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History: A Bose-Einstein condensate (BEC) is a state of matter of a dilute
gas of weakly interacting bosons confined in an external potential and cooled to
temperatures very near absolute zero. Under such conditions, a large fraction of
the bosons occupy the lowest quantum state of the external potential, at which
point quantum effects become apparent on a macroscopic scale. This state
of matter was first predicted by Satyendra Nath Bose and Albert Einstein in
1924-25. Bose first sent a paper to Einstein on the quantum statistics of light
quanta. Einstein was impressed, translated the paper himself from English to
German and submitted it for Bose to the Zeitschrift fur Physik which published
it. Einstein then extended Bose’s ideas to material particles (or matter) in two
other papers. Seventy years later, the first gaseous condensate was produced by
Eric Cornell and Carl Wieman in 1995 at the University of Colorado at Boulder
NIST-JILA lab, using a gas of rubidium atoms cooled to 170 nanokelvin (nK)
.

FIG. 1. (Color online) Velocity-distribution data of a gas of rubidium atoms, confirming the dis-

covery of a new phase of matter, the Bose-Einstein condensate. Left: just before the appearance

of a Bose-Einstein condensate. Center: just after the appearance of the condensate. Right: after

further evaporation, leaving a sample of nearly pure condensate.
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I would like to present a new method [1] [2] of introducing com-

posite fields related to the normal and anomalous densities into

the effective theory of dilute Bose Gases in a way which preserves

Goldstone’s theorem. In leading order one finds

• At weak coupling it reproduces the well known Bogoliubov

results and spectrum [3] ωk =
√
k2(k2 + 2λv2)

• It has a phonon spectrum to all orders in the expansion pa-

rameter (i.e. Goldstone’s theorem)

• It has the correct order of the phase transition to the unbroken

symmetry phase (second order phase transition).

• One obtains ∆Tc/T0 = 2.33(ρ1/3a0) in weak coupling

• It predicts a new regime Tc < T < T ∗ where superfluidity is

due to diatom Goldstone condensates

• Using a “gedanken experiment” related to the Higgs Mecha-

nism we can relate the superfluid density ρs to the square of

the anomalous density [4] .

• For the Bose-Hubbard model one finds [5] a quantum phase

transition to the Mott insulator phase
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I. REVIEW OF VARIOUS MEAN FIELD THEORY APPROXIMATIONS

Dilute gases can be described by the s-wave scattering amplitude

as or equivalently by a local 4-boson interaction (φ?φ)2 Thus the

operator equation of motion for the many body field φ is[
−i~ ∂

∂t
− ~2∇2

2m
− µ

]
φ(x) + λφ?φ(x)φ(x) = 0. (1)

Taking the expectation of this with respect to the initial density

matrix we find we need to evaluate

λ〈φ?φφ〉 (2)

Introduce the two composite fields: χ = λφ?φ and A = λφφ. The

Hartree-Fock-Bogoliubov approximation is to replace this by

λ(2〈φ?φ〉〈φ〉 + 〈φ?〉〈φφ〉) = 2〈χ〉〈φ〉 + 〈φ?〉〈A〉 (3)

However this approximation violates Goldstone’s theorem by a

term proportional to 〈(A− < A >)2〉. Popov [6] sets this term

to zero, and obtains Bogoliubov’s (one loop) result at weak cou-

pling. BUT also no shift in Tc and a first order phase transition at

Tc. Large N (make N copies φi)

λ〈φ?φφ〉 = 〈χ〉〈φ〉 (4)

In leading order large-N the BEC phase is the same as for a free

gas. One needs to look at the 1/N correction to get the Bogoliubov
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spectrum and a shift in Tc [7]. Instead we use the identity:

λφ?φφ = χφ cosh2 θ − φ?A sinh2 θ (5)

In lowest order in the Auxiliary Field loop expansion (LOAF)

λ〈φ?φφ〉 = 〈χ〉〈φ〉 cosh2 θ − 〈φ?〉〈A〉 sinh2 θ (6)

For sinh θ = 1 we reproduce at weak coupling the results of Bo-

goliubov theory (one loop) [8].

