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Hour of the Wolf

1 dynamics in∞ dimensions
2 who’s afraid of symmetry
3 knowing when to stop



our hero

Max von Sydow

a physicist so brilliant he has not read a paper since grad
school



our heroine

Liv Ulmann

understands it all but cannot save him



theirs is a life in extreme dimensions

since 1822 have Navier-Stokes equations

∂v
∂t

+ (v · ∇)v =
1
R
∇2v−∇p + f , ∇ · v = 0,

since 1883 Osborne Reynolds experiments
the most fundamental outstanding problem of classical physics :

turbulence!



numerical challenges

computation of turbulent solutions
requires 3-dimensional volume discretization
→ integration of 104-106 coupled ordinary differential equations

challenging, but today possible



numerical challenges

computation of turbulent solutions
requires 3-dimensional volume discretization
→ integration of 104-106 coupled ordinary differential equations

challenging, but today possible

typical simulation
each instant of the flow > Megabytes
a video of the flow > Gigabytes



Max the man :

he can do it all



example : pipe flow

amazing data! amazing numerics!
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here each instant of the flow ≈ 2.5 MB
videos of the flow ≈ GBs



the challenge

turbulence.zip

or ‘equation assisted’ data compression:
replace the∞ of turbulent videos by the best possible

small finite set

of videos encoding all physically distinct motions of the
turbulent fluid



Liv Ullmann to Max von Syddow :

please, look at it in

the state space!

E. Hopf 1948, Ya. Sinai 1972 :

identify templates, partition it!



-- 5 -- ChaosBook.org
!!! THE POINT OF THIS TALK !!!

UNLEARN:
3-d VISUALIZATION

instant in turbulent evolution:

a 3-d video frame,
each pixel a 3-d velocity field

THINK:
1-d PHASE SPACE

instant in turbulent evolution:
a unique point

theory of turbulence =
geometry of the state space

[E. Hopf 1948]



dynamical description of turbulence

state space

a manifoldM∈ Rd : d numbers determine the state of the
system

representative point
x(t) ∈M
a state of physical system at instant in time

deterministic dynamics
trajectory x(τ) = f τ (x0) = representative point time τ later



today’s experiments

example of a representative point
x(t) ∈M, d =∞
a state of turbulent pipe flow at instant in time

Stereoscopic Particle Image Velocimetry→ 3-d velocity field
over the entire pipe1

1Casimir W.H. van Doorne (PhD thesis, Delft 2004)



can visualize 61,506 dimensional state space of turbulent flow

0 0.2 0.4 −0.2

0

0.2

−0.1

0

0.1

a
2

a
1

a 3

equilibria of turbulent plane Couette flow,
their unstable manifolds, and
myriad of turbulent videos mapped out as one happy family

for movies, please click through ChaosBook.org/tutorials

http://ChaosBook.org/tutorials


deterministic partition into regions of similar states

1-step memory partition

M =M0 ∪M1 ∪M2
ternary alphabet
A = {1,2,3}.

2-step memory refinement

01

12

22

02

00

20

21

11
10

Mi =Mi0 ∪Mi1 ∪Mi2
labeled by nine ‘words’
{00,01,02, · · · ,21,22}.



the problem with symmetry :

nature loves symmetry
or does she?

problem
physicists like symmetry more than Nature

Rich Kerswell



nature : turbulence in pipe flows

top : experimental / numerical data
bottom : theorist’s solutions
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Nature, she don’t care : turbulence breaks all symmetries



Liv to you :

please, use symmetries!

H. Poincaré 1899, Elie Cartan 1926 :

section it, slice it!



example : SO(2)z ×O(2)θ symmetry of pipe flow

(a)
z

θ

(b)
z

θ

(c)
z

θ

(d)
z

θ

a fluid state, shifted by a stream-wise translation, azimuthal
rotation gp is a physically equivalent state

b) stream-wise
c) stream-wise, azimuthal
d) azimuthal flip



group orbits

M
x(τ)

M
x(0)

x(0)

x(τ)

M

group orbitMx of x is the set of
all group actions

Mx = {g x | g ∈ G}



group orbits are NOT circles

nature couples many Fourier modes
group orbit manifolds of highly nonlinear states are smooth, but
not nice



example : group orbit of a pipe flow turbulent state

SO(2)× SO(2) symmetry
⇒ group orbit is
topologically 2-torus,
but a mess in any
projection

a turbulent state

group orbits of highly nonlinear states are topologically tori, but
highly contorted tori



foliation by group orbits

M
x(τ)

