Eddie history

Divergences

Eddie history

Divergences

Long time tails → FM QPT?

- Divergences
- •Long time tails → FM QPT?
- Long range correlations in NESS

- Divergences
- •Long time tails → FM QPT?
- Long range correlations in NESS
 - Fluctuation theorems

- Divergences
- •Long time tails → FM QPT?
- Long range correlations in NESS
 - Fluctuation theorems

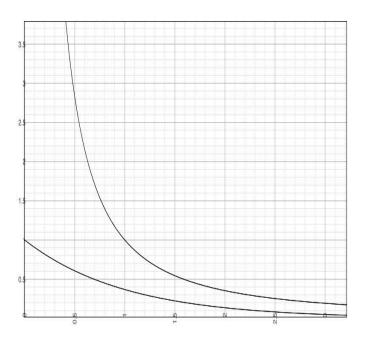
- $J_{xy}(t)=\Sigma v_{ix}(t)v_{iy}(t)+...$
- $C(t) = <J_{xy}(t)J_{xy}(0)>$
- $\eta = \int_0^\infty C(t)$

- $J_{xy}(t)=\Sigma v_{ix}(t)v_{iy}(t)+...$
- $C(t) = <J_{xy}(t)J_{xy}(0)>$
- $\eta = \int_0^\infty C(t)$

Long time decay?

• Simple theory~e^{-t/τ}

- $J_{xy}(t)=\Sigma v_{ix}(t)v_{iy}(t)+...$
- $C(t) = <J_{xy}(t)J_{xy}(0)>$
- $\eta = \int_0^\infty C(t)$


Long time decay?

- Simple theory~e^{-t/τ}
- Reality~1/t^{d/2}

- $J_{xy}(t)=\Sigma V_{ix}(t)V_{iy}(t)+...$
- $C(t) = <J_{xy}(t)J_{xy}(0)>$
- $\eta = \int_0^\infty C(t)$

Long time decay?

- Simple theory~e^{-t/τ}
- Reality~1/t^{d/2}

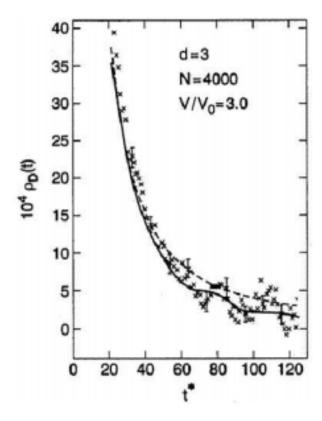


FIG. 3 Normalized velocity autocorrelation function $\rho_D(t) = C_D(t)/\langle v^2(0) \rangle$ as a function of the dimensionless time $t^* = t/t_0$, where t_0 is the mean-free time. The crosses indicate computer results obtained by Wood and Erpenbeck (1975) for a system of 4000 hard spheres at a reduced density corresponding to $V/V_0 = 3$, where V is the actual volume and V_0 is the close-packing volume. The dashed curve represents the theoretical curve $\rho_D(t) = \alpha_D(t^*)^{-3/2}$. The solid curve represents a more complete evaluation of the mode-coupling formula with contributions from all possible hydrodynamic modes and with finite-size corrections included (Dorfman, 1981). From Dorfman et al. (1994).

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation: $\delta u_x(k,t) \approx \exp(-vk^2t) = \exp(-t/\tau(k))$ $\tau(k) = 1/vk^2 \rightarrow \infty$ as k->0

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation:
$$\delta u_x(k,t) \approx \exp(-vk^2t) = \exp(-t/\tau(k))$$
 $\tau(k) = 1/vk^2 \rightarrow \infty$ as k->0

MMC theory gives,

 $J_{xy}(t)={}^{0}J_{xy}(t)+\int dk \, \delta u_{x}(k,t) \, \delta u_{y}(-k,t) \leftarrow \text{product of soft modes}$

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation:
$$\delta u_x(k,t) \approx \exp(-vk^2t) = \exp(-t/\tau(k))$$
 $\tau(k) = 1/vk^2 \rightarrow \infty$ as k->0

MMC theory gives,

$$J_{xy}(t)={}^{0}J_{xy}(t)+\int dk \, \delta u_{x}(k,t) \, \delta u_{y}(-k,t) \leftarrow \text{product of soft modes}$$

$$\rightarrow \delta C_{nn}(t) \sim \int dk < |u_x(k,t)| > < |u_y(k,t)| > \sim \int dk \exp(-2vk^2 t) \sim 1/t^{d/2} LTT!!!$$

