New limiting theorems for the Möbius function

M. Avdeeva, D. Li, Ya. G. Sinai

May 12, 2013

The C.-S. probabilistic model

Fix an integer N and let $\Omega(N)$ be the ensemble whose elements are $\xi=\left\{q_{1}, \ldots, q_{s}\right\}$ with $1<q_{1}<\ldots<q_{s}<N, q_{j}$ are prime. Define a measure $\widetilde{u_{N}}$ so that:

$$
\widetilde{u_{N}}(\xi)=\frac{1}{q_{1} \ldots q_{s}}
$$

If Z_{N} - total mass of this measure, we can define a probability measure u_{N} on $\Omega(N)$:

$$
u_{N}(\xi)=\frac{1}{Z_{N}} \widetilde{u_{N}}(\xi)
$$

From Mertens product formula it follows that

$$
Z_{N}=\sum_{Q \in \mathcal{Q}: q_{i} \leq N} \frac{1}{Q}=\prod_{q \leq N}\left(1+\frac{1}{q}\right)=\frac{e^{\gamma}}{\zeta(2)} \ln N+o(\ln N)
$$

as $N \rightarrow \infty$.

The C.-S. probabilistic model (continued)

For any random variable $f: \Omega(N) \rightarrow \mathbb{R}$

$$
\mathbb{E}_{N} f=\sum_{\xi \in \Omega(N)} f(\xi) u_{N}(\xi)
$$

Characteristic function: $\varphi_{f}(\lambda)=\mathbb{E}_{N} e^{i \lambda f}$. Introduce a random variable:

$$
\eta_{N}(\xi)= \begin{cases}\sum_{j=1}^{s} \frac{\ln q_{j}}{\ln N}, & \xi=\left\{q_{1}, \ldots, q_{s}\right\} \\ 0, & \text { otherwise }\end{cases}
$$

Reformulating, $\eta_{N}(Q)=\frac{\ln Q}{\ln N}$ for $Q \in \mathcal{Q}$ and 0 for not square-free Q.
Let $\widetilde{\mathbb{P}_{N}}$ and \mathbb{P}_{N} be the distributions on \mathbb{R} corresponding to η_{N} on $\left(\Omega(N), \widetilde{u_{N}}\right)$ and $\left(\Omega(N), u_{N}\right)$ respectively.

Theorem (Cellarosi-Sinai '13)

As $N \rightarrow \infty$ the probability distribution \mathbb{P}_{N} converges weakly to a probability distribution \mathbb{P} whose characteristic function $\varphi(\lambda)$ has the form

$$
\varphi(\lambda)=\exp \left\{\int_{0}^{1} \frac{e^{i \lambda v}-1}{v} d v\right\} .
$$

This distribution is known as the Dickman-de Bruijn distribution and first appeared in the theory of smooth numbers (see, e.g., K. Dickman "On the frequency of numbers containing primes of a certain relative magnitude", 1930)

Implications

Remark that

$$
\begin{aligned}
\frac{1}{\ln N} \sum_{n \leq N} \frac{\mu^{2}(n)}{n} & =\frac{1}{\ln N} \sum_{Q \leq N} \frac{1^{\omega(Q)}}{Q}=\frac{1}{\ln N} \sum_{\substack{0 \leq \ln Q \\
\ln N \leq 1, q_{i} \leq N}} \frac{1^{\omega(Q)}}{Q} \\
& =\frac{1}{\ln N} \widetilde{\mathbb{P}_{N}}[0,1] \xrightarrow{\text { Thm }(C S)} \frac{e^{\gamma}}{\zeta(2)} \cdot \mathbb{P}[0,1]=\frac{1}{\zeta(2)}
\end{aligned}
$$

Using Thm(CS) one can study the distribution of square-free numbers on segments of the form $\left[(\ln N)^{c_{1}},(\ln N)^{c_{2}}\right]$.

