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OUTLINE OF TALK

In 2010 Duminil-Copin and Smirnov proved Nienhuis’s 1982
conjecture that the critical point of the hexagonal lattice SAW
generating function is xc = 1/

√
2 +
√

2.
In 2012 Beaton, Bousquet-Mélou, de Gier, Duminil-Copin and
Guttmann proved the 1995 conjecture of Batchelor and Yung
that the critical fugacity for hexagonal lattice SAWs in a half
plane, adsorbed onto the surface is yc = 1 +

√
2.

Together with Jensen and Beaton we asked to what extent we can
extend D-C/S’s result to SAWs on other lattices (sq. and tri.)?
Together with Jensen and Beaton we asked to what extent we can
extend the results of Beaton et al. to study surface adsorption
(both bond and vertex) on other lattices?
Together with Elvey-Price, Lee and de Gier we asked if we could
extend the D-C/S result off-criticality? In that way we might be
able to say something about critical exponents.
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SELF-AVOIDING WALKS

A self-avoiding walk on the honeycomb lattice, starting and finishing
on a mid-edge. (A technical ploy only).
These are known to 105 steps (Iwan Jensen 2006)
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THE (EXPONENTIAL) GROWTH CONSTANT µ.

Concatenate two walks. They either intersect or not. So clearly

cm+n ≤ cmcn

Hence limn c1/n
n exists and

µ := lim
n

c1/n
n = inf

n
c1/n

n .

Conjecture: Nienhuis 1982

µ =

√
2 +
√

2.

Proved by Smirnov and Duminil-Copin 2010.
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GENERATING FUNCTIONS AND GROWTH CONSTANTS

cn is the number of n−step SAWs. C(x) is the length ogf:

C(x) =
∑
n≥0

cnxn.

The radius of convergence of C(x) is

ρ = 1/µ = xc,

where µ is the growth (connective) constant, and xc is the critical
(length) fugacity.
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WALKS IN A HALF-PLANE INTERACTING WITH A

SURFACE

Contacts shown as blobs. Fugacity y with each contact of walk γ.
Enumerating by contacts of n−step walks:

c̄n(y) =
∑
γ

ycontacts(γ).

The full generating function is

C̄(x, y) =
∑
n≥0

c̄n(y)xn.
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THE CRITICAL FUGACITY

Radius and growth constant: for y > 0,

ρ(y) =
1

µ(y)
= lim

n
c̄n(y)−1/n

Prop: ρ(y) is a continuous, weakly decreasing function of y ∈ (0,∞).
There exists yc > 1 s.t.

ρ(y) = 1/µ if y ≤ yc,

ρ(y) < 1/µ if y > yc,

where µ is the growth constant.
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PROBABILISTIC MEANING OF THE CRITICAL FUGACITY

Consider half-space SAWs under a Boltzmann distribution

Pn(γ) =
ycontacts(γ)

c̄n(y)
.

Then for y < yc, the walk escapes from the surface. For y > yc, a
positive fraction of its vertices lie in the surface.
Theorem [B-BM-dG-DC-G 12]: This phase transition occurs at

yc = 1 +
√

2.

Conjectured by Batchelor and Yung in 1995.
Self-avoiding walks adsorbed at a surface Tony Guttmann



MIN2Col

PROBABILISTIC MEANING OF THE CRITICAL FUGACITY

Consider half-space SAWs under a Boltzmann distribution

Pn(γ) =
ycontacts(γ)

c̄n(y)
.

Then for y < yc, the walk escapes from the surface. For y > yc, a
positive fraction of its vertices lie in the surface.
Theorem [B-BM-dG-DC-G 12]: This phase transition occurs at

yc = 1 +
√

2.

Conjectured by Batchelor and Yung in 1995.
Self-avoiding walks adsorbed at a surface Tony Guttmann



MIN2Col

THE PROOF: THREE INGREDIENTS

1. We generalise an identity of Duminil-Copin and Smirnov to
the case with an adsorbing surface.

2.We give an alternative (equivalent) definition of the critical
fugacity.

3. Our proof then hinges on proving that a subset of SAWs,
called bridges, which are SAWs spanning a strip of width h, have
generating function Bh(x), which vanishes for x ≤ xc as h→∞.
This last is an important rigorous result in its own right.
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INGREDIENT 1

Duminil-Copin and Smirnov’s "global" identity.
Consider the following trapezoidal domain Dh,l.