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation:
$$\delta u_x(k,t) \approx \exp(-vk^2t) = \exp(-t/\tau(k))$$
 $\tau(k) = 1/vk^2 \rightarrow \infty$ as k->0

MMC theory gives,

$$J_{xy}(t)={}^{0}J_{xy}(t)+\int dk \, \delta u_{x}(k,t) \, \delta u_{y}(-k,t) \leftarrow \text{product of soft modes}$$

$$\rightarrow \delta C_{nn}(t) \sim \int dk < |u_x(k,t)| > < |u_y(k,t)| > \sim \int dk \exp(-2vk^2 t) \sim 1/t^{d/2} \quad LTT!!!$$

Universal effects in liquids due to soft or slow modes coupling to......stuff.

Another example: Heisenberg magnet in FM phase-Ordered in z-direction

•
$$S=(\pi_x,\pi_y,\sigma)$$

•
$$\sigma = m + \delta \sigma$$

Another example: Heisenberg magnet in FM phase-Ordered in z-direction

•
$$S=(\pi_x,\pi_y,\sigma)$$

•
$$\sigma = m + \delta \sigma$$

- $<|\pi(k)|^2>^1/k^2$ \rightarrow GM due to BS and LRO
- $<|\delta\sigma(k)|^2>|_{\text{simple theory}}$ ~const \rightarrow delta function correlated in space

 Another example: Heisenberg magnet in FM phase-Ordered in zdirection

•
$$S=(\pi_x,\pi_y,\sigma)$$

- σ=m+δσ
- $<|\pi(k)|^2>^1/k^2$ \rightarrow GM due to BS and LRO
- $<|\delta\sigma(k)|^2>|_{simple\ theory}$ ~const \rightarrow delta function correlated in space
- Due to mmc \rightarrow
- $\delta \sigma(k) = \delta \sigma^{(0)}(k) + \sum \pi(k-q)\pi(q) + \cdots$

- Another example: Heisenberg magnet in FM phase-Ordered in zdirection
- $S=(\pi_x,\pi_y,\sigma)$
- σ=m+δσ
- $<|\pi(k)|^2>^1/k^2$ \rightarrow GM due to BS and LRO
- $<|\delta\sigma(k)|^2>|_{\text{simple theory}}$ ~const \rightarrow delta function correlated in space
- Due to mmc→
- $\delta \sigma(k) = \delta \sigma^{(0)}(k) + \sum \pi(k-q)\pi(q) + \cdots$
- $<|\delta\sigma(k)|^2>\sim const+\sum <|\pi(k-q)|^2><|\pi(q)|^2>\sim 1/k^{4-d} \rightarrow singular in all d<4$

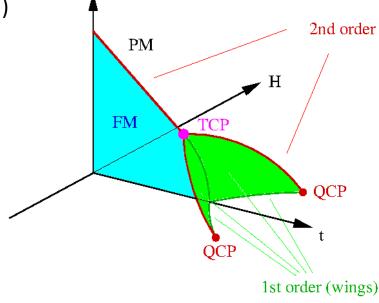
Focus on FM transition in clean <u>metallic</u> systems where the PM<->FM transition happens at low T

Focus on FM transition in clean <u>metallic</u> systems where the PM<->FM transition happens at low T

Experiment: Without fail, at low enough T (with a non-thermal control variable, say pressure) the PT changes from 2nd order to first order!!!

Focus on FM transition in clean <u>metallic</u> systems where the PM<->FM transition happens at low T

Experiment: Without fail, at low enough T (with a non-thermal control variable, say pressure) the PT changes from 2nd order to first order!!!

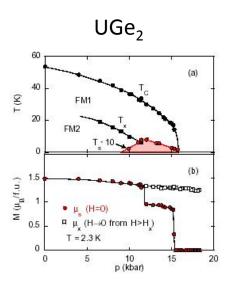

→ There appears to be a universal mechanism that causes a tri-critical point to exist in ALL metallic FM (and Ferrimagnets!)

Focus on FM transition in clean <u>metallic</u> systems where the PM<->FM transition happens at low T

Experiment: Without fail, at low enough T (with a non-thermal control variable, say pressure) the PT changes from 2nd order to first order!!!