II. BOSE EINSTEIN CONDENSATION IN A FREE GAS

For a given 〈N〉 as we lower the temperature there is a transition

temperature T0 below which particles must condense into the zero

momentum state. For the ideal gas

Z= Tre−β(H−µN) =
∑
{ni}

< n1 . . . n∞|eβµ
∑
ni−

∑
εini|n1 . . . n∞ >

=

∞∑
ni=1

∞∏
i=1

e−βni(εi−µ) =

∞∏
i=1

1

1− e−β(εi−µ)
(7)

Ω = − 1

β
lnZ =

1

β

∑
i

ln(1− e−β(εi−µ)) (8)

The average number of particles is given by

〈N〉 = −∂Ω

∂µ
=
∑
i

1

eβ(εi−µ) − 1
=
∑
i

ni (9)
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Here ni is the mean occupation number in the ith state. For the

free particle εi = ε(p) = p2/2m. In a box piLi = 2niπ. For a given

〈N〉 there is a temperature below which the continuum expression

does not have enough particles. The p = 0 state is not counted in

the continuum expression and needs to be treated separately. In

the continuum ∑
i

→ g

∫
d3n = gV

∫
d3p

(2π)3
(10)

This is Bose Einstein Condensation transition temperature T0.

The chemical potential below T0 is zero. The critical temperature is

the solution of : (Here ρ is considered a fixed external parameter).

ρ =< N > /V =

∫
d3p

(2π)3
n[β0εp]; εp = p2/2m (11)

Performing the integral one obtains:

ρ =
g

4π2

(
2mkbT0

~2

)3/2

ζ(3/2)Γ(3/2); (12)

T0 =
~2

2mkB
(

4π2ρ

gΓ(3/2)ζ(3/2)
)2/3 (13)

Below T0 the density of particle not in the condensate is given

by

ρ =
g

4π2

(
2mkbT

~2

)3/2

ζ(3/2)Γ(3/2); (14)
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One determines the number of particles in the condensate from

N0 = N − ρV so the fraction is given by

ρ0

ρ
= 1− (T/T0)3/2 (15)
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FIG. 2. (Color online) Temperature dependence of the condensate fractions from the LOAF and

PA approximations, compared with the NI result, for ρ1/3a0 = 0.1 and ρ1/3a0 = 1. Because at Tc

the PA and NI dispersion relations are the same, PA does not change Tc relative to the NI case.

LOAF increases Tc.
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III. PATH INTEGRAL APPROACH FOR THE FREE GAS

The Grand Partition Function coherent state Path Integral

Z = Tre−β(H−µN) =

∫
Dφ∗Dφe−S[φ∗φ] (16)

where the action is

S=

∫ β

0

dτ

∫
d3xφ∗

[
∂

∂τ
−∇2 − µ

]
φ(x, τ )

=

∫ β

0

dτ

∫
d3x(φα)∗(x, τ )G−1

0,αβ(x, x′; τ, τ ′)φβ(x′, τ ′) (17)

Here φ(x, τ ) is periodic in τ with period β. φa(x) = (φ(x), φ∗(x) )

Taking the Fourier Transform:

G(x, x′) =
1

β

∫
d3k

(2π)3

+∞∑
n=−∞

G̃(k, n) ei[k·(r−r
′)−ωn(τ−τ ′) ] . (18)

we find that

G−1
0 =

εk − µ− iωn 0

0 εk − µ + iωn

 ;G0 =

G̃(k, n) 0)

0 G̃(−k,−n)


(19)

where

G̃(k, n) =
εk − µ + iωn
ω2
k + ω2

n

, (20)
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Here ωn = 2πn/β, εk = k2/2m. Performing the Gaussian integral

over φ one obtains

F = − 1

V β
lnZ =

1

2
Tr lnG−1(ωn, p) =

1

2β

∑
n

∫
d3p

(2π)3
ln[ω2

n+(εp−µ)2]

(21)

Using ∑
n

ln[ω2
n + ω2] = βω + 2 ln[1− e−βω] (22)

We obtain (ωp = εp − µ)

F =

∫
d3p

(2π)3

[ωp
2

+ T ln[1− e−βωp]
]

(23)

The first terms is the vacuum energy term, removing that:

F =

∫
d3p

(2π)3
T ln[1− e−βωp]. (24)

Mean field theory:

• ω now a function of A(T, λ, ρ), χ(T, λ, ρ))

• A and χ obey self consistent conditions (gap equations)

IV. DILUTE BOSE GAS EFFECTIVE FIELD THEORY AND AUXILIARY FIELD

LOOP EXPANSION

For a dilute Bose Gas an effective field theory can be written in

terms of a single dimensionless parameter ρa3
0, where a0 is the spin

singlet scattering length. The effective action is
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S[φ, φ∗ ] =

∫
dx L[φ, φ∗ ] , (25)

where dx := dt d3x and where the Lagrangian density is

L[φ, φ∗ ] =
i~
2

[φ∗(x) ∂t φ(x)− ∂t φ∗(x)φ(x) ]

