Hydrodynamic limit of interacting particle systems: the zero-range process

Clément Mouhot, University of Cambridge

107th Statistical Mechanics Conference, Rutgers University, 8th of may, 2012

Joint works w/. Mischler, Bodineau-Lebowitz-Villani, Marahrens

The zero-range process

- ► Introduced by [Spitzer1970] as a model system for interacting random walks
- ▶ Particles on a lattice Λ_N hop randomly to other neighboring sites
- Hopping rate depends on the number of particles at the departure site (zero-range interactions)
- Boundary conditions: reservoirs, periodic conditions...

The periodic case

- ▶ Periodic spatial geometry: $u \in \mathbb{T}^d$
- ▶ At the discrete level: $x, y, z \in \Lambda_N = \mathbb{T}_N^d = \{1, ..., N\}^d$
- ▶ Microscopic configuration phase space: $\eta \in X_N = \mathbb{N}^{\mathbb{T}_N^d}$
- Stochastic "trajectories" for η which preserve the total normalized mass $\frac{1}{N^d} \sum_{x \in \mathbb{T}^d} \eta(x)$
- ▶ Law $f_t^N \in \mathcal{P}(X_N)$ depending on time

The zero-range process: master equation

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \langle f_t^N, \varphi^N \rangle &= \langle f_t^N, G^N \varphi^N \rangle \\ G^N \varphi^N(\eta) &:= N^2 \sum_{x,y \in \mathbb{T}_N^d} g(\eta(x)) \left[\varphi^N \left(\eta^{x,y} \right) - \varphi^N(\eta) \right] \end{split}$$

$$\eta^{x,y}(z) = \begin{cases} \eta(x) - 1 \text{ for } z = x \\ \eta(y) + 1 \text{ for } z = y \\ \eta(z) \text{ otherwise} \end{cases}$$

- Rate function g which satisfies
- g(0) = 0 and g(k) > 0 for all k > 0
- ► Factor N^2 : diffusive (parabolic) scaling

The limit evolution system: nonlinear diffusion

- ▶ Hydrodynamic limit: $N \to +\infty$
- ► Empirical measure $\mu_{\eta}^{N} = \frac{1}{N^{d}} \sum_{x \in \mathbb{T}_{N}^{d}} \eta(x) \delta_{x/N} \in \mathcal{M}_{+}(\mathbb{T}^{d})$
- ▶ Does μ_{η}^{N} , where η has law f_{t}^{N} , approaches a deterministic profile f_{t} with a macroscopic evolution equation?

$$\mathbb{P}_{f_t^N}\left(\left\{\left|\langle \mu_\eta^N, \varphi \rangle - \langle f_t, \varphi \rangle\right| > \varepsilon\right\}\right) \xrightarrow[N \to \infty]{} 0$$

▶ Nonlinear diffusion equation for f_t :

$$\partial_t f = \Delta(\sigma(f)), \quad f_t(u) \ge 0, \quad u \in \mathbb{T}^d$$

▶ Remark: Defining solutions requires more regularity than measures $\mathcal{M}_+(\mathbb{T}^d)$, e.g. $L^{\infty}(\mathbb{T}^d)$

Invariant measure structure

Particle system:

Invariant product measure
$$\nu_{\phi}^{N}(\eta) = \otimes \nu_{\phi}(\eta_{i})$$
 with
$$\nu_{\phi}^{N}(\{\eta(x) = k\}) = \frac{1}{Z(\phi)} \frac{\phi^{k}}{g(k)!} \text{ with } Z(\phi) = \sum_{k \geq 0} \frac{\phi^{k}}{g(k)!}$$

- Notation: $g(k)! = g(k)g(k-1)\cdots g(1)$ and g(0)! = 1
- Limit equation: Stationary solution $f_{\infty} = \text{constant}$
- Nonlinearity functional σ prescribed by

$$\mathbb{E}_{\nu_{\sigma(\rho)}^{N}}\left[\frac{1}{N^{d}}\sum_{x\in\mathbb{T}_{N}^{d}}\eta(x)\right]=\frac{1}{Z(\sigma(\rho))}\sum_{k\geq0}\frac{k\sigma(\rho)^{k}}{g(k)!}=\rho$$

