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The zero-range process

» Introduced by [Spitzer1970] as a model system for interacting
random walks

» Particles on a lattice Ay hop randomly to other neighboring
sites

» Hopping rate depends on the number of particles at the
departure site (zero-range interactions)

» Boundary conditions: reservoirs, periodic conditions. . .



The periodic case

» Periodic spatial geometry: u € T¢
> At the discrete level: x,y,z € Ay =T, = {1,..., N}
» Microscopic configuration phase space: n € Xy = NT&

» Stochastic “trajectories” for i which preserve the total

1
normalized mass Nd Z n(x)

d
x€T§,

» Law ;N € P(Xy) depending on time



The zero-range process: master equation
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(R o) = (£, 6NN
GNN(n) = N2 Y g(n(x) [ (1) — ()]
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n(x) — 1 for z = x

Y (2) = {nly) +1forz=y
1n(z) otherwise
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Rate function g which satisfies
g(0) =0 and g(k) > 0 for all k >0
Factor N2: diffusive (parabolic) scaling
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The limit evolution system: nonlinear diffusion

» Hydrodynamic limit: N — +o0
1
» Empirical measure u,';l = Nd Z n(x)ox/n € M (T9)
x€TY,

» Does ,u{;’, where 1 has law £V, approaches a deterministic
profile f; with a macroscopic evolution equation?

Pew ({\m#,@ - <ft7§0>‘ > 6}) ——0

N—o0

» Nonlinear diffusion equation for f;:

oif = A(o(f)), fi(u)>0, weT

» Remark: Defining solutions requires more regularity than
measures M (T9), e.g. L>(T9)



Invariant measure structure

» Particle system:

Invariant product measure I/QI(’I’]) = ®vg(n;) with

A0 = k) = s = with Z(5) = 30 -2
¢ Z(¢) g(k)! = g(k)!

» Notation: g(k)! = g(k)g(k —1)---g(1) and g(0)! =1

» Limit equation:

Stationary solution f,, = constant

» Nonlinearity functional o prescribed by

1 ka(p)* _
oy, /vd 2 nlx ))Z gy — 7

XE’]I‘d O'(p

» o(0) = 0 and increasing



The relative entropy structure with Dirichlet conditions

Theorem (Bodineau-Lebowitz-CM-Villani)

Consider Q bounded regular, ¢ € C? increasing and
Oif = Ao(f), u€Q, figa(u) = fp(u).

Then for any ® € C2(R,, R ) convex with ®(1) = /(1) = 0:

St (lf) = [ (/f:j (i) dv> .

_ / " () |V h[2 o(fro(1)) dus < 0
Q




Idea of the strategy

» Example: In the case corresponding to the Boltzmann relative
entropy ®(z) = zInz — z + 1 one finds

i ([ i) )

different from the usual relative entropy due to o

» Heuristic: computation of the large deviation function for the
zero-range process with reservoirs in order to guess the
relative entropy structure for the limit equation

» Key point: the invariant measure is still a product measure
with a varying density, leading to explicit calculations

» Proof: Use that h satisfies h = 1 at the boundary and use of
®(1) = ¢’(1) = 0 to kill the boundary terms



The hydrodynamic limit: framework

Assumptions:
» g(0) =0, g(k) >0 forall k>0
» g(k+1)—glk) < g*<ooforall k>0
» g(k) — g(j) > 9 for some kg > 0 and 6 > 0, and any
k>j+ko

Evolution systems:

d
OH<f’" M) = (£, GNoN) on P(Xw)
(Zsza(ft) on X C M, (T9)

Question: /1,2’ ~ f; as N — oo where 7 has law fV?



