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∂tθ + u · ∇θ = 0

Active scalar:
u = R⊥θ

in Rd or Td .
R = ∇(−∆)−

1
2

R⊥ = MR with M invertible, antisymmetric. In d = 2,
rotation by 90 degrees. Makes u divergence-free. In Fourier

R̂⊥θ(k) = i
k⊥

|k |
θ̂(k)

SQG– geophysical origin: Charney. Held, Swanson
C-Majda-Tabak: analogies to 3D Euler.
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Motivation: 3d Euler

{
∂tu + u · ∇u +∇p = 0,

∇ · u = 0

vectorial, nonlinear, nonlocal. Global regularity vs. blow up =
major problem
Vorticity ω = ∇× u

∂tω + u · ∇ω = ω · ∇u

Energy
∫
|u|2dx conserved. Vortex lines frozen in the flow:

[∂t + u · ∇, ω · ∇] = 0

ω ∼ ∇u, Stretching term ω · ∇u ⇒ blow-up ? Open
problem. Direction of vorticity locally nice ⇒ geometric
depletion of nonlinearity.
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2D SQG: some analogies with Euler

∇⊥θ like 3D vorticity.

Levels of theta = lines frozen in the
flow:

[
∂t + u · ∇, ∇⊥θ · ∇

]
= 0

Kinetic energy conserved:

d

dt

∫
|u(x , t)|2dx = 0

∂t(∇⊥θ) + u · ∇(∇⊥θ) = (∇u)(∇⊥θ)

Same stretching term, 6= 0. Blow-up problem, open. Direction
of level lines locally nice ⇒ depletion of nonlinearity.
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Dissipative SQG

QGs{
∂tθ + u · ∇θ + Λsθ = 0,

u = R⊥θ

Λ = (−∆)
1
2

In Fourier:
Λ̂θ(k) = |k |θ̂(k)

s > 1. Subcritical. Dissipation dominates, global
regularity. Too easy.
s < 1. Supercritical. Dominated by inviscid, open. Too
difficult.
s = 1. Critical in the sense of Goldilocks: just right.
For Burgers: criticality is real.
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The song of Λ

F (x , t) = (e−tΛf )(x) =

∫
Rd

P(t, x − y)f (y)dy

P(t, x − y) = Poisson kernel.

Λf (x) = −∂F
∂t | t=0

where F (x , t) is the harmonic extension: ∆F = 0, for
(x , t) ∈ Rd × (0,∞), F (x , 0) = f (x). Because − ∂

∂t is the
external normal to Rd × (0,∞), Λ is the Dirichlet-to-Neumann
map.

Λf (x) = cP.V .

∫
Rd

f (x)− f (y)

|x − y |d+1
dy

for f smooth.
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Critical dissipative SQG

Regularity and uniqueness: with critical dissipation (s = 1):
Cordoba-Wu-C = small data.

Large data: at least 4 different
methods:
1. Kiselev-Nazarov-Volberg: Maximum priciple for a modulus
of continuity. adequate h(r) so that

|θ0(x)− θ0(y)| < h(|x − y |)⇒ |θ(x , t)− θ(y , t)| < h(|x − y |)

2. Caffarelli-Vasseur: de Giorgi strategy: from L2 to L∞, from
L∞ to Cα, from Cα to C∞.
3. Kiselev-Nazarov: duality method, co-evolving molecules.
4. C-Vicol: nonlinear maximum principle, stability of the “only
small shocks” condition.
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Nonlinear maximum principle for linear
nonlocal operators

Let θ be a real smooth function, and let g = ∂θ a derivative of
θ. Let x̄ be a point where g attains its maximum, ‖g‖L∞ .

There exists a constant c, depending on dimension d of space
so that

(Λg)(x̄) ≥ c
‖g‖2

L∞

‖θ‖L∞
This was done with V. Vicol. Cordoba-Cordoba max principle:

(Λg)(x̄) ≥ 0.

(Λsg)(x̄) ≥ cs
‖g‖1+s

L∞

‖θ‖sL∞
Inequality is dimensionally corect. 0 < s < 2, cs → 0 when
s → 2. Inequality is false for the Laplacian.
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Variants

Based on Cα: Let 0 < s < 2, 0 < α < 1. There exists a
constant c = c(d , s, α) such that

Λsg(x̄) ≥
‖g‖

1+ s
1−α

L∞

c‖f ‖
s

1−α

Cα

Based on Lp: Let 0 < s < 2, 1 ≤ p ≤ ∞. There exists a
constant c = c(d , s, p) such that

Λsg(x̄) ≥
‖g‖

1+ sp
d+p

L∞

c‖f ‖
sp

d+p

Lp
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Quadratic pointwise variant

Let 0 < s < 2. Then for any x ∈ Rd

2g(x)Λsg(x) = (Λs(g2))(x) + D(g)(x)

where

D(g)(x) =

∫
Rd

(g(x)− g(y))2

|x − y |d+s
dy

In particular,

2∇f (x) · (Λs∇f )(x) = (Λs |∇f |2)(x) + D(∇f )(x)

where

D(∇f )(x) =

∫
Rd

|∇f (x)−∇f (y)|2

|x − y |d+s
dy
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Lower bound for quadratic expression

Let 0 < s < 2. There exists cs,d > 0 such that

2∇f (x) · (Λs∇f )(x) ≥ (Λs(|∇f |)2)(x) +
|∇f (x)|2+s

c‖f ‖sL∞

holds pointwise, for all x ∈ Rd .
Remark More general operators are allowed:

Lf (x) = P.V .

