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RBM. Model de�nition

{Hn} are Gaussian hermitian (or real symmetric) matrices whose
entries are numerated by indices i, j ∈ [−n, n]d ⊂ Zd and:

E{Hjk} = 0, E{HijHlk} = δikδjlJij, Jij =
(
−W2∆ + 1

)−1
ij
,

where ∆ is the discrete Laplacian on [−n, n]d:

∆f(j) =
∑
|j−k|=1

(f(k)− f(j)).

Note that for 1D random band matrices Jij ≈W−1 exp{−C|i− j|/W},
and so the variance of the matrix elements is exponentially small when

|i− j| �W. Hence W can be considered as the width of the band.
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Varying W we can see that random band matrices are natural

interpolations between random Schrödinger matrices

HRS = −∆ + λV

and mean-�eld random matrices such as N×N Wigner matrices, i.e.

hermitian random matrices with i.i.d elements.

Random Schrödinger matrices and RBM are expected to have the same

qualitative properties when λ ≈W−1.

The key physical parameter of these models is the localization length `,
which describes the typical length scale of the eigenvectors of random

matrices.

Mirlin, Fyodorov (1991):

for 1D RBM the localization length ` ≈W2

W�
√
N the eigenvectors are expected to be delocalized

W�
√
N localization
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In terms of eigenvalues: the local eigenvalue statistics in the bulk of the

spectrum change from Poisson, for W�
√
N, to GUE (hermitian

matrices with i.i.d Gaussian elements), for W�
√
N.

At the present time only some upper and lower bound are proved

rigorously.

Schenker (2009): ` ≤W8

Erdös, Knowles (2011): `�W7/6

Erdös, Knowles, Yau, Yin (2012): `�W5/4.

The questions of the order of the localization length closely related to

the universality conjecture of the bulk local regime of the random

matrix theory.
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Global regime

Denote by λ1, . . . , λn the eigenvalues of the random matrix Hn.

Normalized Counting Measure (NCM):

Nn(4) = ]{λj ∈ 4, j = 1, . . . , n}/n, Nn(R) = 1,

where 4 is an arbitrary interval of the real axis.

It is shown that for many ensembles of random matrices

Nn
w−→ N.

The density of N is called the density of states of the ensemble, the

support of N is the spectrum.

Wigner ensembles (in particular GUE, GOE):

ρ(λ) = (2π)−1
√
4− λ2, λ ∈ (−2, 2).

Tatyana Shcherbina (IAS) Second correlation function of RBM 14.05.2013 5 / 12



Local regime

The main object of the local regime of the random matrix theory is the

k-point correlation function R
(n)
k , which can be de�ned as

E

 ∑
j1 6=.. 6=jk

ϕk(λj1 , . . . , λjk)

 =

∫
Rk

ϕk(λ1, .., λk)Rk(λ1, .., λk)dλ1..dλk,

where ϕk : Rk → C is bounded, continuous and symmetric in its

arguments.

Universality conjecture for the hermitian random matrices in the
bulk of the spectrum (Dyson):

(nρ(λ0))−kR
(n)
k

(
{λ0 + ξj/nρ(λ0)}

) n→∞−→ det
{sinπ(ξi − ξj)

π(ξi − ξj)

}k
i,j=1

.
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The correlation function (or mixed moment) of the characteristic

polynomials:

F2k(λ1, . . . , λ2k) =

∫ 2k∏
l=1

det(λl −Hn)Pn(dH)

We are interested in the asymptotic behavior of this function for

λj = λ0 +
ξj

nρ(λ0)
, j = 1, . . . , 2k, λ0 ∈ (−2, 2).
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GUE

Asymptotic behavior of the 2k-point mixed moment for GUE:

F2k

(
Λ0 + ξ̂/(nρ(λ0))

)

= Cn

det
{sinπ(ξi − ξj+k)

π(ξi − ξj+k)

}k
i,j=1

4(ξ1, . . . , ξk)4(ξk+1, . . . , ξ2k)
(1 + o(1)),

where 4(ξ1, . . . , ξk) is the Vandermonde determinant of ξ1, . . . , ξk.