Let Ah,l(x) (resp. Bh,l(x), Eh,l(x)) be the length generating function of
SAWs starting from the origin and ending at the bottom (resp. top,
left/right) border of the domain. (These are polynomials in x.)
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DUMINIL-COPIN AND SMIRNOV’S "GLOBAL" IDENTITY

For x = xc = 1/
√

2 +
√

2,

αAh,l(xc) + Bh,l(xc) + εEh,l(xc) = 1,

where α = cos(π/8) and ε = cos(π/4).
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REMARKABLE NATURE OF THE RESULT

Letting l→∞, it follows that Eh(xc) = 0.
Then in a strip of width h we have

cos(
3π
8

)Ah(xc) + Bh(xc) = 1.

Consider a strip of width 0, i.e. a spine. Then

A0(x) =
2x3

1− x2 , B0(x) =
2x2

1− x2 .

Then solve
cos(

3π
8

)A0(x) + B0(x) = 1.

The solution is xc = 1/
√

2 +
√

2.

Self-avoiding walks adsorbed at a surface Tony Guttmann



MIN2Col

REMARKABLE NATURE OF THE RESULT

Letting l→∞, it follows that Eh(xc) = 0.
Then in a strip of width h we have

cos(
3π
8

)Ah(xc) + Bh(xc) = 1.

Consider a strip of width 0, i.e. a spine. Then

A0(x) =
2x3

1− x2 , B0(x) =
2x2

1− x2 .

Then solve
cos(

3π
8

)A0(x) + B0(x) = 1.

The solution is xc = 1/
√

2 +
√

2.

Self-avoiding walks adsorbed at a surface Tony Guttmann



MIN2Col

REMARKABLE NATURE OF THE RESULT

Letting l→∞, it follows that Eh(xc) = 0.
Then in a strip of width h we have

cos(
3π
8

)Ah(xc) + Bh(xc) = 1.

Consider a strip of width 0, i.e. a spine. Then

A0(x) =
2x3

1− x2 , B0(x) =
2x2

1− x2 .

Then solve
cos(

3π
8

)A0(x) + B0(x) = 1.

The solution is xc = 1/
√

2 +
√

2.

Self-avoiding walks adsorbed at a surface Tony Guttmann



MIN2Col

REMARKABLE NATURE OF THE RESULT

Letting l→∞, it follows that Eh(xc) = 0.
Then in a strip of width h we have

cos(
3π
8

)Ah(xc) + Bh(xc) = 1.

Consider a strip of width 0, i.e. a spine. Then

A0(x) =
2x3

1− x2 , B0(x) =
2x2

1− x2 .

Then solve
cos(

3π
8

)A0(x) + B0(x) = 1.

The solution is xc = 1/
√

2 +
√

2.

Self-avoiding walks adsorbed at a surface Tony Guttmann



MIN2Col

OUR EXTENSION OF DC-S WITH upper CONTACTS.

For x = xc = 1/
√

2 +
√

2, and for any y

αAh,l(xc, y) +
y∗ − y

y(y∗ − 1)
Bh,l(xc) + εEh,l(xc) = 1,

where α = cos(π/8), ε = cos(π/4) and y∗ = 1 +
√

2.

We need to prove that yc = y∗.
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THE CRITICAL FUGACITY

First, recall that the radius ρ(y) of C̄(x, y) is a continuous, weakly
decreasing function of y ∈ (0,∞). There exists yc > 1 s.t.

ρ(y) = 1/µ if y ≤ yc,

ρ(y) < 1/µ if y > yc,

where µ is the growth constant of unrestricted SAWs.

We can’t use this definition as it stands, as our identity fixes x at xc.
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AN ALTERNATIVE DESCRIPTION OF THE CRITICAL

FUGACITY

Proposition: Let l, the length of our trapezoid, go to infinity. Then we
are in a strip of width h. Let Ah(x, y) be the ogf of arches in a strip of
width h, counted by length and number of contacts. Let yh be the r.c.
of Ah(x, y). Then, as h→∞, yh ↘ yc.
The same holds for the generating function of bridges, Bh(x, y), and
indeed for Ch(x, y), the ogf of all SAWs in the h strip, with the same
value of yh.
We proved this using results of Orlandini, van Rensburg and
Whittington (2006).
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For y > 0 fixed, let ρh(y) be the r.c. of Ah(x, y) (or Bh(x, y) or
Ch(x, y)). Then ρh(y) decreases to ρ(y) as h→∞.
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INGREDIENT 3. Bh(xc, 1)→ 0 AS h→∞.