−φ∗(x)
{
−~

2∇2

2m
− µ

}
φ(x)− λ

2
|φ(x)|4 . (26)

Here µ is the chemical potential. λ = 8π~2 a0/(2m). Introduce

χ(x) and A(x) by means of the Hubbard-Stratonovich transforma-

tion [9],

Laux[φ, φ
∗, χ, A,A∗]=

1

2λ

[
χ(x)− λ

√
2 |φ(x)|2

]2
− 1

2λ

∣∣A(x)− λφ2(x)
∣∣2 (27)

which we add to Eq. (26). By doing this the classical action is

given by S [Φ] =
∫

d4xL[Φ], where

L[Φ] =
1

2λ

[
χ2(x)− |A(x)|2

]
−
√

2χ(x) |φ(x)|2 (28)

+
[
A∗(x)[φ(x)]2 + A(x)[φ∗(x)]2

]
+

1

2

[
φ∗(x)hφ(x) + φ(x)h∗ φ∗(x)

]
,

h = i~ ∂t + γ∇2 + µ; γ = ~2/(2m) (29)

Φα =
(
φ, φ∗, χ, A,A∗

)
is a set of five fields. The Lagrangian

density possesses a global U(1) symmetry:

φ→ eiΛφ , A→ e2iΛA , (30)
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Adding sources terms JαΦα, Jα(x) ≡
(
j, j∗, s, S, S∗

)
the generat-

ing functional W [J ] of connected graphs is

Z[J ] = eiW [J ]/~ = N
∫
DΦ ei(S[Φ]+

∫
d4x Jα(x) Φα(x)) ,

The generator of one-particle irreducible (1-PI) graphs, Γ[Φ], is

Γ[Φ] =

∫
d4x Jα(x) Φα(x)−W [J ] , (31)

The equations of motion and the inverse propagator are

δΓ[Φ]

δΦα(x)
= Jα(x) ,

δ2Γ[Φ]

δΦα(x) δΦγ(x′)
= G−1

αγ (x, x′) . (32)

The path integration over the φ(x) fields is done exactly and the in-

tegral over the fields χ(x), A(x) and A∗(x) is performed by steepest

descent [10] . S → S/ε. We obtain at leading order in ε

Γ[Φ] =
1

2

∫∫
d4x d4x′φ∗a(x)G−1

ab [χ,A](x, x′)φb(x
′)

−
∫

d4x
{χ2 − |A|2

2λ
− ~

2i
Tr[ ln[G−1[χ,A](x, x) ] ]

}
.

Here, G−1
ab represents the {1, 2} sector of G−1

αβ , i.e.

G−1
ab [χ,A](x, x′) (33)

= δ(x, x′)

−i~ ∂t − γ∇2 + χ′ −A

−A∗ i~ ∂t − γ∇2 + χ′

,
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where we introduced the notation χ′ =
√

2χ−µ. For the partition

function t 7→ −i~τ . For constant values of χ′ and A , we have

Gαβ(x) =

∫
d3k

(2π)3

∑
n

G̃αβ(k, n) ei[k·r−ωnt ] , (34)

where ωn = 2πn/T . From Eq. (33), we find

G̃11(k, n) = G̃∗22(k, n) =
εk + χ′ + iωn
ω2
n + ω2

k

, (35)

G̃12(k, n) = G̃∗21(k, n) =
A

ω2
n + ω2

k

,

ω2
k = (εk + χ′)2 − |A|2 = (εk + (χ′ − |A|))(εk + (χ′ + |A|)) , (36)

The effective potential at finite temperature is

Veff[Φ] = χ′|φ|2 − A∗ φ2

2
− Aφ∗ 2

2
− (χ′ + µ)2

4λ
(37)

+
|A|2

2λ
+

∫
d3k

(2π)3

[ ωk
2

+ T ln
(
1− e−βωk

) ]
,

and the particle density is given by ρ = − ∂Veff/∂µ = (χ′+µ)/(2λ).

