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Thermal Conductivity

We want to consider models that are locally chaotic, that means models
constituted by ’simple’ chaotic systems coupled between them by an
interaction, either by a smooth potential or by collisions. The uncoupled
chaotic systems can be of deterministic dynamics nature or be perturbed
by some energy conserving noise. All the exchange of energy between the
system are regulated by the hamiltonian mechanism. From this point of
view there is, at least conceptually, not so much difference between a
chaotic deterministic or a stochastic systems.

These models are more approachable than systems like FPU, where even

though non-linearity is important, only the large coupled system will have

some chaotic properties. Furthermore one can study weak coupling limits

in this locally chaotic situation.



Microscopic models for heat conductions

Locally chaotic: elementary systems, chaotic or stochastic
(energy preserving), coupled by smooth interaction.

▸ Coupled Sinai Billiards

▸ Coupled geodesic flows in negative curvature manifolds

▸ Coupled anharmonic oscillators with energy conserving
stochastic perturbation.

We want to study how energy diffuse macroscopically in these
models.
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Smooth coupled dynamics

px ∈ R, ,qx ∈ M, x ∈ Λ, ∣Λ∣ = N or Λ = Z.

Hε = ∑
x

[
p2
x

2
+U(qx) + εV (qx − qx−1)]

= ∑
x

[ex + εV (qx − qx−1)] = ∑
x

eεx

q̇x = px

ṗx = ε∇V (qx+1 − qx) − ε∇V (qx − qx−1) − local dynamics

Local chaotic or stochastic dynamics conserve {ex}x , one
parameter family of equilibrium measures:

dµβ =
e−βHε

Zβ
∏
x

dpxdqx β = T−1
> 0
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eεx =
p2
x

2
+U(qx) + εV (qx − qx−1) Energy of system x .

d

dt
eεx = ε (x−1,x − x ,x+1) local conservation of energy.

x ,x+1 = −pxV ′
(qx+1 − qx) hamiltonian energy currents
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Non-stationary behavior

We would like to prove that

1

N
∑
x

G(x/N)eεx(N2t) Ð→
N→∞

∫ G(y)u(t, y)dy

with u(t, y) solution of the nonlinear heat equation:

∂tu = ∂y (Dβ(u)∂y u)

with the thermal diffusivity defined by the Green-Kubo formula:

Dβ(ε) = ε
2χ−1

β ∑
x∈Z
∫

∞

0
⟨x ,x+1(t)0,1(0)⟩β dt

χβ = ∑
x

(< eεxeε0 >β − < eε0 >
2
β) > 0, β = β(u)

Not clear under which initial conditions such limit would be true
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Equilibrium Fluctuations: Linear response

Here is a theorem that has a clear and precise mathematical
statement:
Assuming that the corresponding limits exist, we have

D(ε) =
1

χβ
lim
t→∞

1

t
∑
x∈Z

x2 [< eεx(t)eε0(0) >β − < eε0 >
2
β]

Notice that

[< eεx(t)eε0(0) >β − < eε0 >
2
β]

∑x(< eεxeε0 >β − < eε0 >
2
β

= pt(0, x), ∑
x

pt(0, x) = 1

if positive can be seen as a transition probability of a random walk,
whose D is the asymptotic variance.
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Linearized heat equation

Recall

pt(x , y) =
< ex(t)ey(0) >β − ē2

χ(β)

we already know that 1
t ∑x x2pt(0, x) → D.

Conjecture:

NpN2t([Nx], [Ny]) Ð→
N→∞

(2πD)
−1/2 exp(−

(x − y)2

2tD
)

i.e. the limit follows the linearized heat equation

∂tp = D∂yy p

this is more challenging than proving existence for D.
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Stationary states: Fourier’s Law

Many approach try to derive directly the stationary Fourier Law
from the stationary state:

r
Tl T

lim
N→∞

N ⟨x ,x+1⟩ss

∆T
= κ =

χ

T 2
D

J = −κ ∇T (y)

This is mathematically more difficult, since the space-time sclae is
hiddel in the stationary state.
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Weak coupling: ε→ 0

A two step approach. First a Van Hove type limit:
ε→ 0 and t Ð→ ε−2t:

Jx .x+1(t) = ε∫
ε−2t

0
x ,x+1(s)ds

Results for some local caotic dynamics:

▸ Liverani-Olla (JAMS 2012) Anharmonic oscillators +
stochastic perturbation acting independently on each particle
conserving ∣px ∣

2, dimension ν ≥ 2.