Proposition: The ogf Bh(x, 1) of bridges of height h evaluated at
xc = 1/µ, satisfies Bh(xc, 1)→ 0 as h→∞.

Remark. The global identity implies that Bh(xc, 1) converges. The
hard part is to show that it converges to zero.

Conjecture: Assuming the scaling limit of SAWs is given by SLE8/3,

Bh(xc, 1) ∼ c/h1/4.

Proof inspired by Duminil-Copin and Hammond (arXiv 2012) The
SAW is sub-ballistic.
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PUTTING IT ALL TOGETHER 1. A LOWER BOUND.

Recall that for x = xc and for any y

αAh,l(xc, y) +
y∗ − y

y(y∗ − 1)
Bh,l(xc) + εEh,l(xc) = 1,

where α = cos(π/8), ε = cos(π/4) and y∗ = 1 +
√

2.

Let y = y∗. Then Ah,l(xc, y∗) increases with l but remains bounded. Its
limit is Ah(xc, y∗) (arches in an h-strip), and is finite.

Thus
y∗ ≤ yh,

and by taking the limit h→∞,

y∗ ≤ yc.
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AN UPPER BOUND ON yc.

Consider arches that fully span the strip. These can be bounded by a
product of two bridges. Then by a direct application of our global
identity, we readily obtain the bound:

1
Bh+1(xc, y)

≤ αxc +
1

Bh+1(xc, 1)

y∗ − y
y(y∗ − 1)

for 0 < y < yh+1 (and in particular for y = yc). In particular

0 ≤ αxc +
1

Bh+1(xc, 1)

y∗ − y
y(y∗ − 1)

.

So if limh→0 Bh(xc, 1) = 0, this implies

yc ≤ y∗,

and we are done.
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PROOF THAT limh→0 Bh(xc, 1) = 0,

This is rather technical. We use renewal theory (following Kesten), to
prove the lemma that, as h→∞

Bh(xc, 1) =
1

EiB(H(γ))
,

where H(γ)) is the height of a bridge γ. We prove by contradiction
that this expectation value is infinite.
Proposition: If EiB(H(γ)) <∞, then EiB(W(γ)) <∞.
Corollary: If EiB(H(γ)) <∞, a random infinite bridge is tall and
skinny. Proof follows from the law of large numbers.
Introducing diamond points and a stick-beak operation, we prove that
this is not true. QED.
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EXTENSION TO OTHER LATTICES

There is no corresponding equation for SAW on other lattices.

For the square lattice, Cardy and Ikhlef found a similar
(parafermionic) observable, but the model describes osculating
SAW with asymmetric weights.

Arguing that the scaling limit of all two-dimensional SAW
models should be identical, “something similar" should be true
for SAW on other lattices.

That is to say, an identity similar to that of D-C/S should hold in
the limit T →∞.
(Notation change: T is width of strip from now on, not h.)
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Figure: Bad picture with nice inset of cαAT(x) + B(x) for
honeycomb lattice walks in a strip of width 1, · · · , 10.
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Figure: Square lattice cαAT(x) + B(x) for walks in a strip of
width 1, · · · , 15.
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Conjecture (using best estimates of xc):

1 = cA(T)AT(xc) + cB(T)BT(xc),

Assume
1 = cA(T)AT+1(xc) + cB(T)BT+1(xc),

and solve for cA(T) and cB(T).
(Square lattice T ≤ 15, triangular lattice T ≤ 11).
Extrapolate:

lim
T→∞

cA(T)

cB(T)
= cos

(
3π
8

)
to 6 sig. digits. Hence

cos
(

3π
8

)
AT(xc) + BT(xc) = const.+ correction

In fact 1.02497(1− 0.14/T2), similarly for the triang. lattice.
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More generally, assume

cA(T)AT−1(xc)+cB(T)BT−1(xc) = cA(T)AT(xc)+cB(T)BT(xc) = cA(T)AT+1(xc)+cB(T)BT+1(xc)

Successive triples give

cA(T), cB(T), xc(T).

