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The AKLT model
(Affleck-Kennedy-Lieb-Tasaki, 1987)
Antiferromagnetic spin-1 chain: [1, L] ⊂ Z, Hx = C3,

H[1,L] =
L∑

x=1

(
1

3
1l +

1

2
Sx · Sx+1 +

1

6
(Sx · Sx+1)2

)
=

L∑
x=1

P
(2)
x ,x+1

The ground state space of H[1,L] is 4-dimensional for all L ≥ 2.
In the limit of the infinite chain, the ground state is unique,
has a finite correlation length, and there is a non-vanishing
gap in the spectrum above the ground state (Haldane phase).
Exact ground state is “frustration free” (Valence Bond Solid
state (VBS), Matrix Product State (MPS), Finitely Correlated
State (FCS)).
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J2

J1ferro Haldane

dimer

AKLT

Sutherland SU(3)

Potts SU(3)

Bethe Ansatz

H =
∑

x J1Sx · Sx+1 + J2(Sx · Sx+1)2
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The AKLT model changed the way we look at quantum spin
chains and ground states of quantum spin models in general:

I The existence of the Haldane phase

I The role of symmetry

I The development of reliable numerical methods (various
Density Matrix Renormalization Group algorithms)

I The nature of ground state correlations, entanglement
(e.g., Area Law for entanglement entropy)

I Classification of gapped ground state phases

Many hundreds of authors contributed.
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AKLT
D = 1
SU(2)
S = 1

D = 1
SU(2)
any S

D = 1
SUq(2)

D = 1
SU(n)
SO(n)

D = 1
deformation
to product

any D
any lattice
any graph

Frustration-Free Chains
Classification using arbitrary Matrix Product States
or Operator Product States
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Frustration-free ground states of spin chains
Consider spin chain with for all x ∈ Z, Hx = Cd . A
translation invariant nearest neighbor interaction h is a
self-adjoint matrix acting on Cd ⊗ Cd , and the Hamiltonian is

HL =
L−1∑
x=1

hx ,x+1,

We can assume that the smallest eigenvalue of h is 0.
The model is frustration-free if 0 is an eigenvalue for all L ≥ 2.
Whether the model is frustration-free or not depends on a
geometric property of ker h = G ⊂ Cd ⊗ Cd

ker H[1,L] =
L−1⋂
x=1

Cd ⊗ · · ·Cd︸ ︷︷ ︸
x−1

⊗G ⊗ Cd ⊗ · · ·Cd︸ ︷︷ ︸
L−x−1

For which G is ker HL 6= {0} for all L ≥ 2?
In quantum information theory, this is a satisfiability problem.
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Operator Product Representation
(with M Fannes and RF Werner, in preparation).

Observation: the existence of 0-eigenvectors of HL for all finite
L is equivalent to the existence of pure states ω of the
half-infinite chain with zero expectation of all hx ,x+1, x ≥ 1.

This follows from weak compactness of the set of states and
the simple observation that non-negative numbers add up to
zero only if they all vanish.

We call such states ω pure zero-energy states.

Zero-energy states are certainly ground states (hx ,x+1 ≥ 0); it
is a separate question whether they are all the ground states.
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Theorem ( Fannes-N-Werner (2010))
A pure state ω is a zero-energy state iff it has an
representation in operator product form: there is a Hilbert
space K, bounded linear operators V1, . . . ,Vd on K, and
Ω ∈ K, such that
span{Vα1 · · ·VαnΩ | n ≥ 0, 1 ≤ α1, . . . , αn ≤ d} = K

ω(|α1, . . . , αn〉〈β1, . . . , βn|) = 〈Ω,V ∗
α1
· · ·V ∗

αn
Vβn · · ·Vβ1Ω〉

and 1l is the only eigenvector with eigenvalue 1 of the operator

Ê ∈ B(B(K)) : Ê(X ) =
d∑

α=1

V ∗
αXVα

and for all ψ ⊥ G, ψ =
∑

α,β ψαβ|α, β〉, we have the relation∑
α,β

ψβα VαVβ = 0.
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Matrix Product States (MPS)
If K is finite-dimensional, say dimK = k , the theorem is
equivalent to the MPS form of the ground state vectors for
finite chains: for an arbitrary k × k matrix B ,

ψ(B) =
d∑

α1,...,αL

Tr(BVαL
· · ·Vα1)|α1, . . . , αL〉

is a ground state of the model.