Following [1], minimizing Veff with respect to φ∗ gives

χ′φ− Aφ∗ = 0 . (38)

Because of the gauge freedom, we can choose φ to be real at the

minimum. So for φ 6= 0, A = χ′ and

ω2
k = (εk)(εk + 2A) (39)
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Minimizing with respect to χ′ and A and performing µ, λ and

vacuum renormalization, we obtain

A

λ
= ρ0 + A

∫
d3k

(2π)3

{1 + 2n(ωk)

2ωk
− 1

2εk

}
, (40a)

ρ = ρ0 +

∫
d3k

(2π)3

{εk + A

2ωk
[1 + 2n(ωk)]−

1

2

}
, (40b)

where the condensate density is ρ0 = φ2
0 , λ = 8π~2 a0/(2m) and

n(x) = (ex − 1)−1 is the Bose distribution. The phase diagram

in the LOAF approximation is depicted in Fig. 3 as a function of

the strength of the inter-particle interaction, which is character-

ized by the dimensionless parameter ρ1/3a0, where a0 is the s-wave

scattering length. We notice the presence of three distinct regions,

corresponding to the values of the three LOAF parameters, the

usual (atom) BEC condensate density, ρ0, and the normal and

anomalous auxiliary fields, χ′ and A: Here, the critical tempera-

ture Tc corresponds to the emergence of the atom BEC condensate,

whereas the temperature T ? is related to the onset of superfluid-

ity in the system and the emergence of a diatom condensate, A.

The anomalous auxiliary field A represents a second order param-

eter in the LOAF theory. In the noninteracting limit, Tc and T ?

are the same. As the interaction strength increases, the tempera-

ture range for which the superfluid is present in the absence of the
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FIG. 3. (Color online) The LOAF phase diagram.

atom BEC condensates expands. LOAF predicts ∼ 20% temper-

ature range T ? − Tc relative to Tc for a dimensionless parameter

value, ρ1/3a = 1. In regions I and II fields carrying U(1) charge are

nonzero, which leads to spontaneous breaking of the U(1) charge

and the existence of Goldstone modes. These Goldstone modes are

essential for the existence of superfluidity according to the Joseph-

son relationship.
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FIG. 4. (Color online) Normal density, χ′, and anomalous density, A, from the LOAF and PA

approximations, for ρ1/3a0 = 1. Tc and T ? indicate vanishing condensate density, ρ0, and anomalous

density, A, respectively. PA leads to a first-order phase transition, whereas LOAF predicts a second-

order phase transition. We have that Tc = T ? in the PA, but not in LOAF.

V. HARTREE FOCK BOGOLIUBOV APPROXIMATION

The generating functional Z[j] is written as a path integral,

Z[j] = eiW [j]/~ =

∫
Dφ eiS[φ,j]/~ , (41)

where S[φ, j] is the classical action+ sources.

The HFB approximation assumes all fluctuations beyond the sec-

ond are small, so that the third derivative of W with respect to j

is set equal to zero. The connected two-point Green functions are
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defined by

G[j](x, x′) =
δ2W [j]

δj∗(x) δj(x′)
;K[j](x, x′) =

δ2W [j]

δj∗(x) δj∗(x′)
(42)

The Hartree approximation ignores all third-order functional deriva-

tives of W [j] and we obtain

[
−~

2∇2

2m
− i~ ∂

∂t
− µ

]
φ(x) + λ |φ(x)|2 φ(x) (43)

+ 2
λ~
i
G[j](x, x)φ(x) +

λ~
i
K[j](x, x)φ∗[j](x) = j(x).

Defining new auxiliary fields χ(x) and A(x) by,

χ(x) + µ

2λ
= |φ(x) |2 + ~G(x, x)/i , (44a)

A(x)

λ
= [φ(x) ]2 + ~K(x, x)/i . (44b)[

h0 + χ(x)−2λ |φ(x) |2
]
φ(x) + A(x)φ∗(x) = 0 .

h0 =
~2∇2

2m
− i~ ∂

∂t
. (45)

Functional differentiation of Eq. (43) w.r.t. j(x′) and j∗(x′),[
h0 + χ(x)

]
G(x, x′) + A(x)K∗(x, x′) = δ(x, x′) , (46a)[

h0 + χ(x)
]
K(x, x′) + A(x)G∗(x, x′) = 0 , (46b)

and the complex conjugates.
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The action for HFB

ΓH[φ, χ,A,A∗] =

∫
dx
{
φ∗(x)

[
h0 + χ(x)

]
φ(x)− λ |φ(x) |4 − (χ + µ)2

4λ

(47)

− |A|
2

2λ
+

1

2
[φ2(x)A∗(x) + φ∗ 2(x)A(x) ] +

~
2i

ln[ det[G−1(x, x) ] ]
}
,

where the terms in red are different than in LOAF.