M
x(0)

x(0)

x(τ)

M

actions of a symmetry group
foliates the state spaceM into
a union of group orbitsMx



full state space

M
x(τ)

M
x(0)

x(0)

x(τ)

M

reduced state space

M̄ x̄(0)

x̄(τ)

replace each group orbit by a unique point in a
lower-dimensional

symmetry reduced state spaceM/G



inspiration : pattern recognition

you are observing turbulence in a pipe flow, or your defibrillator
has a mesh of sensors measuring electrical currents that cross
your heart, and

you have a precomputed pattern, and are sifting through the
data set of observed patterns for something like it

here you see a pattern, and there you see a pattern that seems
much like the first one

how ‘much like the first one?’



take the first pattern

‘template’ or ‘reference state’
a point x̄ ′ in the state spaceM

and use the symmetries of the flow to

slide and rotate the ‘template’
act with elements of the symmetry group G on x̄ ′ → g(θ) x̄ ′

until it overlies the second pattern (a point x in the state space)

distance between the two patterns

|x − g(θ) x̄ ′| = |x̄ − x̄ ′|

is minimized



idea: the closest match

template: Sophus Lie

(1) rotate face x
traces out group orbit
Mx

(2) replace the group
orbit by the closest
match x̄ to the template
pattern x̄ ′

the closest matches x̄ lie
in the (d−N) symmetry
reduced state space M̄



flow within the slice

M̄
g x̄ ′ x̄ ′

t̄ ′

x(τ)
x̄(τ)

g x(τ)

full-space trajectory x(τ)
rotated into the reduced state space x̄(τ) = g(θ)−1x(τ)
by appropriate moving frame angles {θ(τ)}



take home :
if you have a symmetry, reduce it!

your quandry
mhm - seems this would require extra thinking
what’s the payoff?



SO(2)z ×O(2)θ relative periodic orbits of pipe flow

(a)
z

θ

(b)
z

θ

(c)
z

θ

(d)
z

θ

relative periodic orbit : recurs at time Tp, shifted by a
streamwise translation, azimuthal rotation gp

b) stream-wise recurrent
c) stream-wise, azimuthal recurrent
d) azimuthal flip recurrent



example : pipe flow relative periodic orbit

3 repeats, full space
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it works : all pipe flow solutions in one happy family

could not find without symmetry reduction :
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first pipe flow relative periodic orbits embedded in turbulence!



take-home message

if you have a symmetry

use it!

without symmetry reduction, no understanding of fluid flows,
nonlinear field theories possible



Liv to Max :

deterministic partitions are no
good!



deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions
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deterministic dynamics: partitioning can be arbitrarily fine
requires exponential # of exponentially small regions

yet

in practice
every physical problem must be coarse partitioned



Liv to Max :

please, know when to stop!

Laplace 1810, A. Lyapunov 1892 :

noise frees us from the shackles of determinism!



knowing when to stop

[click here for an example of a fluid in motion]

need the 3D velocity field at every (x , y , z)!

motions of fluids : require∞ bits?
numerical simulations track millions of computational degrees
of freedom; observations, from laboratory to satellite, stream
terabytes of data, but how much information is there in all of
this?

http://chaosbook.org/tutorials/aspectL.html


knowing when to stop

motions of fluids : require∞ bits??

that cannot be right...



knowing when to stop

Science originates from curiosity and bad eyesight.
— Bernard de Fontenelle,

Entretiens sur la Pluralité des Mondes Habités

in practice
every physical problem is coarse partitioned and finite



deterministic vs. noisy partitions
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can be refined
ad infinitum
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noise blurs the boundaries

when overlapping, no further
refinement of partition



mathematician’s idealized state space

a manifoldM∈ Rd : d continuous numbers determine the
state of the system x ∈M

noise-limited state space
a ‘grid’M′ : N discrete states of the system a ∈M′, one for
each noise covariance ellipsoid Qa



periodic orbit partition

deterministic partition
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some short periodic points:
fixed point 1 = {x1}
two-cycle 01 = {x01, x10}

noisy partition
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01

periodic points blurred by noise
into cigar-shaped densities



challenge : knowing when to stop

determine the finest possible partition for a given noise



linearized deterministic flow

xn

xn+1

Mn vnvn+1

xn+1 + zn+1 = f (xn) + Mn zn , Mij = ∂fi/∂xj

in one time step a linearized neighborhood of xn is
(1) advected by the flow and
(2) mapped by the Jacobian matrix Mn into a neighborhood

whose size and orientation are given by the M eigenvalues
and eigenvectors



covariance advection

let the initial density of deviations z from the deterministic
center be a Gaussian whose covariance matrix is