Properties of D-B distribution

- The density of the Dickman-de-Bruijn distribution is given by $e^{-\gamma} \rho(t)$ where $\rho(t)$ satisfies the integral equation

$$
t \rho(t)=\int_{t-1}^{t} \rho(s) d s, \quad t \in \mathbb{R}
$$

with the initial condition

$$
\rho(t)= \begin{cases}0, & t \leq 0 \\ 1, & 0<t \leq 1\end{cases}
$$

- Define $\eta_{k}: \mathbb{P}\left\{\eta_{k}=k\right\}=\frac{1}{k}$ and $\mathbb{P}\left\{\eta_{k}=0\right\}=1-\frac{1}{k}$. Then:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left\{n^{-1} \sum_{j=1}^{n} \eta_{j}<x\right\}=e^{-\gamma} \int_{0}^{x} \rho(t) d t
$$

Density of D-B distribution

Scaling argument:
We know that
$\widetilde{\mathbb{P}_{N}}[0,1]=\sum_{0 \leq \log Q \leq 1}^{\log N} \frac{1^{\omega(Q)}}{Q} \sim \log N$
as $N \rightarrow \infty$ hence

$$
\begin{aligned}
\widetilde{\mathbb{P}_{N}}[0, x] & =\sum_{0 \leq \log Q} \frac{1^{\omega(Q)}}{Q} \\
& =\sum_{Q \leq N^{x}} \frac{1^{\omega(Q)}}{Q} \sim x \log N .
\end{aligned}
$$

The (new) generalized probabilistic model

For our purposes we have to consider a generalized version of C-S model (old model: $t=1$).
Fix an integer N and let $\Omega^{t}(N)$ be the ensemble whose elements are $\xi=\left\{q_{1}, \ldots, q_{s}\right\}$ with $1<q_{1}<\ldots<q_{s}<N, q_{j}$ are prime. For any $t \in \mathbb{R}$ define a measure $\widetilde{u_{N}^{t}}$ so that:

$$
\widetilde{u_{N}^{t}}(\xi)=\frac{t^{s}}{q_{1} \ldots q_{s}}
$$

If Z_{N}^{t} - total mass of this measure, the normalized distribution u_{N}^{t} on $\Omega^{t}(N)$ has the form:

$$
u_{N}^{t}(\xi)=\frac{1}{Z_{N}^{t}} \widetilde{u_{N}^{t}}(\xi)
$$

Connections to the Mertens function

Recall Mertens function: $M(N)=\sum_{n<N} \mu(n)$.
Our analysis is based on the following Euler-type product for $\mu(n)$:

$$
\mu(n)=\prod_{\substack{p \geq 2, p \text { is prime }}}\left(1-2 \chi_{p}(n)+\chi_{p^{2}}(n)\right)
$$

Then:

$$
\begin{aligned}
\mu(n) & =\sum_{\substack{P, Q \\
P \cap Q=\emptyset}}(-2)^{\omega(Q)} \chi_{P^{2} Q}(n) \\
& =1+\sum_{Q \neq \emptyset}(-2)^{\omega(Q)} \chi_{Q}(n)+\sum_{\substack{P \neq \emptyset, P \cap Q \neq \emptyset}}(-2)^{\omega(Q)} \chi_{P^{2} Q}(n)
\end{aligned}
$$

Here $P, Q \in \mathcal{Q}$.

Connections to the Mertens function (continued)

The decomposition for $\mu(n)$ yields the following expression for the Mertens function $M(N)=\sum_{n \leq N} \mu(n)$:

$$
\begin{aligned}
\frac{M(N)}{N}=\frac{1}{N} \sum_{n \leq N} \mu(n) & =1+\frac{1}{N} \sum_{n \leq N} \sum_{Q \neq \emptyset}(-2)^{\omega(Q)} \chi_{Q}(n)+\text { terms inv. } P \\
& =1+\frac{1}{N} \sum_{\substack{Q \neq \emptyset, Q \leq N}}(-2)^{\omega(Q)}\left[\frac{N}{Q}\right]+\text { terms involving } P \\
& =1+\sum_{\substack{Q \neq \emptyset, Q \leq N}} \frac{(-2)^{\omega(Q)}}{Q}+\text { other terms }
\end{aligned}
$$

This is where the series $\sum_{\substack{Q \neq \emptyset, Q \leq N}} \frac{t^{\omega(Q)}}{Q}$ appears for the special value $t=-2$.