(48)

G−1(x, x′) = δ(x, x′)

h0 + χ(x) A(x)

A∗(x) h∗0 + χ(x)

 . (49)

Again calculating the effective potential in the Matsubara formal-

ism we find the dispersion relation:

ω2
k = (εk + χ)2 − |A|2 = ( εk + χ + |A| ) ( εk + χ− |A| ) . (50)

The minimum of the potential is when

∂VH
∂φ∗

∣∣∣
φ0

= χ0 φ0 − 2λ |φ0|2 φ0 + A0 φ
∗
0 = 0 , (51)

So for the broken symmetry case when φ0 6= 0, we have

χ0 + A0 = 2λ |φ0|2 . (52)

At the minimum of the effective potential, the dispersion relation

(50) is

ω2
k = [ εk + 2λ |φ0|2 ] [ εk − 2 (A0 − λ |φ0|2 ) ] . (53)
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The self-consistency conditions are:

ρ = −∂VH
∂µ

=
χ0 + µ

2λ
= ρ0 +

∫
d3k

(2π)3

{ εk + χ0

2ωk
[ 1+2n(ωk) ]−1

}
.

(54)

Here we have set ρ0 = φ2
0 which is the condensate density. We also

have

A0

λ
= ρ0 − A0

∫
d3k

(2π)3

{ 1

2ωk
[ 1 + 2n(ωk) ]− 1

2εk

}
, (55)

where ωk is given in Eq. (53).

We solve Eqs. (54) and (55) for ρ0/ρ as a function of T/T0, with

ωk given by Eq. (53). The Hartree approximation is compared to

LOAF and Popov in Fig. 8

VI. POPOV APPROXIMATION

Because the breakdown of the Goldstone theorem is due to the

fluctuation term in A, Popov set this term equal to zero [6] . Re-

quiring

A = λ〈φ〉2 (56)

Thus one obtains a gapless spectrum at the cost of an artificial first-

order phase transition and no shift in the critical temperature. .

The the dispersion relation is ωp = p
√
p2 + 2λv2. There is only
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FIG. 5. (Color online) Normal density, χ′, and anomalous density, A, from the LOAF and PA

approximations, for ρ1/3a0 = 1. Tc and T ? indicate vanishing condensate density, ρ0, and anomalous

density, A, respectively. PA leads to a first-order phase transition, whereas LOAF predicts a second-

order phase transition. We have that Tc = T ? in the PA, but not in LOAF.

one self-consistent equation for ρ0.

ρ = ρ0 +

√
2

12π2
(λρ0)3/2 +

1

4π2

∫
dp
p2[p2 + ω2

p/p
2]

ωp
n(ωp).

VII. NUMERICAL RESULTS

20



When we compare the free gas result with the LOAF, POPOV

and Hartree-Fock Bogoliubov approximations, we find that LOAF

overcomes the difficulties of both the Popov (1st order Transition,

no shift in Tc), Hartree (not gapless, no shift in Tc and a 1st order

transition). The anomalous density leads to a new temperature

regime Tc < T < T ∗ where Tc is where φ → 0 and T ∗ where

A→ 0.
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LOAF increases Tc.
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VIII. JOSEPHSON RELATION- ORDER PARAMETER FOR SUPERFLUIDITY

We want to show that superfluidity requires Goldstone modes

and that in LOAF these are also in the correlation function for the

composite field A. We will find either by direct computation[11]

or by a Gedanken experiment [4] that in the LOAF approximation

ρs ∝ A2 (57)

Consider a superfluid moving with velocity v in the laboratory

frame. The Lagrangian for this system is obtained by replacing
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the momentum operator for the system at rest by

~
i
∇ 7→ P ≡ ~

i
∇−mv . (58)

Then, the superfluid mass density is given by the second-order

derivative of the free energy,

ρs =
1

V

[ ∂2 F (V,N, T, v)

∂v2

]
v=0

, (59)

where v is the velocity of the superfluid. The free energy is related

to the grand potential Ω(V, µ, T, v) by

F (V,N, T, v) = Ω(V, µ, T, v) + µN . (60)
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It was shown in Ref. 12 that Eq. (59) is equivalent to

ρs =
1

V

[ ∂2 Ω(v)

∂v2

]
v=0

, (61)

which is what we use here.

The shifted action after the Hubbard-Stratonovich transforma-

tion is

S[J,Φ;µ, β,v] (62)

=
1

2

∫∫
[dx] [dx′]φa(x)G−1

v
a
b[Φ](x, x′)φb(x′)

+

∫
[dx]

{
[ |A(x)|2 − χ2(x) ]/(2λ) + Jα(x) Φα(x)

}
,

where

G−1
v

a
b[Φ](x, x′) = δ(x, x′)

 h
(+)
v −A(x)

−A∗(x) h
(−)
v

 , (63)

with

h(+)
v = hv + ∂τ , h(−)

v = h∗v − ∂τ , (64)

hv = −~
2∇2

2m
− ~
i
v ·∇ +

1

2
mv2 +

√
2χ(x)− µ .