▸ Liverani-Dolgopiat (CMP 2012) Uniformly hyperbolic
dynamics (’geodesic flow in negative curvature manifolds’:
deterministic).
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Weak coupling Limit

Autonomous stochastic evolution of the energies:

Theorem

EEE
ε
x (t) = eεx(ε

−2t)
in law
Ð→
ε→0

EEEx(t)

solution of the system of SDE:

dEEEx(t) = dJ̃x−1,x − dJ̃x ,x+1

dJ̃x ,x+1 = α(EEEx(t),EEEx+1(t)) dt + γ(EEEx(t),EEEx+1(t)) dwx ,x+1(t)

{wx ,x+1(t)}x independent Wiener processes,

α(EEEx ,EEEx+1) = eU(EEE)(∂EEEx+1 − ∂EEEx ) [e−U(EEE)γ2
(EEEx ,EEEx+1)]

γ2
(EEE0,EEE1) = ∫

∞

0
⟨j0,1(t)j0,1(0)⟩ε=0,EEE0,EEE1

dt
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Weak coupling

α(EEEx ,EEEx+1) = eU(EEE)(∂EEEx+1 − ∂EEEx ) [e−U(EEE)γ2
(EEEx ,EEEx+1)]

γ2
(EEE0,EEE1) = ∫

∞

0
⟨j0,1(t)j0,1(0)⟩ε=0,EEE0,EEE1

dt

∬R×M
F (

p2

2
+U(q))

e−β(
p2

2
+U(q))dp dq

Z−1(β)

= ∫

∞

0
F (EEE)e−U(EEE)−βEEEdEEE

∏
x

e−U(EEEx)−βEEEx dEEEx , β > 0

reversible stationary probabilites on RZ
+

for the energy stochastic
dynamics.
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Macroscopic Diffusion from the energy model

A further diffusive space-time scaling can be effectued in order to
obtain the heat equation from this GL stochastic dynamics
(another non-gradient stochastic dynamics, but reversible)
(C. Liverani, S. Olla, M. Sasada, in progress)

< EEENx(N2t)EEENy(0) >β − ĒEE
2
Ð→
N→∞

χ̃β
e
−
(x−y)2

2t ˜Dvhl

(2πD̃vhl)
−1/2

D̃vhl ≠ D



Convergence of Green-Kubo formula

This should be a less ambitious program: just prove the
convergence of the Green-Kubo formula for the thermal
conductivity:

D = ε2χ−1
β ∑

x∈Z
∫

∞

0
⟨x ,x+1(t)0,1(0)⟩β dt ,

x ,x+1 = px∇V (qx+1 − qx).

No result for deterministic hamiltonian models.
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Convergence of the Green-Kubo formula

C. Bernardin, S.O., JSP 2011

Theorem
If the hamiltonian dynamics is perturbed by a velocity flip random
dynamics, then we have the existence of

lim
λ→0
∫

∞

0
e−λs
∑
x

⟨x ,x+1(s)0,1(0)⟩ ds

This is also true for more general stochastic perturbation with
generator L = A + S , with Spx = −γpx and conserving parity in p.
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Strategy for Green-Kubo for the deterministic dynamics
joint work (in progress) with
C. Bernardin, F. Huveneers, J. Lebowitz, C. Liverani.

▸ Take a system of ε-coupled chaotic dynamics (Sinai’s billiards,
geodesic flows ...) where we control the exponential decay of
correlations (when non-interacting).

▸ Add random velocity flip with rate ζ, asymmetrically in
order not to kill the time mixing of the deterministic dynamics.

▸ This gives the convergence of the GK formula. Try now an
expansion in the coupling εV (qx+1 − qx):

D(ε, ζ) = ε2D2(ζ) + ε
3
D3(ζ) + . . .

▸ Each term involves only finite dimensional dynamics (this is
almost true) and take their limits as ζ → 0. Noise does not
change the geometry of the trajectories.

The hope is that, in this situations, one obtains the expansion of
the thermal conductivity of the deterministic system.
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Small coupling expansion of TC

Even for the stochastically perturbed model, the expansion is quite
complicate, and has some surprises:

D(ε, ζ) = ε2D2(ζ) + ε
3
D3(ζ) + . . .

the first term is the macroscopic diffusivity of the energy GL
model, obtained through the weak coupling limit:

D2(ζ) = ⟨γ2
0,1⟩β

− ∫

∞

0
∑
x

⟨α(EEEx(t),EEEx+1(t))α(EEE0(0),EEE1(0))⟩β

= D̃VHL
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Similar expansion for the thermal conductivity defined through the
NESS of the N system attached to Langevin heat bath at different
temperatures.
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In the Dolgopiat-Liverani case the WC limit is taken with ζ = 0, so
one has D̃VHL = D2(0).



(Weak)-coupling of integrable systems

Three examples (by explicit calculations):

▸ Harmonic Oscillators: D2(ζ) ∼ ζ
−1.

▸ Harmonic Oscillators with random masses:

D2(ζ) ∼ ζ

▸ Chain of Rotors V (qx − qx−1) = cos(qx − qx−1):

D2(ζ) ∼ O(1)

but γ2
ζ (ex , ex+1) → 0 as ζ → 0. Resonances.
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