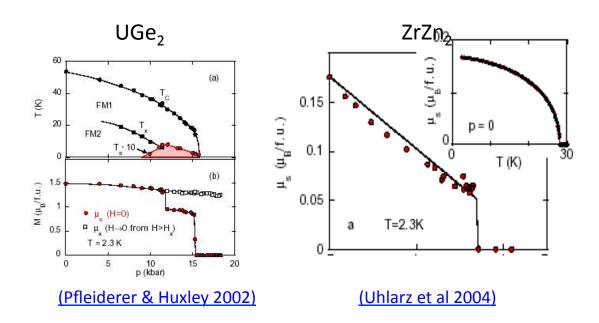
→ There appears to be a universal mechanism that causes a tri-critical point to exist in ALL

metallic FM (and Ferrimagnets!)



■ Metallic ferromagnets whose T_c can be tuned to zero:

- Metallic ferromagnets whose T_c can be tuned to zero:
 - UGe₂, ZrZn₂, (MnSi) (clean, pressure tuned)


- Metallic ferromagnets whose T_c can be tuned to zero:
 - UGe₂, ZrZn₂, (MnSi) (clean, pressure tuned)
 - Clean materials all show tricritical point, with 2nd order transition at high T, 1st order transition at low T:

- Metallic ferromagnets whose T_c can be tuned to zero:
 - UGe₂, ZrZn₂, (MnSi) (clean, pressure tuned)
 - Clean materials all show tricritical point, with 2nd order transition at high T, 1st order transition at low T:

(Pfleiderer & Huxley 2002)

- Metallic ferromagnets whose T_c can be tuned to zero:
 - UGe₂, ZrZn₂, (MnSi) (clean, pressure tuned)
 - Clean materials all show tricritical point, with 2nd order transition at high T, 1st order transition at low T:

- Metallic ferromagnets whose T_c can be tuned to zero:
 - UGe₂, ZrZn₂, (MnSi) (clean, pressure tuned)
 - Clean materials all show tricritical point, with 2nd order transition at high T, 1st order transition at low T:

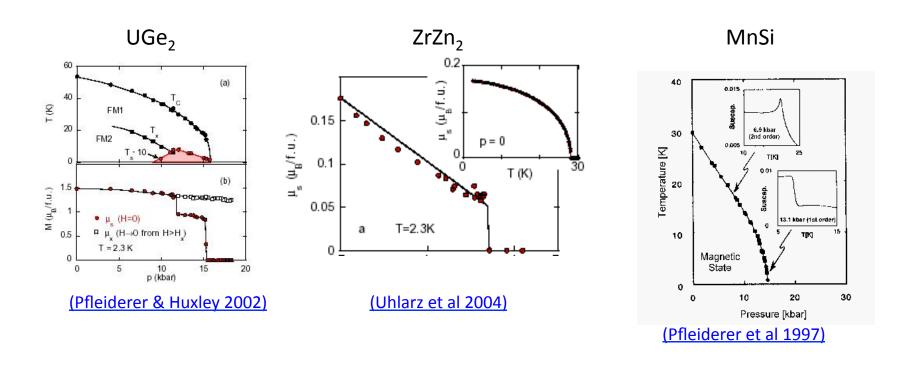


TABLE I: Systems with low-T ferromagnetic transitions and their properties. T_c = Curie temperature, T_{tc} = tricritical temperature. ρ_0 = residual resistivity. FM = ferromagnet, SC = superconductor. N/A = not applicable; n.a. = not available.