Computing derivative of the action, we find

∂S

∂vi
= −

∫
[dx] ji(x) , (65)

where ji(x) is the classical mass current density,

ji(x) =
~
2i

[
φ∗(x)∇i φ(x)− φ(x)∇i φ

∗(x)
]
− vi ρ(x) , (66)
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with ρ(x) = |φ(x)|2. The superfluid density is evaluated from

the current current correlation function and we found [11] that in

LOAF

ρs = − 8m2 |A|2

~2
lim
q→0

1

q2 G̃AA(q, 0)
. (67)

Here, G̃AA is the Fourier transform of the connected propagator

corresponding to the expectation value 〈A?A 〉. So we see that we

need Goldstone modes in the A propagator to have superfluidity.

This is similar to the Josephson relation for the case of interact-

ing dilute Fermi gases was derived by Taylor which has the form

[13]

ρs = −m
2
B|∆|2

~2
lim
q→0

1

q2D̃11(q, 0)
, (68)

where D̃11 is the Fourier transform of the connected propagator

corresponding to the expectation value 〈∆?∆ 〉 for quasi-particle

bosons of mass, mB, constructed as pairs of mass mF fermions

(mB = 2mF ). Here the gap parameter, ∆, is the auxiliary field,

∆ = 〈ψ↑ψ↓ 〉, the propagator D11 is an auxiliary-field propagator,

similarly to what is described in Eq. (67). The fact that in LOAF

the Josephson relation (67) is different from the classical expression

[14, 15] is due to the fact that in our auxiliary field formalism, we

treat the normal and anomalous density condensate condensates
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on equal footing. By doing so we find that the propagator for the

composite field A contains a Goldstone excitation.

IX. GOLDSTONE THEOREM- SUPERFLUIDITY-MEISSNER EFFECT-HIGGS

PHENOMENA

The superfluid state in the Bose gas is discussed using Landau’s

phenomenological two-fluid model [16]. We define the normal-state

density

ρn =
1

3π2

∫ ∞
0

dk k2 εk

[
−∂n(ωk)

∂ωk

]
, (69)

where ωk is the quasi-particle energy given by the LOAF dispersion

relation (36). Correspondingly, the superfluid density is defined as

ρs = ρ − ρn. In Fig. 9, we illustrate the temperature dependence

of the atom BEC condensate, ρ0, and the superfluid density, ρs,

relative to the system density, ρ, for an interaction strength ρ1/3a =

0.4. As advertised, the onset of superfluidity in the system occurs

at T ?, and this temperature is different from the Tc, the emergence

temperature of the atom BEC condensate.

If we promote the U(1) symmetry to a gauge symmetry by setting

Λ→ gΛ(x)/~ where g is the U(1) charge, in order to preserve the

symmetry we introduce a gauge field Wµ(x) =
(
W0(x),W(x)

)
analogous to the weak interaction vector gauge field. Then, the
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boson fields, φ, and the anomalous auxiliary field, A, carry one and

two units of U(1) charge, respectively. The LOAF approximation

predicts that the superfluid state is accompanied by a Meissner

effect in the presence of a weak vector potential, W(x). Following

the standard derivation [17] of the supercurrent in BCS theory and

adapting it to the case of a Bose gas one finds

js(q) = −ρs
g2

mc
W(q) . (70)

where the superfluid density ρs in Eq. (70) is the same as that

obtained in the Landau two-fluid model:

ρs = ρ− 1

3π2

∫ ∞
0

dk k2 εk

[
−∂n(ωk)

∂ωk

]
, (71)

From the supercurrent (70) and the Maxwell equation, ∇×(∇×

W) = js, we find the London equation [19]

∇2 W +
c

4π λ2
L

W = ∇2 W +
ρsg

2

mc
W = 0 , (72)

where λL =
√
mc2/(4πρsg2) is the London penetration depth for

the W field.