The generalized probabilistic model (continued)

The distribution on square-free numbers: $u_{N}^{t}(Q)=\frac{1}{Z_{N}^{t}} \frac{t^{\omega(Q)}}{Q}$.
Properties of u_{N}^{t} :

- Probability measure for $t>0$, signed measure with singularities for $t<0$.
- The partition function Z_{N}^{t} is given by

$$
\sum_{Q \in \mathcal{Q}: q_{i} \leq N} \frac{t^{\omega(Q)}}{Q}=\prod_{\text {prime }}\left(1+\frac{t}{q}\right) \sim(\ln N)^{t}
$$

as $N \rightarrow \infty$.
N.B.: for integer $t \leq 0, Z_{N}^{t}$ might hit zero. In this case we neglect some subset of primes: e.g., for $t=-2$ consider only odd square-free integers.

The generalized probabilistic model (continued)

Recall, $\eta_{N}(Q)=\frac{\ln Q}{\ln N}$ for $Q \in \mathcal{Q}$ and 0 for non-squarefree Q.
Let μ_{N}^{t} be the distribution on \mathbb{R} induced by η_{N} on $\left(\Omega^{t}(N), u_{N}^{t}\right)$.
Note, for $x \geq 0$,

$$
\mu_{N}^{t}[0, x]=\frac{1}{Z_{N}^{t}} \sum_{\substack{q_{i} \leq N \\ 0 \leq \ln N \leq x}} \frac{t^{\omega(Q)}}{Q}=\frac{1}{Z_{N}^{t}} \sum_{\substack{q_{i} \leq N, Q \leq N^{x}}} \frac{t^{\omega(Q)}}{Q}
$$

We will be particularly interested in the latter expression for negative integer t 's and its asymptotics in the limit $N \rightarrow \infty$.

Main problem

Let $t<0$. For the sake of simplicity we will mostly consider $t=-2$.

Questions.

- Do $\left\{\mu_{N}^{t}\right\}$ converge as $N \rightarrow \infty$?
- If they do, what is the limiting distribution?

Obstacle: Since $Z_{N}^{t} \rightarrow 0$ good control of the error terms is required. Preliminary answer. Formal computation using characteristic functions suggests that the limiting distribution is the "generalized Dickman-de Bruijn" distribution, i.e.

$$
\varphi^{(t)}(\lambda)=\exp \left\{t \int_{0}^{1} \frac{e^{i \lambda v}-1}{v} d v\right\}
$$

Obstacle: this is a tempered distribution; $\varphi^{(-2)}(\lambda) \sim|\lambda|^{2}$ as $\lambda \rightarrow \infty$.

Smooth sums over k-free integers

In his recent preprint "Smooth sums over k-free integers and statistical mechanics", F. Cellarosi studied a modification of our problem. Define

$$
\begin{gathered}
S_{\Omega, f}(k, z ; N)=\sum_{\substack{n \text { is } k-f r e e, p_{i} \leq N}} f\left(\frac{\log n}{\log N}\right) \frac{z^{\Omega(n)}}{n} ; \\
S_{\eta}(\mathbb{R})=\left\{f: \mathbb{R} \rightarrow \mathbb{C}: \exists C>0 \text { s.t. }|\widehat{f}(\lambda)| \leq \frac{c}{1+|\lambda|^{\eta}} \forall \lambda \in \mathbb{R}\right\} .
\end{gathered}
$$

E.g., $S \subset S_{\eta}$ for every η.

Note that $\mu_{N}^{t}[0, x]$ is closely connected to $S_{\Omega, \chi_{[0, x]}}(2, t ; N)$.

Smooth sums over k-free integers (continued)

Theorem (Cellarosi)
Let $f \in S_{\eta}$ with $\eta>|z|-\Re z+1$. Then there exists a non-zero constant $C=C(k, z) \in \mathbb{C}$ such that, for every $R=R(N)$ satisfying

$$
\frac{R}{\log N} \rightarrow 0 \text { and } \frac{(\log N)^{|z|-\Re z}}{R^{\eta-1}} \rightarrow 0 \text { as } N \rightarrow \infty
$$

we have

$$
S_{\Omega, f}(k, z ; N)=C \cdot(\log N)^{z}\left(\int_{|\lambda| \leq R} \varphi^{(z)}(\lambda) \widehat{f}(\lambda) d \lambda+\varepsilon_{N}\right),
$$

where $\varphi^{(z)}(\lambda)$ is a z-convolution of D - B distribution on $\mathbb{R}_{\geq 0}$ and $f \in S_{\eta}(\mathbb{R})$.

