, and then by Theorem 4.1 so are the 
roots of P . �
7. Applications to statistical mechanics

In this section we discuss briefly some applications of the results of Section 2 to 
the statistical mechanics of classical lattice systems; we refer the reader to [32] for the 
necessary background. For a system in a finite subset Λ of the lattice Zd, at inverse 
temperature β, the partition function P (β, z; Λ), a polynomial in z of degree |Λ|, is a 
generating function which may, for example, count the number of particles present. One 
also is interested in the pressure

Π(β, z) = lim
d

logP (β, z; Λ) ; (7.1)

Λ↗Z |Λ|
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the existence of the limit in (7.1) can be proved in many cases. In the limit the zeros 
of P (β, z; Λ), called Lee–Yang zeros, can approach the positive z-axis and thus cause 
singularities in the pressure at these physically relevant values of z. However, if the 
positive fugacity z0 is not an accumulation point of such zeros, or equivalently if Π(β, z)
is analytic at z0, and we assume for the moment that

lim
Λ↗Zd

Var(XΛ)/|Λ|2/3 = ∞, (7.2)

where XΛ is the random variable obtained from P (β, z; Λ) via (1.1) and (1.2), then 
Theorem 2.1 shows that the family {XΛ}, as Λ increases, satisfies a CLT.

Remark 7.1. This approach to obtaining a CLT in statistical mechanics originated in [19], 
which considers only translation invariant systems with nearest-neighbor interactions. 
Theorem 2.1 strengthens and gives a complete proof of the result there. In contrast to 
other ways of proving such a CLT (see the discussion in Section 1), the method here 
applies even when the interactions are not translation invariant, although this was not 
noted in [19]. We also observe here that Dobrushin and Shlosman [8] proved a local “large 
and moderate deviation” result for X which implies a LCLT under a further locality
condition, which rules out situations in which all the zeros are close to the imaginary 
axis.

Various cases are known in which there exist fugacities z0 > 0 with a neighborhood 
free of Lee–Yang zeros; we briefly describe some of these.

• In a seminal paper [24], see also [38], Lee and Yang proved that, for Ising spin 
systems with ferromagnetic interactions, all the zeros of P (z, β; Λ) lie on the unit 
circle, |z| = 1. Thus the family XΛ, where in this case XΛ is the number of up spins 
in Λ, satisfies a CLT for z0 = 1. More recent references about Lee–Yang zeros can 
be found in [35,34].

• In general, one can show [32] that (i) Π(β, z) is analytic on the positive real z-axis, if 
β is sufficiently small (no phase transitions at high temperature), and (ii) P (β, z; Λ)
is nonzero, and hence Π(β, z; Λ) is analytic, in a disc |z| ≤ R(β; Λ), with R(β) :=
infΛ R(β; Λ) > 0, for all β > 0, so that Π(β, z) is analytic for |z| < R(β). Each of 
these results yields a CLT for the corresponding real fugacities z0.

• The behavior of the zeros for other interactions has been investigated extensively, 
both analytically and numerically (see [22,23] and references therein). One can show 
[23], for certain classes of interactions U(σ), that for some δ > 0 each zero of 
P (β, z; Λ) satisfies Re ζ < −δ; for these systems, Xβ,Λ satisfies the conditions of 
Corollary 3.8 and thus an LCLT. In other cases one can prove [22,23] that for β
large the zeros stay away from the positive z-axis and Xβ,Λ thus satisfies a CLT by 
Theorem 3.1. Such CLT have been obtained by other methods; see for example [9]
and the discussion in [13].
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In some cases in which the zeros do approach the real z-axis at some z0 in the Λ ↗ Z
d

limit, it is known that the fluctuations in Xβ,z0;Λ are in fact not Gaussian in the Λ ↗ Z
d

limit [25,1].
We finally want to indicate how the assumption (7.2) may be justified. From Propo-

sition 2.4 we can conclude that E[X] ≥ M |Λ| for some M > 0, once we verify the 
hypotheses of that result. Condition (i), that p1 ≥ c1p0|Λ|, follows easily from the def-
inition of P (β, z; Λ) (see [32]). Condition (ii) follows from the fact, mentioned above, 
that no zeros of P (β, z; Λ) lie in the disc |z| < R(β). With this, Ginibre’s result Theo-
rem 6.2 gives Var(Xβ,Λ) ≥ M |Λ|/(1 + A). We need to know, of course, that (6.3) holds 
for the systems under consideration here. In fact this is true more generally, as we show 
in Appendix B (a weaker version of this result is quoted from a “private communication” 
mentioned in [14], but no proof is given).