 $ightharpoonup \sigma(0) = 0$ and increasing

The relative entropy structure with Dirichlet conditions

Theorem (Bodineau-Lebowitz-CM-Villani)

Consider Ω bounded regular, $\sigma \in C^2$ increasing and

$$\partial_t f = \Delta \sigma(f), \quad u \in \Omega, \ f_{|\partial\Omega}(u) = f_b(u).$$

Then for any $\Phi \in C^2(\mathbb{R}_+, \mathbb{R}_+)$ convex with $\Phi(1) = \Phi'(1) = 0$:

$$\frac{\mathrm{d}}{\mathrm{d}t} H_{\Phi} \left(f_t | f_{\infty} \right) := \int_{\Omega} \left(\int_{f_{\infty}(x)}^{f_t(u)} \Phi' \left(\frac{\sigma(v)}{\sigma(f_{\infty}(u))} \right) \, \mathrm{d}v \right) \, \mathrm{d}u$$

$$= -\int_{\Omega} \Phi''(h) |\nabla h|^2 \, \sigma(f_{\infty}(u)) \, \mathrm{d}u \le 0$$

with
$$h := \frac{\sigma(f_t(u))}{\sigma(f_{\infty}(u))}$$
.

Idea of the strategy

► Example: In the case corresponding to the Boltzmann relative entropy $\Phi(z) = z \ln z - z + 1$ one finds

$$H(f_t|f_{\infty}) := \int_{\Omega} \left(\int_{f_{\infty}(x)}^{f_t(u)} \ln \left(\frac{\sigma(v)}{\sigma(f_{\infty}(u))} \right) dv \right) du$$

different from the usual relative entropy due to σ

- Heuristic: computation of the large deviation function for the zero-range process with reservoirs in order to guess the relative entropy structure for the limit equation
- Key point: the invariant measure is still a product measure with a varying density, leading to explicit calculations
- ▶ Proof: Use that h satisfies h = 1 at the boundary and use of $\Phi(1) = \Phi'(1) = 0$ to kill the boundary terms

The hydrodynamic limit: framework

Assumptions:

- g(0) = 0, g(k) > 0 for all k > 0
- ▶ $g(k+1) g(k) \le g^* < \infty$ for all k > 0
- $g(k) g(j) \ge \delta$ for some $k_0 > 0$ and $\delta > 0$, and any $k \ge j + k_0$

Evolution systems:

$$egin{aligned} rac{\mathrm{d}}{\mathrm{d}t} \langle f_t^N, arphi^N
angle &= \langle f_t^N, G^N arphi^N
angle & ext{on } \mathcal{P}(X_N) \end{aligned}$$
 $rac{\partial f_t}{\partial t} &= \Delta \sigma(f_t) \ ext{on } \mathcal{X} \subset \mathcal{M}_+(\mathbb{T}^d)$

Question: $\mu_{\eta}^{N} \sim f_{t}$ as $N \to \infty$ where η has law f_{t}^{N} ?

The hydrodynamic limit: some existing results (I)

[Guo-Papanicolaou-Varadhan1988]

Assume on the initial data $f_0 \in L^{\infty}(\mathbb{T}^d)$

$$\begin{split} H\left(f_0^N\middle|\nu_{\sigma(\rho)}^N\right) &= \int_{\Omega} \ln\left(\frac{\mathrm{d}f_0^N}{\mathrm{d}\nu_{\sigma(\rho)}^N}\right) \,\mathrm{d}f_0^N \lesssim N^d \\ &\left\langle f_0^N, \frac{1}{N^d} \sum_{x \in \mathbb{T}_N^d} \eta(x)^2 \right\rangle \lesssim 1 \end{split}$$

Then there is propagation in time of the deterministic limit:

$$\mathbb{P}_{f_0^N}\left(\left\{\left|\langle \mu_\eta^N, \varphi \rangle - \langle f_0, \varphi \rangle\right| > \varepsilon\right\}\right) \xrightarrow[N \to \infty]{} 0$$

implies for later times t > 0

$$\mathbb{P}_{f_t^N}\left(\left\{\left|\langle \mu_\eta^N, \varphi \rangle - \langle f_t, \varphi \rangle\right| > \varepsilon\right\}\right) \xrightarrow[N \to \infty]{} 0$$