Convergence of μ_{N}^{t} on finite intervals

Theorem
Consider the $\operatorname{sum} S_{N}(x)=\sum_{\substack{n<N^{x} \\ p \mid n \Rightarrow p \leq N}} \frac{(-2)^{\omega(n)}}{n} \mu^{2}(n)$. Then, for $N \rightarrow \infty$,

$$
S_{N}(x)= \begin{cases}O\left(e^{-c \sqrt{x \log N}}\right), & \text { for } 0<x \leq 1 \\ \frac{1}{(\log N)^{2}}\left(G(x)+o_{N}(1)\right), & \text { for } x>1\end{cases}
$$

Here $c>0$ is some sufficiently small constant and $G(x)$ is a function with singularities at $x=1,2$.

Structure theorem for generalized DB distribution $\left(t \in \mathbb{Z}^{-}\right)$

Let $\rho_{D B}^{t}(x)$ be the density of $\mu_{D B}^{t}$, i.e.

$$
\rho_{D B}^{t}(x)=\frac{1}{2 \pi} \lim _{R \rightarrow \infty} \int_{-R}^{R} \exp \left(t \int_{0}^{1}\left(e^{i \lambda s}-1\right) \frac{d s}{s}\right) e^{-i \lambda x} d \lambda
$$

Theorem
The density $\rho_{D B}^{t}$ is a distribution on \mathbb{R} which admits the following representation: $\rho_{D B}^{t}=\rho_{c}^{t}+\psi^{t}$, where $\rho_{c}^{t} \in C(\mathbb{R})$ and

$$
\psi^{t}(x)=\sum_{l=0}^{|t|+1} \sum_{k=0}^{l} C_{k, l}(t)(\operatorname{sgn}(x-k))^{(|t|+1-l)}
$$

Here $\operatorname{sgn}(x)$ is the usual sign function and $C_{k, l}(t)$ are independent of x.

Distribution for $t=-2$

$$
\rho_{D B}^{(-2)}(x)=-\delta^{\prime \prime}(x)-\delta^{\prime}(x-1)+\delta(x-1)+\operatorname{sgn}(x-1)-\delta(x-2)+\operatorname{sgn}(x-2)-\frac{1}{3} \operatorname{sgn}(x-3)+\rho_{c}^{(-2)}(x)
$$

What is $G(x)$?

In the Theorem

$$
G(x)=G_{1}(x)-H(x-1)+H(x-2)+G_{2}(x)
$$

where

$$
\begin{aligned}
& H(x)= \begin{cases}1, & \text { for } x>0 \\
0, & \text { for } x \leq 0\end{cases} \\
& G_{1}(x)=\frac{a_{1}}{2 \pi i} \cdot \int_{\gamma} e^{-2 \int_{0}^{-s} \frac{e^{t}-1}{t} d t+x s} \frac{d s}{s}+c . c
\end{aligned}, \begin{aligned}
& G_{2}(x)=\int_{1}^{\infty} g_{2}(\lambda) e^{-i \lambda x} d \lambda+\text { c.c. }
\end{aligned}
$$

Here γ is the right half unit circle on \mathbb{C} and $g_{2}(\lambda)=O\left(\lambda^{-2}\right)$.

Dickman-de Bruijn in disguise

$\mu_{N}^{t}[0, x] \rightarrow \mu_{\infty}^{t}[0, x]$

- One can show

$$
\rho_{\infty}^{(-2)}=\delta(x-1)+\operatorname{sgn}(x-1)-\delta(x-2)+\operatorname{sgn}(x-2)-\frac{1}{3} \operatorname{sgn}(x-3)+\rho_{c}^{(-2)}
$$

- In comparison,

$$
\rho_{D B}^{(-2)}=-\delta^{\prime \prime}(x)-\delta^{\prime}(x-1)+
$$

$$
\delta(x-1)+\operatorname{sgn}(x-1)-\delta(x-2)+\operatorname{sgn}(x-2)-\frac{1}{3} \operatorname{sgn}(x-3)+\rho_{c}^{(-2)}
$$

- Unlike $f=\chi_{[0, x]}$, a smooth test function f satisfies $\mathbb{E}_{\mu_{N}^{t}} f \rightarrow \mathbb{E}_{\mu_{D B}^{t}} f$, i.e. picks up $-\delta^{\prime \prime}(x)-\delta^{\prime}(x-1)$ singularities.

Thank you!