Extrapolate xc(T) and find
xc(sq) = 0.37905228(1) and xc(tr) = 0.240917575(10).
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SURFACE INTERACTION FUGACITY FOR OTHER LATTICES

!

"

# $

α β

ε

ε̄

a
2L

T

Figure: Finite patch with a boundary. The SAW acquires
weights x, y for each step/contact.

For the hexagonal lattice, we have proved that

cos(
3π
8

)AT(xc, y) + cos(
π

4
)

(
yc − y

y

)
BT(xc, y) = 1.
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Repeating,

cos(
3π
8

)AT(xc, y) + cos(
π

4
)

(
yc − y

y

)
BT(xc, y) = 1.

At y = yc we have

cos(
3π
8

)AT(xc, y) = 1.

So for the honeycomb lattice T = 1 and T = 2 results are
enough to calculate xc and yc!

Other lattices?

Vertex or site interaction?
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Figure: Square lattice with surface site interactions.
AT(xc, y) versus y for T = 1 . . . 15. Inset shows the
intersection region in finer scale.
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We denote by yc(T) the point of intersection of AT(xc, y) and
AT+1(xc, y).

We observe that the sequence {yc(T)} is a monotone function of
T. The argument above implies that limT→∞ yc(T) = yc.

This then suggests a new numerical approach to estimating yc.

One first calculates the generating function for arches, AT(xc, y),
for all strip widths T = 0, 1, 2, . . .Tmax.

Then use these to calculate yc(T) for T = 0, 1, 2, . . .Tmax−1.

Then extrapolate this monotone sequence by a variety of
standard sequence extrapolation methods.
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Table: Estimated critical fugacity yc for surface adsorption.

Lattice Site weighting Edge weighting
Honeycomb 1.46767

√
1 +
√

2
Square 1.77564 2.040135
Triangular 2.144181 2.950026

For the square lattice these are at least 1000 times more accurate than
other methods. Other results are new.
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EXTEND OFF-CRITICALITY

We redefine the parafermionic operator (σ̄ = 1 + σ) as

F(x) = F(a, x, z, σ̄) =
∑

γ⊂Ω:a→x

eiσ̄W(γ)z|γ|.

In terms of this redefined operator, the D-C/S result is∑
γ⊂Ω:a→x

ei 3
8 W(γ)z|γ|c = 1.

where the sum is over all walks starting at a and ending at x, on
the boundary of Ω.
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Theorem
For z ≤ zc

∑
γ:a→x∈∂Ω

e
3i
8 W(γ)z|γ| + (1− z/zc)

∑
γ:a→x∈Ω\∂Ω

e
3i
8 W(γ)z|γ| = 1.

The first sum is over all walks that finish at the surface of the domain,
while the second sum is over all walks that finish strictly in the
interior of the domain.
We do this for the n-vector model n ∈ [−2, 2]. The r.h.s. becomes a
loop generating function, and F has an extra parameter that counts
loops.
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EXPONENT INEQUALITIES

Restricting ourselves to SAWs, in a strip, we obtain

cos(
3π
8

)AT(z) + BT(z) + (1− z/zc)GT(z) = 1.

As T →∞, AT(z)→ χ11(z), BT(z)→ 0, and GT(z) ≤ χ1.

It immediately follows that

γ11 ≤ γ1 − 1.

(Numerically, 73
64 ≥ 1.)
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WINDING ANGLE DISTRIBUTION

We can use this to calculate the winding angle distribution exponent
for all O(n) models with n ∈ [−2, 2] in terms of exponents γ1 and γ11,
subject only to the existence of those exponents.
First conjectured by Duplantier and Saleur for the O(n) model by CFT
arguments.
Let P(x = θ) be the probability density that the winding angle is θ.
Then ∫ ∞

−∞
eσ̃iθP(θ)dθ ∝ `−ω, where

where

ω = γ1 − γ11 − 1 =

(
9
8

(2− κ)2

κ(4− κ)

)
.

We prove the first equality. The second assumes scaling relations for
these exponents, and that the scaling limit is described by SLEκ.
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