The hydrodynamic limit: some existing results (II)

[Yau1991]

If futhermore $f \in C^3(\mathbb{T}^d)$ (smooth solution at the limit) and

$$\frac{1}{N^d} H\left(f_0^N \middle| \nu_{f_0(\cdot)}^N\right) \xrightarrow[N \to \infty]{} 0$$

for the local equilibrium product measure

$$\nu_{f(\cdot)}^N := \prod_{x \in \mathbb{T}_d^d} \frac{\sigma(f(x/N))^{\eta(x)}}{Z(\sigma(f(x/N)))g(\eta(x))!}, \text{ then at later times } t > 0$$

$$\frac{1}{N^d} H\left(f_t^N | \nu_{f_t(\cdot)}^N\right) \xrightarrow[N \to \infty]{} 0$$

[Grunewald-Otto-Villani-Westdinckenberg2009] on a related model (Gunzburg-Landau with Kawasaki dynamics): another coarse-graining method with (almost...) explicit estimates

Questions and motivations

- ▶ Quantitative rate of convergence? not in GLV, almost in GPVW, Yau's relative entropy methods can be made explicit, but rate $O(e^{\lambda t})$ with $\lambda > 0$ large, and for smooth solutions
- However both the many-particle and limit systems are dissipative, hence ergodicity and relaxation should win over stochastic fluctuations at the level of the laws

- Goals:
 - Fully quantitative rate
 - ▶ Does not use regularity of the limit solution
 - Uniform in time
 - ▶ In entropic form...

The main result

Theorem (Marahrens-CM, 2012)

 $f_t \in L^{\infty}$ the solution to the nonlinear diffusion equation and

$$\left| rac{1}{N^d} H\left(f_0^N |
u_{\sigma(
ho)}^N
ight) \lesssim 1 \quad ext{ and } \quad \left\langle f_0^N, \left(rac{1}{N^d} \sum_{x \in \mathbb{T}^d} \eta(x)^4
ight)
ight
angle \lesssim 1$$

Consider $F \in C^2_b(\mathbb{R})$ and $\varphi \in C^3(\mathbb{T}^d)$ then

$$\begin{split} \sup_{t \geq 0} \left| \left\langle f_t^N, F\left(\langle \mu_\eta^N, \varphi \right) \right\rangle - F\left(\langle f_t, \varphi \rangle \right) \right| &\leq r_{HL}(\varepsilon, N) \\ &+ \left. C_{F, \varphi} \left\langle f_0^N, \left\| \mu_\eta^{N, \varepsilon} - f_0 \right\|_{H^{-1}} \right\rangle \end{split}$$

for some quantitative polynomial rate r_{HL}

Consequence: rate of convergence $O(N^{-\alpha})$ uniform in time

An inspirative previous work on Kac's model

- ► Abstract ideas developped in another work w/. Mischler on Kac's program in kinetic theory:
- Many-particle collision jump process on the velocities ("Kac's walk") in $\mathbb{S}^{N-1}(\sqrt{N})$ with jump rates depending on the velocities (hard spheres)

$$\partial_t \langle f_t^N, \varphi \rangle = \langle f_t^N, G^N \varphi \rangle$$

$$(G^N \varphi)(V) = \frac{1}{N} \sum_{i,j=1}^N |v_i - v_j| \int_{\mathbb{S}^{d-1}} b(\cos \theta_{ij}) \left[\varphi_{ij}^* - \varphi \right] d\sigma$$

