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Periodic patterns

The spontaneous emergence of periodic states is an
ubiquitous phenomenon in nature.

Nevertheless, a fundamental understanding of why
crystals, or ordered patterns, form is still missing.

In this talk I would like to focus on the phenomenon
of formation of periodic arrays of stripes or slabs,
which are observed at low temperatures in a variety
of systems, ranging from magnetic films to
superconductors, polymer suspensions, twinned
martensites, etc.
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Competing interactions

The basic mechanism behind stripe formation seems
to be the competition between a short-range
attractive and a long-range repulsive interaction.

The resulting frustration induces the system to
form mesoscopic islands of a uniform phase, which
alternate regularly on the scale of the whole sample.
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Striped and slabbed patterns

Theoretically, the understanding of these regular
patterns is based on a variational computation of
the “best energy” among those of a selected class
of periodic states.

Remarkably, in many different situations, the “best
state” seems to be striped or slabbed. But why?
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One dimension

Motivated by these issues, some years ago we
(G-Lebowitz-Lieb) started to investigate the ground
state structure of 1D Ising models with competing
interactions.

In the presence of n.n. FM, plus long range
power-law decaying AF interactions, we proved the
non-trivial periodicity of the ground states.
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One dimension

Motivated by these issues, some years ago we
(G-Lebowitz-Lieb) started to investigate the ground
state structure of 1D Ising models with competing
interactions.

In the presence of n.n. FM, plus long range
power-law decaying AF interactions, we proved the
non-trivial periodicity of the ground states.

Our results complemented the few convexity-based
proofs of periodic minimizers in one-dimensional non-
linear elasticity (Müller, Chen-Oshita).
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One dimension

Motivated by these issues, some years ago we
(G-Lebowitz-Lieb) started to investigate the ground
state structure of 1D Ising models with competing
interactions.

In the presence of n.n. FM, plus long range
power-law decaying AF interactions, we proved the
non-trivial periodicity of the ground states.

Our 1D results have implications in d = 2, 3: the
best state among those with straight domain walls is
periodic and striped.
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Generalizations: one and two dimensions

Later on, we generalized our results to:

1 1D continuum functionals with magnetic field
(G-Lebowitz-Lieb): RP + convexity;

2 1D models where the FM interaction is not n.n.
(Buttà-Esposito-G-Marra): RP + coarse graining;

3 anisotropic 2D system for martensitic phase
transitions (G-Müller): RP + localization bounds;

4 isotropic 2D magnetic models with in-plane
spins (G-Lebowitz-Lieb): FM RP + AF RP.
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Ising models with competing interactions

In many physical contexts, a more natural, though
simplified, model for stripe formation in d ≥ 2 is:

H = −J
∑
〈x,y〉

(σxσy − 1) +
∑
{x,y}

(σxσy − 1)

|x− y|p

Depending on the exponent, the long range
interaction can model:
• a Coulomb potential (p = 1),
• a dipolar potential (p = 3).
More general values of p describe a “generic”
antiferromagnetic power law potential.
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The ground state phase diagram

FM transition at: J = Jc(p) =
1

2

∑
y∈Zd

|y1|
|y|p
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The ground state phase diagram

If p > 2d the model is somewhat simpler to
analyze: the optimal stripes energy

estripes ∼ −(Jc − J)
p−d

p−d−1 ,

is substantially smaller than that of other candidate
periodic structures, and we could heuristically
identify the elementary excitations of the system
(corners).
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Main results

Theorem [G-Lieb-Seiringer]. Let d = 2, 3,
p > 2d and let Jc = Jc(p) be the location of the
FM transition line. Then:

lim
J→J−c

e0(J)

eS(J)
= 1 ,

where e0(J) is the ground state energy per site, and
eS(J) is the minimal energy per site within the class
of periodic striped or slabbed configurations.



Introduction Ising models with competing interactions Main results Ideas of the proof

Remarks

The proof comes with explicit error bounds on
the remainder. More precisely, we find:

1 ≥ e0(J)

eS(J)
≥ 1− C (Jc − J)

p−2d
(d−1)(p−d−1)
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Remarks

Our proof also also shows that, if J . Jc ,
the ground state is striped in a certain sense:
namely, if we look at a randomly chosen
window, of suitable size `� h∗, we see a
striped state with high probability.

These are the sharpest results available on the
g.s. phase diagram of the considered class of
models. They are the first results of this kind for
3D systems with competing interactions.
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Main steps

The proof consists in a refined lower bound on e0.
Main steps:

1 Representation of the energy in terms of droplet
self-energies and droplet-droplet interactions.

2 Lower bound on self-energy & (J − Jc)|Γ|+ Nc .
3 Localization of the droplets’ energy functional in

boxes of side ` (to be optimized over).
4 Key fact: the localized self-energy of droplets

with Nc ≥ 1 is positive if ` < (Jc − J)−1/(d−1).
5 The local configurations without corners can be

minimized by using reflection positivity and lead
to a periodic striped state.
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Thank you!
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Summary

We considered Ising models in d = 2, 3 with n.n.
FM and power law AF interactions, the decay
exponent being p > 4 (d = 2) or p > 6 (d = 3).

At a critical Jc , the ground state becomes
homogenous. We proved that asymptotically as
J → J−c the specific ground state energy
approaches the optimal periodic striped energy.
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Summary

The proof comes with explicit error bounds and
implies existence of stripes in a suitable sense:
most windows of side `� h∗ show striped
states, with stripes all of size close to h∗.

These are the best known results on the ground
state of the system under consideration.

The proof combines localization bounds, based
on a convenient droplet representation of the
energy, with block reflection positivity.
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The droplet representation

We choose + boundary conditions and define the
droplets δi to be the maximal connected regions of
negative spins. Their boundaries Γi are the usual
low-temperature contours of the Ising model.
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Energy of a droplet (in d = 2)
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Corners

Take home message: corners cost a finite energy!
They look like elementary excitations. However:
how do we eliminate them by local moves? How do
we exclude that their presence does not decrease
the interaction energy substantially?
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Corners

We localize into boxes of side h∗ � ` ∼ τ−1. As far
as W (δi , δj) is concerned, we just neglect the terms
involving droplets belonging to different boxes.

Non trivial part: localization of the self-energy. The
resulting expression is positive as soon as Nc ≥ 1.

We can, therefore, erase all droplets with corners.

At that point we utilize reflection positivity of the
long range potential to reflect in the location of the
domain walls, so finding our final bound.
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