The hydrodynamic limit: some existing results (1)

[Guo-Papanicolaou-Varadhan1988]
Assume on the initial data fo € L°°(T9)

v
<’5N"’0(P ) B /Q " <dy'3 ) d’ < v

o(p)

1
<fN, = n(X)2> <1
XGT%

Then there is propagation in time of the deterministic limit:

Pov ({ |t ) = o )| > e}) —= 0

N—oo

implies for later times t > 0

Pew ({‘M',«p) - <fr,<p>‘ >€}) ——0

N—o0



The hydrodynamic limit: some existing results (I1)

[Yaul991]
If futhermore f € C3(T9) (smooth solution at the limit) and

1
et (8'14)) 5= 0

for the local equilibrium product measure
(F(x/N))"x)
e H Z(o x/N NECEN

then at later times t > 0

it (A0l 0

[Grunewald-Otto-Villani-Westdinckenberg2009] on a related model
(Gunzburg-Landau with Kawasaki dynamics): another
coarse-graining method with (almost...) explicit estimates



Questions and motivations

» Quantitative rate of convergence? not in GLV, almost in
GPVW, Yau's relative entropy methods can be made explicit,
but rate O(e*t) with A > 0 large, and for smooth solutions

» However both the many-particle and limit systems are
dissipative, hence ergodicity and relaxation should win over
stochastic fluctuations at the level of the laws

N e P(Xn) Noroe f, € L°°(T7)
t—>ool lt—)oo
N—o0
» Goals:

» Fully quantitative rate

» Does not use regularity of the limit solution
» Uniform in time

» In entropic form. ..



The main result

Theorem (Marahrens-CM, 2012)

f; € L*° the solution to the nonlinear diffusion equation and

1 1
ot (#1051 (4 g X ) ) 52

d
x€TY,

Consider F € C3(R) and ¢ € C3(T9) then

sup (R F ((uls0) ) = F ()| < e, W)

el o], )

for some quantitative polynomial rate ry;

Consequence: rate of convergence O(N~%) uniform in time




An inspirative previous work on Kac's model

» Abstract ideas developped in another work w/. Mischler on
Kac's program in kinetic theory:

» Many-particle collision jump process on the velocities (“Kac's
walk”) in SN=1(v/N)) with jump rates depending on the
velocities (hard spheres)

at<f;fN)SD> = <ftN7 GN¢>

(GNy)( =4 Z\v, \/J]/ b(cosbj) [¢} — @] do

ij=1

» Mean-field limit towards nonlinear (spatially homogeneous)
Boltzmann equation when propagation of chaos

otf = Q(f)

N /V*ERd /G'GSdl (f(v,i)f(v') a f(v)f(v*)) v = v



Kac's program in kinetic theory

» Estimate on the spectral gap in L2(SN=1(v/N)):
[Carlen-Carvalho-Loss2003] (cf. also [Janvresse], [Maslen])

» However not sufficient for answering main motivation of Kac:
to connect the asymptotic behavior and entropies of the
many-particle and limit systems in the chaotic limit

Theorem (Mischler-CM, 2011)

Uniform in time chaos (for any number of marginals 1 < ¢ < N)
Wy (n[ftN, ft®€)
sup

£>0 14

<a(N)—0

H (ftN) N—o0

Entropic chaos:
ntropic chaos N

H(f)

Wy (FN, AN
Unif. in N relaxation times: sup M
N>1 N

<pB(t) >0




Abstract strategy

» View the many-particle system as a perturbation of the limit
nonlinear PDE

» Consistency-stability estimates on semigroups
» Requires an appropriate functional framework for comparing
generators (consistency) and establishing stability estimates

» The latters correspond to statistical stability estimates on the
flow of the limit nonlinear PDE

Kolmogorov duality
XN P(XN) Cb(XN)
MQ’ ™ TN
4y "Liouville” duality
X C M (T9) P(X) Co (X)

with (e ®)(n) = O(ul) = ().