Acknowledgments

The work of J.L.L. was supported in part by National Science Foundation Grant DMR 
1104500 and the Air Force Office of Scientific Research Grant FA9550-16. The research of 
B.P. was supported by the National Science Foundation under Grant No. DMS 1101237. 
We thank S. Goldstein for a helpful discussion and Dima Ioffe for bringing [8] to our 
attention. We are grateful to the Editor for her unflagging effort to expedite the refereeing 
process. The expert referees provided us with constructive critical feedback and insightful 
comments, that ranged from pointing out the missing sources to technical improvements 
which allowed us to clarify Theorem 4.2 and strengthen Theorem 5.2.

Appendix A. Grace’s Theorem and Asano contractions

Theorem A.1 (Grace’s Theorem). Let P (z) be a complex polynomial in one variable of 
degree at most n, and let Q(z1, . . . , zn) be the unique multi-affine symmetric polynomial 
in n variables such that Q(z, . . . , z) = P (z). If the n roots of P are contained in a closed 
circular region K and z1, . . . , zn /∈ K, then Q(z1, . . . , zn) = 0.

Here a closed circular region is a closed subset K of C bounded by a circle or a 
straight line. If P is in fact of degree k with k < n then we say that n − k roots of P
lie at ∞ and take K noncompact. For a proof of the result see Polya and Szegö [30, V, 
Exercise 145]. (We remark that one should perhaps use the Riemann sphere here instead 
of the complex plane, but for notational simplicity it is convenient to work with C. We 
leave to the reader the task of compactifying C by a point at infinity whenever useful.)

Lemma A.2 (Asano–Ruelle Lemma). (See [2,31].) Let K1, K2 be closed subsets of C, 
with K1, K2 /� 0. If Φ is separately affine in z1 and z2, and if

Φ(z1, z2) ≡ A + Bz1 + Cz2 + Dz1z2 = 0
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whenever z1 /∈ K1 and z2 /∈ K2, then

Φ̃(z) ≡ A + Dz = 0

whenever z /∈ −K1 ·K2.

Here we have written −K1 ·K2 = {−uv | u ∈ K1, v ∈ K2}. The map Φ �→ Φ̃ is called 
Asano contraction; we denote it by (z1, z2) → z.

Appendix B. Ginibre’s theorem for particle systems

We consider a set Λ of N sites and populate these with a random configuration Ym of 
distinguishable (but identical) particles, at most one particle per site, in such a way that 
the probability of having exactly m sites occupied is given as in (1.1) by pmzm0 /P (z0), 
where P (z) =

∑N
m=0 pmzm and

pm = 1
m!
∑
Ym

e−U(Ym). (B.1)

In (B.1) the sum is over ordered m-tuples Ym = (y1, . . . , ym) ∈ Λm with yi = yj for 
i = j, and U(Ym) = U(y1, . . . , ym) is the potential energy of the system when site yi
is occupied by particle i, i = 1, . . . , m, and the remaining N −m sites are empty. The 
energy U is invariant under permutation of its arguments. It will be convenient to allow 
sums such as that of (B.1) to run over all Ym ∈ Λm, so we define U(y1, . . . , ym) = +∞
whenever yi = yj for any i, j. Then the factor m! in (6.3) accounts for the possible 
orderings, and

Tm = zm0
P (z0)

∑
Ym∈Λm

e−U(Ym). (B.2)

Let us define functions V (Ym|xm+1) and W (Ym|xm+1, xm+2) by the requirement that 
they be +∞ when any two arguments, among xm+1, xm+2, and the yj ’s, coincide, and 
otherwise satisfy

U(Ym+1) = U(Ym) + V (Ym|ym+1), (B.3)