► Mean-field limit towards nonlinear (spatially homogeneous) Boltzmann equation when propagation of chaos

$$egin{align} \partial_t f &= Q(f) \ &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \int_{\sigma \in \mathbb{S}^{d-1}} \Big(f(v_*') f(v') - f(v) f(v_*) \Big) \, |v-v_*| \ &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \int_{\sigma \in \mathbb{S}^{d-1}} \Big(f(v_*') f(v') - f(v) f(v_*) \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \int_{\sigma \in \mathbb{S}^{d-1}} \Big(f(v_*') f(v') - f(v) f(v_*) \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \int_{\sigma \in \mathbb{S}^{d-1}} \Big(f(v_*') f(v') - f(v) f(v_*) \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \int_{\sigma \in \mathbb{S}^{d-1}} \Big(f(v_*') f(v') - f(v) f(v_*) \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \int_{\sigma \in \mathbb{S}^{d-1}} \Big(f(v_*') f(v') - f(v) f(v_*) \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \int_{\sigma \in \mathbb{S}^{d-1}} \Big(f(v_*') f(v') - f(v) f(v_*) \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \int_{\sigma \in \mathbb{S}^{d-1}} \Big(f(v_*') f(v') - f(v) f(v_*) \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \int_{\sigma \in \mathbb{S}^{d-1}} \Big(f(v_*') f(v') - f(v) f(v_*) \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \int_{\sigma \in \mathbb{S}^d} \Big(f(v_*') f(v') - f(v) f(v') \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \int_{\sigma \in \mathbb{S}^d} \Big(f(v_*') f(v') - f(v) f(v') \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \Big(f(v_*') f(v') - f(v) f(v') \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v) := \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v') = \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v') = \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v') = \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v') = \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v') = \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v') = \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v') = \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v') = \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v') - f(v') f(v') \Big) \, |v-v_*| \, &Q(f)(v') = \int_{v_* \in \mathbb{R}^d} \Big(f(v') f(v$$

Kac's program in kinetic theory

- Estimate on the spectral gap in $L^2(\mathbb{S}^{N-1}(\sqrt{N}))$: [Carlen-Carvalho-Loss2003] (cf. also [Janvresse], [Maslen])
- However not sufficient for answering main motivation of Kac: to connect the asymptotic behavior and entropies of the many-particle and limit systems in the chaotic limit

Theorem (Mischler-CM, 2011)

Uniform in time chaos (for any number of marginals $1 \le \ell \le N$)

$$\sup_{t\geq 0}\frac{W_1\left(\Pi_\ell f_t^N,f_t^{\otimes\ell}\right)}{\ell}\leq \alpha(N)\to 0$$

Entropic chaos:
$$\frac{H\left(f_{t}^{N}\right)}{N} \xrightarrow{N \to \infty} H(f)$$

Unif. in N relaxation times: $\sup_{N>1} \frac{W_1\left(f_t^N,\gamma^N\right)}{N} \leq \beta(t) \to 0$

Abstract strategy

- ▶ View the many-particle system as a perturbation of the limit nonlinear PDE
- Consistency-stability estimates on semigroups
- Requires an appropriate functional framework for comparing generators (consistency) and establishing stability estimates
- ► The latters correspond to statistical stability estimates on the flow of the limit nonlinear PDE

with
$$(\pi_N \Phi)(\eta) := \Phi(\mu_\eta^N) = (\mu_\cdot^N)_* \Phi$$

Evolution N-particle semigroups

- ▶ Stochastic process (η_t^N) on X_N
- ► Corresponding linear semigroup \mathcal{F}_t^N on $P(X_N)$:

$$\partial_t f^N = A^N f^N, \qquad f^N \in P(X_N),$$

Forward Kolmogorov equation or "Master equation"

▶ Dual linear semigroup T_t^N of \mathcal{F}_t^N :

$$\forall f^N \in P(X_N), \ \varphi^N \in C_b(X_N),$$
$$\left\langle f^N, T_t^N(\varphi^N) \right\rangle := \left\langle \mathcal{F}_t^N(f^N), \varphi^N \right\rangle$$