Evolution N-particle semigroups

» Stochastic process (7)) on Xy

» Corresponding linear semigroup F¥ on P(Xy):
ofN = ANFN N e P(Xy),

Forward Kolmogorov equation or “Master equation”
» Dual linear semigroup TN of FNN:

vV e P(Xn), ¢" € Co(Xn),
(FV, TN ) = (FN(E), o)
» Semigroup of the observables:

O =GN (N, oM € Co(Xn)



Evolution limit semigroups

> Nonlinear semigroup F7° on X solution to
Oefy = Q(fe) = Ao(f), fio = fo
» Pullback linear semigroup T7° on Cp(X):
Ve X, ®c C(X), T°[P(f):=d(FF(F))
solution to the linear evolution equation on Cp(P(E)):
0;® = G*™(®)  with generator G*

» Comparison of semigroups T}V and T2°
> Additional difficulty: p)) & X = L>°(T7), hence we introduce

the mollified empirical measure puh*® = x. * py, € >0 and the
corresponding projection my .



Interpretation of the pullback semigroup (I)

» Given a nonlinear ODE Y = F(Y) on R?, one can define (at
least formally) the linear Liouville transport PDE

ﬁtp—l-VV(Fp):O,

where p:(v) = Y{(po) = po © Y+ (characteristics)

» Dual viewpoint: for ¢g function defined on R?, evolution
de(v) = do(Ye(v)) = (Yi)xdo = ¢o o Y; solution to the linear
PDE

0w —F-Vyp =0,



Interpretation of the pullback semigroup (1)

» Go “one level above” and replace RY by X
The infinite dimensional “ODE" ' = Q(f) on X yields first
the abstract transport equation

e +V - (Q(f) m) =0, dm(t,-) € P(X)

and second the abstract dual equation
0t — Q(f) - Vo =0, o(t,-) € Cp(X).
» Provide intuition and formal formula for the generator

“(GP)(f) = Q(f) - VP(f)": but requires to define correctly
the objects. ..



Statistical stability analysis

» Well-posedness for the limit equation in L>°(T9)

» Propagation of H* regularity

» Lipschitz stability: || F°fh — FPfillg-1 < || — fil|y—1
» Higher-order stability:

1Fh — Foh = DFE(A)(f — i)l < C()IIf — Al
» DFX(f) € L(X): solution hy :== DF°(f)(f— f) € X to
dehe = A (o' (A(t))h)  such that ho = (f, — f)je—0
» Ty H — Ris C1H9(X) for the H~!-norm and
D[T®](f) - h = DO(FE(F)) - [DFEII(h)]. € CH(X)

> GX[O)(f) = F'({f, ) (o(F), Agp) for &(f) = F((, ¢))



Consistency and convergence (1)

(BN Pl 0)12)) = F () 12)
= (. T ()] - [T70] ()
< [, T ()] = [To0] ()|
+¢0WJT?¢KuMﬂ—wTw¢1@>\

- ot

(B TV ()] - TV ()| = T+ T+ T

Error terms:

» 7T>: initial data approximation error propagated by T;°
(Lipschitz stability)

» T3: e-error due to the mollification at the level of the particle
system

» 7T1: core of the proof - comparision of the two semigroups

» Linear growth in time of error + interpolation with the
exponential relaxation of the limit equation: uniform in time
estimates



Consistency and convergence (I): the 77 estimate

d 00
E ( TSNT‘-N@ Tffs‘b(ﬁ)) = TSNGNT‘-N,S Tffs‘b(ﬁ)— TSNWN,acoO Tt—scb(n)

hence

T <

t
/O <ft’!s, (GNrne — TN G™) T5°°1/1> ds

» First-order Taylor expansion of T7°:
T (pgeis) = T (pan ) = DT (i ) pagels — i)
(remainder term controlled by high-order statistical stability)

» Replacing the discrete Laplacian by the continuous one
(propagation of regularity on D]-";’O(ui,v’s)*)

» Quantitative version of replacement lemma
[Kipnis-Landim1999] with the help of LSI

JUAGH

gon) (E)(uN) (n(E)(uN))‘2> dudt < g (e, N)