In the case of the AKLT model we have k = 2 and, expressed
in the standard basis, the Vα are multiples of the Pauli
matrices σ+, σ3, σ−.
All one-dimensional generalizations of the AKLT model fit into
this framework.
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Product Vacua with Boundary States (PVBS)
(joint work with Bachmann, arXiv:1112.4097)
Consider a quantum spin chain with d = n + 1 states at each
site that we interpret as n distinguishable particles labeled
i = 1, . . . , n, and an empty state denoted by 0.
The Hamiltonian for a chain of L spins is given by

HL =
L−1∑
x=1

hx ,x+1, (1)

where each hx ,x+1 is a sum of hopping terms normalized to
yield and orthogonal projection:

h =
n∑

i=1

|φ̂i〉〈φ̂i |+
n∑

1≤i≤j≤n

|φ̂ij〉〈φ̂ij |,

The φij ∈ Cn+1 ⊗ Cn+1 are given by

φi = |i , 0〉−e−θi0λ−1
i |0, i〉 , φij = |i , j〉−e−θijλ−1

i λj |j , i〉 , φii = |i , i〉
for i = 1, . . . , n and i 6= j = 1, . . . , n.
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The parameters satisfy: θij ∈ R, θij = −θji , and λi > 0, for
0 ≤ i , j ≤ n, and λ0 = 1.
There exist n + 1 2n × 2n matrices, v0, v1, . . . , vn, satisfying
the following commutation relations:

vivj = e iθijλiλ
−1
j vjvi , i 6= j (2)

v 2
i = 0, i 6= 0 (3)

Then, for B an arbitrary 2n × 2n matrix,

ψ(B) =
n∑

i1,...,iL=0

Tr(BviL · · · vi1)|i1, . . . , iL〉 (4)

is a ground state of the model (MPS vector). In fact, they are
all the ground states. E.g., one can pick B such that

ψ(B) =
L∑

x=1

(
e iθi0λi

)x |0, . . . , i , . . . , 0〉
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If we add the assumption that λi 6= 1, for i = 1, . . . , n, we will
have nL particles having λi < 1 that bind to the left edge, and
nR = n − nL particles with λi > 1, which, when present, bind
to the right edge. The bulk ground state is the vacuum state

Ω = |0, . . . , 0〉 .
All other ground states differ from Ω only near the edges.
We can prove that the energy of the first excited state is
bounded below by a positive constant, independently of the
length of the chain. As at most one particle of each type can
bind to the edge, any second particle of that type must be in a
scattering state. The dispersion relation is

εi(k) = 1− 2λi
1 + λ2i

cos(k + θi0) .

We conjecture that the exact gap of the infinite chain is

γ = min

{
(1− λi)2

1 + λ2i

∣∣∣∣ i = 1, . . . , n

}
.
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Gapped ground state phases
Two models with interactions h(0) and h(1) are said to belong
to the same phase if there is a continuous curve of interactions
h(s), 0 ≤ s ≤ 1, interpolating between the two, and such that
the spectral gap of

HL(s) =
L−1∑
x=1

hx ,x+1(s)

is bounded below by a constant γ > 0, for all s and L.

The AKLT model belongs to the same phase as the PVBS
models with nL = nR = 1. The 4 ground states of the a finite
AKLT chains are usually described in terms of a spin 1/2
particle attached to the two ends of the chain.
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Denote the two particle states by − and +. For s ∈ [0, s0]
where sin(s0) =

√
2/3, the following 4 vectors span the

ground state space of two neighboring spins, G(s), of the the
interpolating models as a function of s:

ψ0(s) = µ(s) sin(s)
[
λ(s)2|−,+〉+ |+,−〉

]
− cos2(s)(1 + λ(s)4)|0, 0〉

ψ0−(s) = −λ(s)|0,−〉+ |−, 0〉
ψ0+(s) = −λ(s)|+, 0〉+ |0,+〉
ψ−+(s) = |−,+〉 − λ(s)2|+,−〉 ,

λ(s) is a smooth function such that λ(s0) = 1, 0 < λ(s) < 1,
for all s < s0, and µ(s) = (1− λ(s)2 cos2(s))1/2. The
corresponding nearest neighbor interaction, h(s), is taken to
be the projection onto the orthogonal complement of this
4-dimensional space.
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HL(s0) is the AKLT Hamiltonian and that HL(0) is the PVBS
model with nL = nR = 1, the coefficients λ− = λ(0) and
λ+ = λ(0)−1, and all the phases θij = π.
The path of interactions is smooth as the four ground state
vectors are smooth, remain orthogonal to each other and of
finite norm for all s, and the spectral gap does not close.
Hence, the AKLT model is in the same gapped quantum phase
as the PVBS model with nL = nR = 1.

The sets of ground states of these models are equivalent for
the finite, half-infinite and infinite chains, where they are
isomorphic to a pair of qubits, a single qubit, and a unique
pure state, respectively.
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Conclusion and Comments
I 25 years ago the AKLT model changed the world (of

quantum spin systems)

I There are interesting models (e.g., XXZ Heisenberg
ferromagnet) with dimK =∞.

I The PVBS Hamiltonians are just toy models, but we
conjecture that a generalization of this class describes a
complete classification of gapped ground state phases in
one dimension.

I If one imposes a local symmetry, a representation of this
symmetry on K enters the classification problem.

I We are close to a comprehensive picture in one
dimension, but in two (and more) dimensions many
questions remain open.