Semigroup of the observables:

$$\partial_t \varphi^N = G^N(\varphi^N), \quad \varphi^N \in C_b(X_N)$$

Evolution limit semigroups

lacktriangle Nonlinear semigroup \mathcal{F}_t^∞ on \mathcal{X} solution to

$$\partial_t f_t = Q(f_t) = \Delta \sigma(f), \quad f_{|t=0} = f_0$$

▶ Pullback linear semigroup T_t^{∞} on $C_b(\mathcal{X})$:

$$\forall f \in \mathcal{X}, \ \Phi \in C_b(\mathcal{X}), \quad T_t^{\infty}[\Phi](f) := \Phi(\mathcal{F}_t^{\infty}(f))$$

solution to the *linear* evolution equation on $C_b(P(E))$:

$$\partial_t \Phi = G^{\infty}(\Phi)$$
 with generator G^{∞}

- ▶ Comparison of semigroups T_t^N and T_t^∞
- Additional difficulty: $\mu_{\eta}^{N} \not\in \mathcal{X} = L^{\infty}(\mathbb{T}^{d})$, hence we introduce the mollified empirical measure $\mu_{\eta}^{N,\varepsilon} = \chi_{\varepsilon} * \mu_{\eta}^{N}$, $\varepsilon > 0$ and the corresponding projection $\pi_{N,\varepsilon}$

Interpretation of the pullback semigroup (I)

▶ Given a nonlinear ODE $\dot{Y} = F(Y)$ on \mathbb{R}^d , one can define (at least formally) the linear Liouville transport PDE

$$\partial_t \rho + \nabla_v \cdot (F \, \rho) = 0,$$

where $\rho_t(v) = Y_t^*(\rho_0) = \rho_0 \circ Y_{-t}$ (characteristics)

▶ Dual viewpoint: for ϕ_0 function defined on \mathbb{R}^d , evolution $\phi_t(v) = \phi_0(Y_t(v)) = (Y_t)_*\phi_0 = \phi_0 \circ Y_t$ solution to the linear PDE

$$\partial_t \phi - F \cdot \nabla_v \phi = 0,$$

Interpretation of the pullback semigroup (II)

▶ Go "one level above" and replace \mathbb{R}^d by \mathcal{X} : The infinite dimensional "ODE" f' = Q(f) on \mathcal{X} yields first the abstract transport equation

$$\partial_t \pi + \nabla \cdot (Q(f)\pi) = 0, \qquad d\pi(t,\cdot) \in P(\mathcal{X})$$

and second the abstract dual equation

$$\partial_t \Phi - Q(f) \cdot \nabla \Phi = 0, \qquad \Phi(t, \cdot) \in C_b(\mathcal{X}).$$

▶ Provide intuition and formal formula for the generator " $(G^{\infty}\Phi)(f) = Q(f) \cdot \nabla \Phi(f)$ ": but requires to define correctly the objects. . .

Statistical stability analysis

- Well-posedness for the limit equation in $L^{\infty}(\mathbb{T}^d)$
- Propagation of H^k regularity
- ▶ Lipschitz stability: $\|\mathcal{F}_t^{\infty} f_2 \mathcal{F}_t^{\infty} f_1\|_{H^{-1}} \le \|f_2 f_1\|_{H^{-1}}$
- Higher-order stability:

$$\|\mathcal{F}_t^{\infty} f_2 - \mathcal{F}_t^{\infty} f_1 - D \mathcal{F}_t^{\infty} (f_1) (f_2 - f_1) \|_{H^{-1}} \le C(f) \|f_2 - f_1\|_{H^{-1}}^{1+\theta}$$

- ▶ $D\mathcal{F}_t^{\infty}(f) \in \mathcal{L}(\mathcal{X})$: solution $h_t := D\mathcal{F}_t^{\infty}(f_1)(f_2 f_1) \in \mathcal{X}$ to
 - $\partial_t h_t = \Delta \left(\sigma'(f_1(t))h \right)$ such that $h_0 = (f_2 f_1)_{|t=0}$
- $igspace T_t^\infty \psi: H o \mathbb{R}$ is $C^{1+ heta}(\mathcal{X})$ for the H^{-1} -norm and

$$D\left[T_t^{\infty}\Phi\right](f)\cdot h=D\Phi(\mathcal{F}_t^{\infty}(f))\cdot [D\mathcal{F}_t^{\infty}[f](h)],\quad \Phi\in C^1(\mathcal{X})$$