A. Composite Field Goldostone Theorem, Higgs Phenomena and order parameter

In region 2 of the phase diagram < φ >= 0; A 6= 0. A has U(1)

charge of two.
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The Goldstone theorem (Goldstone 1961) states that when a con-

tinuous symmetry, such as U(1), is spontaneously broken, then,

necessarily, new massless scalar states appear in the excitation

spectrum related to the order parameter. In LOAF, the composite-

field Goldstone theorem for the auxiliary field A gives rise to a

massless scalar when Tc < T < T ?. To derive the Goldstone

theorem, one utilizes Noether’s theorem for the U(1) transforma-

tion (30) on the fields Φ. For constant fields and in the absence of

sources one obtains from Noether’s theorem Mαβ Φβ = 0, where

Mαβ is a 4×4 matrix with indices {1, 2, 4, 5} for φ, φ?, A,A? and

Mαβ =

∫
d4x′ G−1

αγ (x, x′) gγβ = G̃−1
αγ (0, 0) gγβ . (73)

The Goldstone theorem corresponds to det[M ] = 0 and implies

the presence of a pole in the propagator at zero-energy and zero-

momentum transfer [18] We obtain[
G̃−1

11 (0, 0) − G̃−1
12 (0, 0)

]
φ = 0 , BEC region (74)[

G̃−1
4,4(0, 0)− G̃−1

5,4(0, 0)
]
A = 0 . Region 2 (75)

The Goldstone theorem for the atom BEC condensate corresponds

to the case φ 6= 0. Hence, Eq. (74) is consistent with the minimum

condition (38), in region I : for T < Tc with χ′ = A. In LOAF in
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general

G̃−1
4,4(0, 0)− G̃−1

4,5(0, 0) (76)

=
1

2

[1

λ
−
∫

d3k

(2π)3

1 + 2n(ωk/T )

2ωk

]
=
ρ0

2A
.

Here we used

G̃−1
4,4(0, 0) =

1

2λ
+
T

2

∫
d3k

(2π)3

∑
n

G̃11(k, n) G̃22(k, n) ,

G̃−1
4,5(0, 0) =

T

2

∫
d3k

(2π)3

∑
n

G̃12(k, n) G̃12(k, n) ,

In region II (Tc < T < T ?) ρ0 is zero but A 6= 0, Eq. (76) is

identically zero and we find a composite-field Goldstone theorem,

corresponding to a zero energy and momentum excitation of the

gas.

To relate ρs to the fundamental quantities of our theory, we

note that the Tr{lnG−1} term in the action leads to nonlocal

temperature-dependent n−A vertices The relativistic effective field

theory for the field A in the presence of a U(1) gauge field has the

form

L = (DµA)∗ (DµA)− λA
(
|A|2 − A2

)2 − 1
4FµνF

µν , (77)

with the covariant derivative, Dµ = ∂µ + 2igWµ, and Fµν =

∂µWν−∂νWµ. Here, λA ≡ λA(T ) is the value of the four-point field
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interaction at zero momentum transfer and temperature T , and

A ≡ A(T ) is obtained by solving Eqs. (40a) and (40b) for T < T ?.

Note that when g → 0, this is the usual effective Lagrangian for

charged scalars which exhibits the Goldstone theorem. Letting

A = A + 1√
2

(
A1 + iA2

)
, 〈A1 〉 = 〈A2 〉 = 0 , (78)

And introducing a new field: W ′
µ = Wµ + ∂µA2/(2

√
2 gA),

L = 1
2(∂µA1)2 − 1

2 λAA
2A2

1 − 1
4 F
′
µνF

′µν (79)

+ (2gA)2W ′
µW

′µ + · · · .

where F ′µν = ∂µW
′
ν − ∂νW ′

µ. Hence, the field A1 has a composite-

field Higgs mass, M 2
H = λAA

2, whereas the effective mass of the

gauge field W ′
µ is M 2

W = (2g A)2. The latter is identified as

M 2
W = (2g A)2 −→ ρs

g2

mc2
. (80)

This implies that A2 is a measure of the superfluid density, ρs. In

Fig. 9 we show the temperature dependence of A2 closely resembles

that of the superfluid density.
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FIG. 9. (Color online) (top) Comparison of the atom BEC condensate density, ρ0, and the superfluid

density, ρs, for ρ1/3a0 = 0.4. (bottom) Comparison of A2 and ρs. Here A0 ≡ A(T = 0).

X. BOSE HUBBARD MODEL

This is the lattice version of the BEC problem, so we expand the

inverse Green function in a three dimensional Fourier series,

G−1
i,j (τ, τ ′) =

1

βN 3
s

∑
k,n

G̃−1
k,n e

i[ 2πk·(i−j)/Ns−ωn (τ−τ ′) ] , (81)

where ωn = 2πn/β are the Bose Matsubara frequencies. Here

k = (kx, ky, kz) is a triplet of integers, each running from −Ns/2

to Ns/2− 1. The total number of sites in the cubic box is N 3
s and

the filling factor, ν, is defined to be the number of particles per
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site, ν = N/N 3
s .