Qjk =
〈

zjzT
k

〉

a step later the Gaussian is advected to〈
zjzT

k

〉
→

〈
(M z)j (M z)T

k

〉
Q → M Q MT

add noise, get the next slide



covariance evolution

Qn+1 = MnQnMT
n + ∆n

(1) advect deterministically
local density covariance matrix Q → MQMT

(2) add noise covariance matrix ∆

covariances add up as sums of squares



roll your own cigar

in one time step

Qn

MnQnMT
n + ∆n

f (xn)

a Gaussian density distribution with covariance matrix Qn is

(1) advected by the flow
(2) smeared with additive noise

into a Gaussian ‘cigar’ whose widths and orientation are given
by the singular values and vectors of Qn+1



Remembrance of Things Past

noisy dynamics of a nonlinear system is fundamentally different
from Brownian motion, as the flow ALWAYS induces a local,
history dependent effective noise



example : noise and a single attractive fixed point

if all eigenvalues of M are strictly contracting, all |Λj | < 1

any initial compact measure converges to the unique invariant
Gaussian measure ρ0(z) whose covariance matrix satisfies

Lyapunov equation: time-invariant measure condition

Q = MQMT + ∆

[A. M. Lyapunov doctoral dissertation 1892]



example : Ornstein-Uhlenbeck process

width of the natural measure concentrated at the attractive
deterministic fixed point z = 0

ρ0(z) =
1√

2πQ
exp

(
− z2

2 Q

)
, Q =

∆

1− |Λ|2
,

is balance between contraction by Λ and noisy smearing
by ∆ at each time step



local problem solved: can compute every cigar
a periodic point of period n is a fixed point of nth iterate of
dynamics

global problem solved: can compute all cigars
more algebra: can compute the noisy neighborhoods of all
periodic points



charting the state space

for turbulent/chaotic systems an atlas - a set of charts - is
needed to capture the dynamics

templates x̄ ′(j) should be representative of the dynamically
dominant patterns seen in the solutions of nonlinear PDEs

each chart M̄(j) captures a neighborhood of a template x̄ ′(j)



x̄(0)

x̄(τ)

M̄ (2)

M̄
(1)

x̄2

x̄1

two charts drawn as two (d−1)-dimensional slabs

shaded plane : the ridge, their (d−2)-dimensional intersection



optimal partition hypothesis
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optimal partition:

the maximal set of resolvable
periodic point neighborhoods



the payback for your patience

claim:

optimal partition hypothesis

the best of all possible state space partitions
optimal for the given noise



the payback for your patience

claim:

optimal partition hypothesis

optimal partition replaces stochastic PDEs by finite,
low-dimensional Markov graphs



the payback for your patience

claim:

optimal partition hypothesis

optimal partition replaces stochastic PDEs by finite,
low-dimensional Markov graphs
finite matrix calculations⇒ optimal estimates of long-time
observables (Lyapunov exponents, mean temperature in
Chicago and its variance, etc.)



Liv & Max :

can this ever work?



example: representative solutions of fluid dynamics

Professor Zweistein, from the back of auditorium:
(1) she has already done all this in 1969
(2) you must be kidding, it cannot be done for turbulence



example: representative solutions of fluid dynamics

Professor Zweistein, from the back of auditorium:
(1) she has already done all this in 1969
(2) you must be kidding, it cannot be done for turbulence

OK, OK, we have about 50 state space cell centers

[click here for examples of frozen fluid states]

[click here for examples of a fluid in periodic motions]

and we have their Jacobians (that was hell to get)

http://chaosbook.org/tutorials/eqba.html
http://chaosbook.org/tutorials/POs.html


Computation of unstable periodic orbits in
high-dimensional state spaces, such as Navier-Stokes,

is at the border of what is feasible numerically, and criteria
to identify finite sets of the most important solutions are
very much needed. Where are we to stop calculating these
solutions?



disclosure

we have not yet tested the method on fluid dynamics data
sets.



Georgia Tech Center for Nonlinear Science is looking for
several brave postdocs to help us really ‘zip’ turbulence



Georgia Tech Center for Nonlinear Science is looking for
several brave postdocs to help us really ‘zip’ turbulence
the brave candidates: step up after the talk
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