A DYNAMICAL DERIVATION OF THE EQUILIBRIUM
VIRIAL EXPANSION

1877 Boltzmann: S=kInW

1910 Einstein: “Usually, W is put equal to the number of
complexions. “[However,] in order to calculate W, one needs a
complete [deterministic] molecular-mechanical theory of the

system under consideration.”




The virial expansion of the pair distribution function in

equilibrium for short-range particle interactions
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Structure of inclusion-exclusion principle of set theory.




Ad the integrand of n3j dg,[..]:
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1.  This integrand has the cluster property, i.e., it vanishes for
separated particle configurations, if not all three particles

interact with each other.

2.  Therefore, the integrand includes only genuine three-

particle interactions or overlaps: @ not @ %




The virial expansion of the pair distribution function in non-
equilibrium

The density expansion of the non-equilibrium pair distribution
function - i.e. the density to find in phase space two particles in

the phases X, =T;.Py and X, =0,,P, - is for short-range

forces:

fzne(xl,xz;t) = nZS_t(xl,xz)flne(xl;t)flne(xz;t) +

+n3jdx3[8_t(xl,x2,x3) = S_e (X1, %, ) S_e (X1 X5 ) = S_p (X1, %, ) S_p (X5 %, ) + S_t(xl,xz)]o

-flne(xl;t)flne(xz;t)flne(x3;t)+O(n4) with flne(xl;t)sflne(xl(t)).
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Genuine 2-particle 2 successive 2-particle collision Genuine 3-particle

collision collision
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Properties of the Streaming Operators

1.  The streaming operator S_t(xl(t),...,xs(t)) transforms the
phases x(t) = (qi(t),ﬁi(t)) of s-particles at time t, into those at

an earlier time t=0, S_t(xl(t),... ,xs(t)) =(x1(0),...,xs(0)).

2.  The streaming operators in the 3-particle integrand have
the same cluster property as the Boltzmann factors in
equilibrium. Therefore, in general for s-particles, only genuine
s-particle (dynamical) collisions contribute to the integral

(s=2,3...).

3. Att=0: fS”e(xl, ...,xS;O) - i1f11fl”e(xi;0), (no correlations).

(Generalizations of Boltzmann’s Stoszahl Ansatz)




Derivation of fze(xl, Xo; B) from f ne(x X t)
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with Ts(pl(O),..., p, (0 ))=|Zl o (separated configuration)
3. Use the cluster property: only genuine dynamical
s-particle collisions contribute to fzne(x1 Xo; t)
4.  Conservation of initial kinetic energy for all t> 0.

In particular for t= Lol

Ts(pl(O),... ,pS(O)) — Ts(pl,... ,ps)+CI)S(q1,... ,qs)




a. One obtains then:

fze(xl,xz;ﬁ) n2c2e P | 1’XZ)+n3c?’j'dxse_BH3()(1’)(2’)(3)+O(n4),

where only genuine overlaps of the two or three particles are

included, as indicated by the prime.
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b. Here: Hz(xl,xz)—IZin 2 +® (ﬁl,qz)
2 2 2

and H (x x2,x3) Zin+zr2n+zzr”n+d>3(ql,q2,q3)

, , —BH_{ X4,..., X
c. The general term is: n°c®[dx,, ..., [ ‘dx_ e P S( 1 3).




b. For a thermodynamic property, like the pressure p, one

obtains the virial expansion:
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Here the cluster property follows for configurations, where

r, =0, —0, > range of the interparticle potential.




Ehrenfest would have said: “I told you so”, since he wrote:
“If one has two different derivations of the same result, one can

use two legs instead of one”, i.e. one walks instead of limps.
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