∫
K (x − y)(f (x)− f (y))dy

with K ≥ 0, K ∈ C 1(Rd \ {0}),∫
|z|<1

K (z)dz =∞,
∫
|z|>1

(|K (z)|+ |∇K (z)|) dz <∞
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Quadratic finite difference variant

(δhf )(x) = f (x + h)− f (x)

Let f ∈ L∞(Rd), 0 < s < 2, h 6= 0 ∈ Rd . Then

2(δhf (x))(Λsδhf )(x) = (Λs |δhf |2)(x) + Dh(x)

with

Dh(x) =

∫
Rd

|δhf (x)− δhf (y)|2

|x − y |d+s
dy

There exists a constant c = c(d , s) > 0 such that

Dh(x) ≥ |δhf |2+s

c |h|s‖f ‖sL∞
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Forced Critical SQG

SQG+f

∂tθ + (R⊥θ) · ∇θ + Λθ = f

in T2, with θ0 ∈ Ḣ1,

Ḣ1(T2) = {θ |
∫
T2

θdx = 0,

∫
T2

|∇θ|2dx <∞}

f ∈ Ḣ1 ∩ L∞. Let S(t)θ0 denote the solution.

Theorem
(C, Tarfulea, Vicol, preliminary result ’13). ∃!X ⊂ Ḣ1,

lim
t→∞

distḢ1(S(t)θ0,X ) = 0,

uniform for θ0 in bounded sets, X invariant S(t)X = X,
compact, as nice (C∞) as forces permit, and dF (X ) <∞.
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distḢ1(S(t)θ0,X ) = 0,

uniform for θ0 in bounded sets, X invariant S(t)X = X,
compact, as nice (C∞) as forces permit, and dF (X ) <∞.



Nonlocal
Dissipation

Peter
Constantin

SQG

Nonlinear
Maximum
Principle

Long time
behavior

Forced Critical SQG

SQG+f

∂tθ + (R⊥θ) · ∇θ + Λθ = f

in T2, with θ0 ∈ Ḣ1,
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Ḣ1(T2) = {θ |
∫
T2

θdx = 0,

∫
T2

|∇θ|2dx <∞}
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Properties of Solutions

Short time existence proof guarantees that solutions which
start in θ0 ∈ Ḣ1 become S(t0)θ0 ∈ Cα ∩ Ḣ1 instantly (t0 > 0,
size depends badly on t0) for small α > 0.

So, WLOG,
θ0 ∈ Ḣ1 ∩ Cα. The trouble with all previous proofs is that
they “remembered” the size of the initial data.

Lemma
(CTV ’13) Let θ0 ∈ Ḣ1(T2), f ∈ L∞(T2) ∩ Ḣ1(T2). There
exists α = α(f ) ∈ (0, 1) and constants C∞ = C∞(f ) and
Cα = Cα(f ) depending only on ‖f ‖H1 + ‖f ‖L∞ such that

‖S(t)θ0‖L∞ ≤ C∞,

and
‖S(t)θ0‖Cα ≤ Cα

holds for all t ≥ τ , with τ = τ(θ0, f ) bounded on bounded sets
of initial data in Ḣ1.
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Ideas of Proofs: L∞

We have to work in periodic setting, lots of technical
headaches having to do with periodic extensions and Poisson
summation. Thankfully, Calderon and Zygmund already cleared
the way.

First, we deal with L∞.

Lemma
(C-Glatt-Holtz-Vicol) Let θ have mean zero, let p ≥ 2 be even.
There exists a p-independent constant C so that∫

T2

θp−1Λθdx ≥ 1

p
‖Λ

1
2 (θ

p
2 )‖2

L2 + C‖θ‖pLp

and consequently

Lemma

‖θ(·, t)‖Lp ≤ ‖θ0‖Lpe−ct +
1

c
(1− e−ct)‖f ‖Lp

1 ≤ p ≤ ∞, c = p-independent.
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Ideas of Proofs: Cα

By previous, if we wait a while, the bound on ‖S(t)θ0‖L∞
depends only on f .

Equation for displacements
δhθ = θ(x + h, t)− θ(x , t):

Lδhθ = δhf

where
L = (∂t + u · ∇x + (δhu) · ∇h + Λx)

has a weak maximum principle in (x , h) (does not add size).
Multiply by 2|h|−2αδhθ, use the nonlinear max principle in the
finite difference variant:

L
(
|δhθ|2|h|−2α

)
+ |δhθ|3

c‖θ‖L∞
|h|−1−2α

≤ 4α|δhu||δhθ|2|h|−1−2α + 2|δhf |δhθ|2|h|−2α

u ∼ θ, α small. Hide bad cubic term. Obtain ODE
inequality for maximum.
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Ideas of Proofs: Cα, continued

Lemma
Let f ∈ Ḣ1 ∩ L∞. Let θ0 ∈ L∞ ∩ Ḣ1. There exist α > 0, Cα,
depending only on ‖θ0‖L∞ and ‖f ‖L∞ , such that

‖S(t)θ0‖Cα ≤ Cα

for all t ≥ τ , with τ > 0 bounded uniformly on bounded sets of
initial data.

This is a new proof of regularity, using the nonlinear maximum
principle and obtaining directly the De Giorgi improvement.
Once the uniform Cα bound is obtained, it is possible to obtain
uniform bounds for higher regularity, in particular

T−1

∫ T+τ

τ
‖S(t)θ0‖2

H1dt ≤ C

and backward uniqueness (injectivity of S(t)). These are used
then to prove existence of the universal attractor and its finite
dimensionality.
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