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RBM. Model definition

{H,} are Gaussian hermitian (or real symmetric) matrices whose
entries are numerated by indices i,j € [-n,n]¢ C Z% and:

=l
E{Hj} =0, E{HgHy} = ddpdy, Jyj=(-W?A+1),,

where A is the discrete Laplacian on [—n,n]d:

Af(j) = Y (E(k) —£()).

li—k[=1

Note that for 1D random band matrices J;; ~ W~ exp{—C|i — j|/W},
and so the variance of the matrix elements is exponentially small when
li —j| > W. Hence W can be considered as the width of the band.
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Varying W we can see that random band matrices are natural
interpolations between random Schrodinger matrices

Hrs = —-A+ AV

and mean-field random matrices such as N x N Wigner matrices, i.e.
hermitian random matrices with i.i.d elements.

Random Schrodinger matrices and RBM are expected to have the same
qualitative properties when A ~ WL,
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The key physical parameter of these models is the localization length £,
which describes the typical length scale of the eigenvectors of random
matrices.

Mirlin, Fyodorov (1991):

for 1D RBM the localization length ¢ ~ W?
o W >> VN the eigenvectors are expected to be delocalized
e W < VN localization
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In terms of eigenvalues: the local eigenvalue statistics in the bulk of the
spectrum change from Poisson, for W < /N, to GUE (hermitian
matrices with i.i.d Gaussian elements), for W > VvN.

At the present time only some upper and lower bound are proved
rigorously.

e Schenker (2009): £ < W8

o Erdds, Knowles (2011): £>> W7/6

o Erdés, Knowles, Yau, Yin (2012): £ > W>/4,
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The questions of the order of the localization length closely related to
the universality conjecture of the bulk local regime of the random

matrix theory.
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Global regime

Denote by Aq, ..., Ay the eigenvalues of the random matrix Hy.

Normalized Counting Measure (NCM):
No(A)=#{N€eAj=1,...,n}/n, NyR)=1,

where A is an arbitrary interval of the real axis.

It is shown that for many ensembles of random matrices
N, — N.

The density of N is called the density of states of the ensemble, the
support of N is the spectrum.
Wigner ensembles (in particular GUE, GOE):

p(\) = 2n) " IV4— X2, Xe(-2,2).
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Local regime

The main object of the local regime of the random matrix theory is the
k-point correlation function Rl({n) , which can be defined as

B > @A) :/kgok()\l,..,)\k)Rk()\l,..,/\k)d/\l..d)\k,
1#. Ak R

where ¢y : R — C is bounded, continuous and symmetric in its
arguments.

Universality conjecture for the hermitian random matrices in the
bulk of the spectrum (Dyson):

(np(o) B (Do + &/np(N0)}) =5 det{Sir;&(i&—_fj?)}ij=1'
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The correlation function (or mixed moment) of the characteristic
polynomials:

2k
For(AL, ... Aox) = /Hdet()\l — H,)P,(dH)
I=1

We are interested in the asymptotic behavior of this function for

&

)\j:)\o-l- j=1,...,2k, )\06(—2,2).

np(Xo)’

Tatyana Shcherbina (IAS) Second correlation function of RBM 14.05.2013

7/ 12



GUE

Asymptotic behavior of the 2k-point mixed moment for GUE:

Fai (Ao +£/(np(X0)))
sin (& — §4i) 1
det{ (& — &1x) }
! A(gh e agk)A(gk-i-l? cee a€2k)

where A(&, ..., &) is the Vandermonde determinant of &1, ..., &.

i,j=1

e (1+0(1)),

e Similar result for the hermitian matrix model was proved by
Brezin, Hikami (2000), Fyodorov, Strahov (2003).

o The same is valid for hermitian Wigner and general sample
covariance matrices (Gotze,Kosters (2009-2010) for k = 1, TS for
any k (2010-2011)).
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GOE

In the case of real symmetric Gaussian matrices the behavior was found

by Brezin, Hikami (2000) for k = 1 and by Borodin, Strahov (2006) for
any k.

Asymptotic behavior of the 2k-point mixed moment for GOE:

Fax (Ao +€/(np(M)))
1 d sin7(& — &) 2k
(- e
. n2d§ w(&— &) Jij=t
= Cn INGRNS) (L+o(1)). )
where A(&, ..., &) is the Vandermonde determinant of &1, ..., &.

The same is valid for k = 1 for hermitian Wigner and general sample
covariance matrices (Kosters (2009-2010)).
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Main results for 1D RBM:

Let also D2 = FQ()\(), )\0)

Theorem (hermitian case)

For 1D Gaussian hermitian random band matrices with W2 = nl+?
0 <6 <1 we have

g 3 £\ _ sin(n€)
i Dy (AO T Np(e) 0 2Np()\0)> R

7

Theorem (real symmetric case)

For 1D Gaussian real symmetric random band matrices with
W2 =nlt? 0 <6 <1 we have

) _q £ £ _sin(w€)  cos(m§)
HILHgODz k2 ()\0+ 2Np()\0)’)\0 ; 2Np()\0)> T ome w2
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Integral representation
2 n
Fy(f) = —(27r2)_Ndet_2J/exp{ — WT Z Tr(X; — Xj_l)Q}
j=—n+1
1 < iAo
X exp{ - §j;nTr (XJ > I N )\0)> } H det 1/\0/2)

where {X;} are hermitian 2 x 2 matrices,
de =dRe X12 dIm X12 dX11 dX22 and 5 = 50‘3.
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Integral representation
2 n
Fy(€) = —(27r2)_Ndet_2J/exp{ — WT > Tr(X; - Xj_l)Q}
j=—n+1
I | A
xexp{—§j;nTr (XJ+7+2Np ) } H det (Xj —iAg/2)dX

where {X;} are hermitian 2 x 2 matrices,
dX; = dRe X 2d Im X 9 dXy; dXgg and € = &a3.
Let us change the variables to X; = UJ?‘AjUj, where Uj is a unitary
matrix and Aj = diag{aj,bj}, j = —n,...,n. Then dXj becomes
T

5 (8 = bj)*daj dbydp(Uy),

where dp(Uj) is the Haar measure on the unitary group U(2).
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Connection to the Heisenberg model

The expected saddle-points: ay = £1/1 — \3/4 = £mp(A\o).
Fix aj = ay, by = a_ for each j. Then Xj = UFA;U; = mp(Ag) Ui o3Uj,
and the integral representation transforms to

o-model:

n

/exp {72000 W2 3" (881 - ”rf Z Sjos } H ds;,

j=—n+1 J——n j=—n

where S; = Uj‘ang. The result states that for W2 > N

I COR D WIRCTREEINE P ot
m e j=—n+ =-n H ds; —
j=—-n
N eiﬂﬁsoas/QdSO _ M

€
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