• $G^{\infty}[\Phi](f) = F'(\langle f, \varphi \rangle) \langle \sigma(f), \Delta \varphi \rangle$ for $\Phi(f) = F(\langle f, \varphi \rangle)$

Consistency and convergence (I)

$$\begin{split} \left| \left\langle f_t^N, F\left(\langle \mu_\eta^N, \varphi \rangle_{L^2} \right) \right\rangle - F\left(\langle f_t, \varphi \rangle_{L^2} \right) \right| &= \left| \left\langle \mathcal{F}_t^N f_0^N, \Phi\left(\mu_\eta^N \right) - \Phi\left(\mathcal{F}_t^\infty f_0 \right) \right\rangle \right| \\ &= \left| \left\langle f_0^N, T_t^N [\Phi\left(\mu_\eta^N \right)] - [T_t^\infty \Phi] (f_0) \right\rangle \right| \\ &\leq \left| \left\langle f_0^N, T_t^N [\Phi\left(\mu_\eta^{N,\epsilon} \right)] - [T_t^\infty \Phi] (\mu_\eta^{N,\epsilon}) \right\rangle \right| \\ &+ \left| \left\langle f_0^N, [T_t^\infty \Phi] (\mu_\eta^{N,\epsilon}) - [T_t^\infty \Phi] (f_0) \right\rangle \right| \\ &+ \left| \left\langle f_0^N, T_t^N [\Phi\left(\mu_\eta^N \right)] - T_t^N [\Phi\left(\mu_\eta^{N,\epsilon} \right)] \right\rangle \right| =: \mathcal{T}_1 + \mathcal{T}_2 + \mathcal{T}_3 \end{split}$$

Error terms:

- ▶ \mathcal{T}_2 : initial data approximation error propagated by \mathcal{T}_t^{∞} (Lipschitz stability)
- ▶ \mathcal{T}_3 : ε -error due to the mollification at the level of the particle system
- lacksquare \mathcal{T}_1 : core of the proof comparision of the two semigroups
- Linear growth in time of error + interpolation with the exponential relaxation of the limit equation: uniform in time estimates

Consistency and convergence (II): the \mathcal{T}_1 estimate

$$\frac{\mathrm{d}}{\mathrm{d}s} (T_s^N \pi_{N,\varepsilon} T_{t-s}^\infty \Phi(\eta)) = T_s^N G^N \pi_{N,\varepsilon} T_{t-s}^\infty \Phi(\eta) - T_s^N \pi_{N,\varepsilon} G^\infty T_{t-s}^\infty \Phi(\eta)$$

hence

$$\mathcal{T}_{1} \leq \left| \int_{0}^{t} \left\langle f_{t-s}^{N}, \left(G^{N} \pi_{N, \varepsilon} - \pi_{N, \varepsilon} G^{\infty} \right) \mathcal{T}_{s}^{\infty} \psi \right\rangle \mathrm{d}s \right|$$

- ▶ First-order Taylor expansion of T_t^{∞} : $T_t^{\infty}\psi(\mu_{\eta^{x,y}}^{N,\epsilon}) T_t^{\infty}\psi(\mu_{\eta}^{N,\epsilon}) DT_t^{\infty}\psi(\mu_{\eta}^{N,\epsilon})(\mu_{\eta^{x,y}}^{N,\epsilon} \mu_{\eta}^{N,\epsilon})$ (remainder term controlled by high-order statistical stability)
- ► Replacing the discrete Laplacian by the continuous one (propagation of regularity on $D\mathcal{F}_t^{\infty}(\mu_n^{N,\varepsilon})^*$)
- ► Quantitative version of replacement lemma [Kipnis-Landim1999] with the help of LSI

$$\frac{1}{T}\int_0^T\int_{\mathbb{T}^d}\left\langle f_t^N,\left|(g\circ\eta)^{(\varepsilon)}(uN)-\sigma(\eta^{(\varepsilon)}(uN))\right|^2\right\rangle\,\mathrm{d}u\,\mathrm{d}t\leq r_{\mathsf{RL}}(\epsilon,N)$$