The Fourier transform of the Green function is again

G̃−1
k,n =

εk + χ′ − iωn −A

−A∗ εk + χ′ + iωn

 , (82)

where we have put χ′ =
√

2χ− µ. Now εk is given in terms of the

lattice momentum, k̂, as

εk = J k̂2 = 2J
∑
s=x,y,z

[ 1− cos(2π ks/Ns) ] , (83)

The effective potential in LOAF is [5]

Veff[ Φ,∆ ]/N 3
s (84)

= χ′ |φ|2 − 1

2
[Aφ∗ 2 + A∗φ2 ]− (χ′ + µ )2

4U
+
|A|2

2U

+
1

N 3
s

∑
k

{ 1

2
[ωk − εk − χ′ ] +

1

β
ln[ 1− e−βωk ]

}
.

which leads to

(χ′ − A∗ )φ = 0 , (85a)
χ′ + µ

2U
= |φ|2 +

1

N 3
s

∑
k

{ εk + χ′

2ωk
[ 2nk + 1 ]− 1

2

}
, (85b)

A

U
= φ2 +

A

N 3
s

∑
k

[ 2nk + 1 ]

2ωk
, (85c)

where nk = 1/[ eβωk − 1 ], ωk =
√

( εk + χ′ )2 − |A|2 . and with the
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filling factor given by

ν =
N

N 3
s

= − 1

N 3
s

∂Veff[ Φ,∆ ]

∂µ
=
χ′ + µ

2U
. (86)

We interpret |φ|2 as the number of condensed particles per site,

and put

|φ|2 = φ2 = ν0
N0

N 3
s

= ν n0 , (87)

with the condensate fraction, n0 = N0/N . The sums over k then

omit the k = 0 mode. The gap equations then become

ν = νn0 +
1

N 3
s

∑
k

′
{ εk + χ′

2ωk
[ 2nk + 1 ]− 1

2

}
, (88a)

A

U
= νn0 +

A

N 3
s

∑
k

′ [ 2nk + 1 ]

2ωk
, (88b)

In obtaining our results we convert the finite sums over k to

integrals by defining q = 2k/Ns, so that formally we substitute

1

N 3
s

∑
k

⇒
∫∫∫ +1

−1

d3q

8
=

∫∫∫ +1

0

d3q . (89)

This substitution is exact in the limit Ns →∞.

The numerical analysis of the solutions space for Eqs. (88), leads

to three distinct regions in the Bose-Hubbard model phase dia-

gram:

I. The broken symmetry case where φ 6= 0 and χ′ = A. Then

ω =
√
εk(εk + 2χ′). In this region, we solve the equations [22]:
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FIG. 10. (Color online) Comparison of the coupling constant dependence of the LOAF critical

temperature, Tc, at unity filling, ν = 1, with experimental [20] and quantum Monte Carlo (QMC)

results [21]. The LOAF value of the critical Hubbard parameter value, (U/J)c = 56.076, should be

compared to the QMC critical value, (U/J)c = 29.34(2), reported in Ref. 21. LOAF also predicts a

critical point at (U/J)CP = 46.02. The solid and dashed lines indicate first- and second-order phase

transitions predicted by LOAF theory, respectively. The shaded area depicts the region where a

diatom condensate without the usual Bose-Einstein condensate is expected.

ν = νn0 +
1

N 3
s

∑
k

′
{ εk + χ′

2ωk
[ 2nk + 1 ]− 1

2

}
, (90a)

χ′

U
= νn0 +

χ′

N 3
s

∑
k

′ [ 2nk + 1 ]

2ωk
. (90b)

II. The case when φ = 0 so that n0 = 0, and either
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(i) A = 0 so that ωk = εk + χ′ and

ν =
1

N 3
s

∑
k

′ nk . (91)

This solution corresponds to a first-order phase transition.

Eq. (91) does not depend on the interaction strength and

applies for temperatures, T ≥ Tc, where Tc is the critical

temperature defined by the zero condensate faction limit,

n0 → 0, in Eqs. (90).

(ii) or 0 ≤ A ≤ χ′ so that ωk =
√

(εk + χ′)2 − A2, and

ν =
1

N 3
s

∑
k

′
{ εk + χ′

2ωk
[ 2nk + 1 ]− 1

2

}
, (92a)

1

U
=

1

N 3
s

∑
k

′ 1

2ωk
[ 2nk + 1 ] . (92b)

This solution corresponds to a second-order phase transi-

tion.

III. the normal case where φ = 0 and A = 0. In this case we solve

Eq. (91) as in case II(i) above.

We note that the LOAF equations for the cubic lattice are identical

with the LOAF equations for the continuum system [1, 2, 4].
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