Similar result for the hermitian matrix model was proved by

Brezin, Hikami (2000), Fyodorov, Strahov (2003).

The same is valid for hermitian Wigner and general sample

covariance matrices (Gotze,Kosters (2009-2010) for k = 1, TS for

any k (2010-2011)).
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GOE

In the case of real symmetric Gaussian matrices the behavior was found

by Brezin, Hikami (2000) for k = 1 and by Borodin, Strahov (2006) for

any k.

Asymptotic behavior of the 2k-point mixed moment for GOE:

F2k

(
Λ0 + ξ̂/(nρ(λ0))

)

= Cn

Pf
{
− 1

π2
d

dξi

sinπ(ξi − ξj)
π(ξi − ξj)

}2k
i,j=1

4(ξ1, . . . , ξ2k)
(1 + o(1)),

where 4(ξ1, . . . , ξk) is the Vandermonde determinant of ξ1, . . . , ξk.
The same is valid for k = 1 for hermitian Wigner and general sample

covariance matrices (Kosters (2009-2010)).
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Main results for 1D RBM:

Let also D2 = F2(λ0, λ0).

Theorem (hermitian case)

For 1D Gaussian hermitian random band matrices with W2 = n1+θ,

0 < θ < 1 we have

lim
n→∞

D−12 F2

(
λ0 +

ξ

2Nρ(λ0)
, λ0 −

ξ

2Nρ(λ0)

)
=

sin(πξ)

πξ
.

Theorem (real symmetric case)

For 1D Gaussian real symmetric random band matrices with

W2 = n1+θ, 0 < θ < 1 we have

lim
n→∞

D−12 F2

(
λ0 +

ξ

2Nρ(λ0)
, λ0 −

ξ

2Nρ(λ0)

)
=

sin(πξ)

π3ξ3
− cos(πξ)

π2ξ2
.
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Integral representation

F2(ξ̂) = −(2π2)−Ndet−2J

∫
exp

{
− W2

2

n∑
j=−n+1

Tr (Xj −Xj−1)2
}

× exp
{
− 1

2

n∑
j=−n

Tr
(
Xj +

iΛ0

2
+

iξ̂

2Nρ(λ0)

)2} n∏
j=−n

det
(
Xj − iΛ0/2

)
dX,

where {Xj} are hermitian 2× 2 matrices,

dXj = dReX12 d ImX12 dX11 dX22 and ξ̂ = ξσ3.

Let us change the variables to Xj = U∗jAjUj, where Uj is a unitary

matrix and Aj = diag {aj, bj}, j = −n, . . . , n. Then dXj becomes

π

2
(aj − bj)

2daj dbjdµ(Uj),

where dµ(Uj) is the Haar measure on the unitary group U(2).
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Connection to the Heisenberg model

The expected saddle-points: a± = ±
√
1− λ20/4 = ±πρ(λ0).

Fix aj = a+, bj = a− for each j. Then Xj = U∗jAjUj = πρ(λ0)U∗j σ3Uj,

and the integral representation transforms to

σ-model:

∫
exp

{
π2ρ(λ0)2W2

n∑
j=−n+1

(SjSj−1 − 1) +
iπξ

2N

n∑
j=−n

Sjσ3

} n∏
j=−n

dSj,

where Sj = U∗j σ3Uj. The result states that for W
2 � N

Z−1n

∫
e
π2ρ(λ0)2W2

n∑
j=−n+1

(SjSj−1−1)+ iπξ
2N

n∑
j=−n

Sjσ3
n∏

j=−n
dSj −→

−→
∫

eiπξS0σ3/2dS0 =
sin(πξ)

πξ
.
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