U(Ym+2) = U(Ym) + V (Ym|ym+1) + V (Ym|ym+2)

+ W (Ym|ym+1, ym+2). (B.4)

Note that

V (Ym+1|ym+2) = V (Ym|ym+2) + W (Ym|ym+1, ym+2). (B.5)
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For any function F we define F+ = max{F, 0} and F− = min{F, 0}. With this notation 
the two key hypotheses needed for the result are

D := sup
0≤m≤|Λ|−2

sup
Ym+1∈Λm+1

∑
ym+2∈Λ

(
1 − e−βW+(Ym|ym+1,ym+2)

)
dy < ∞, (B.6)

and

−B := inf
0≤m≤|Λ|−1

inf
Ym+1∈Λm+1

V (Ym|ym+1) > −∞. (B.7)

Note that it follows from (B.7) that for any m and Ym+2 ∈ Λm+2,

V (Ym|ym+1) + W−(Ym|ym+1, ym+2) ≥ −B, (B.8)

since if W (Ym|ym+1, ym+2) ≥ 0 then this comes directly from (B.7), while otherwise, 
with (B.5), it comes from (B.7) with m replaced by m + 1.

Remark B.1. These conditions look somewhat artificial for the general potentials we 
are considering here, but more natural in the case of pair interactions, when U(Ym) =∑

1≤i�=j≤m φ(yi, yj). Then

D = sup
y∈Λ

∑
x∈Λ

(
1 − e−βφ(x,y)) and −B = inf

x∈Λ
inf

Λ′⊂Λ

∑
y∈Λ′, y �=x

φ(x, y). (B.9)

The next result was stated in [14] but only for the pair potentials of Remark B.1; the 
proof was not given but was attributed to a private communication and a preprint.

Theorem B.2. Suppose that (B.6) and (B.7) hold. Then for m ≤ N − 2,

T 2
m+1 − TmTm+2 ≤ zeβBDTmTm+1. (B.10)

Proof. We make a preliminary calculation:

e−β[V (Ym|x)+W (Ym|x,y)] = e−βV (Ym|x)[(e−βW (Ym|x,y) − 1
)

+ 1
]

≥ e−β[V (Ym|x)[e−βW−(Ym|x,y)](e−βW+(Ym|x,y) − 1
)

+ 1
]

≥ eβB
(
e−βW+(Ym|x,y) − 1

)
+ e−βV (Ym|x), (B.11)

where we have used (B.8). Now with this,

T 2
m+1 − TmTm+2 = z2m+2

P (z0)2
∑

Xm⊂Λ

∑
Ym⊂Λ

∑
x,y∈Λ

e−β[U(Xm)+U(Ym)+V (Ym|y)]

×
[
e−βV (Xm|x) − e−β[V (Ym|x)+W (Ym|x,y)]]
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≤ z2m+2

P (z0)2
∑

Xm⊂Λ

∑
Ym⊂Λ

∑
x,y∈Λ

e−β[U(Xm)+U(Ym)+V (Ym|y)]

×
[(
e−βV (Xm|x) − e−βV (Ym|x))− eβB

(
e−βW+(Ym|x,y) − 1

)]
:= R1 + R2, (B.12)

where R1 arises from the term 
(
e−βV (Xm|x) − e−βV (Ym|x)) and R2 from the term 

−eβB
(
e−βW+(Ym|x,y) − 1

)
. We may average the formula for R1 given in (B.12) with 

the equivalent formula obtained by interchanging the Xm and Ym summation variables 
to obtain

R1 = − z2m+2

2P (z0)2
∑

Xm⊂Λ

∑
Ym⊂Λ

e−β[U(Xm)+U(Ym)]

×
[∑

x∈Λ

(
e−βV (Xm|x) − e−βV (Ym|x))]2

≤ 0. (B.13)

For R2 we can use (B.6) to estimate the sum over x and thus obtain

R2 ≤ eβBD
z2m+2

P (z0)2
∑

Xm⊂Λ

∑
Ym⊂Λ

∑
y∈Λ

e−β[U(Xm)+U(Ym)+V (Ym|y)]

= zeβBDTmTm+1. (B.14)

Now (B.10) follows from (B.13) and (B.14). �
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