System °	Order of Transition	$T_{\rm c}/{ m K}^{-b}$	magnetic moment/ μ_B^d	tuning parameter	$T_{ m te}/{ m K}$	wings observed	Disorder $(\rho_0/\mu\Omega cm)^c$	Comments
MnSi $^{\rm 27}$	1st 18	$29.5^{\ 28}$	0.4 28	hydrostatic pressure 18	$\approx 10^{-18}$	yes ²⁵	0.33^{-25}	weak helimagnet ¹⁷ exotic phases ^{25,26}
$\rm ZrZn_2^{-27}$	1st ²⁹	28.5^{-29}	0.17^{-29}	hydrostatic pressure ²⁹	$\approx 5^{-29}$	yes 29	≥ 0.31 30	confusing history, see Ref. 27
$\rm Sr_3Ru_2O_7$	1st ^f	0 8	0 9	pressure g	n.a.	yes 31	< 0.5 31	foliated wing tips, nematic phase ³¹
UGe ₂ 33	1st ³⁴	52 35	1.5^{-35}	hydrostatic pressure ^{22,35}	24 36	yes 35,36	$0.2^{\ 22}$	easy-axis FM coexisting FM+SC 2
URhGe ³³	1st ³⁷	9.5^{-23}	0.42^{-23}	transverse B -field 37,39	≈ 1 37	yes ³⁷	8 38	easy-plane FM coexisting FM+SC 2
UCoGe ³³	1st 40	2.5 40	0.03^{-24}	none	> 2.5? ^h	no	12^{-24}	coexisting FM+SC 2
CoS_2	1st 41	122^{-41}	0.84 41	hydrostatic pressure 41	$\approx 120^{-41}$	no	0.7 41	rather high $T_{\rm c}$
$\text{La}_{1-x}\text{Ce}_x\text{In}_2$	1st 42	$22 - 19.5$ 42 i	n.a.	composition ⁴²	$>22?$ j	no	n.a.	third phase between FM and PM? 42
$\mathrm{Ni_3Al}$ 27	(1st) k	41 – 15 ¹	0.075 ^m	hydrostatic pressure ⁴³	n.a.	no	0.84 44	order of transition uncertain
$\mathrm{YbIr_2Si_2}^{\ n}$	1st 45	1.3 – 2.3 $^{\circ}$	n.a.	hydrostatic pressure ⁴⁵	n.a.	no	≈ 22 $^{\rm p}$	FM nature of ordere phase suspected ⁴⁵
$\rm YbCu_2Si_2^{-n}$	n.a.	$4-6^{46q}$	n.a.	hydrostatic pressure ⁴⁶	n.a.	no	n.a.	nature of magnetic order unclear
$URu_{2-x}Re_xSi_2$	2nd 47,48	25 - 2 ^r	0.4 - 0.03 48	composition ⁴⁷	N/A	N/A	≈ 100 "	strongly disordered
$\mathrm{Ni}_x\mathrm{Pd}_{1-x}$	2nd ⁵⁰	600 – 7 ^t	n.a.	composition ⁵⁰	N/A	N/A	n.a.	disordered, lowest T_c rather high
$YbNi_4P_2$	2nd 51	$0.17^{\ 51}$	≈ 0.05 51	none	N/A	N/A	2.6^{51}	quasi-1d, disordered

- 1. Conventional (= mean-field) theory
 - Hertz 1976: Mean-field theory correctly describes T=0 transition for d>1 in clean systems, and for d>0 in disordered ones.

1. Conventional (= mean-field) theory

- Hertz 1976: Mean-field theory correctly describes T=0 transition for d>1 in clean systems, and for d>0 in disordered ones.
- Landau free energy density: $f = f_0 h m + rm^2 + u m^4 + w m^6$ Equation of state: $h = r m + u m^3 + w m^5 + ...$

1. Conventional (= mean-field) theory

- Hertz 1976: Mean-field theory correctly describes T=0 transition for d>1 in clean systems, and for d>0 in disordered ones.
- Landau free energy density: $f = f_0 h m + r m^2 + u m^4 + w m^6$ Equation of state: $h = r m + u m^3 + w m^5 + ...$
- Landau theory predicts:
 2nd order transition at t=0 if u>0
 - 1st order transition if u<0

- 1. Conventional (= mean-field) theory
 - Hertz 1976: Mean-field theory correctly describes T=0 transition for d>1 in clean systems, and for d>0 in disordered ones.
 - Landau free energy density: $f = f_0 h m + r m^2 + u m^4 + w m^6$ Equation of state: $h = r m + u m^3 + w m^5 + ...$

 - Landau theory predicts:
 2nd order transition at t=0 if u>0
 - 1st order transition if u<0
 - Sandeman et al 2003, Shick et al 2004: Band structure in UGe₂ u<0

- 1. Conventional (= mean-field) theory
 - Hertz 1976: Mean-field theory correctly describes T=0 transition for d>1 in clean systems, and for d>0 in disordered ones.
 - Landau free energy density: $f = f_0 h m + r m^2 + u m^4 + w m^6$ Equation of state: $h = r m + u m^3 + w m^5 + ...$
 - Landau theory predicts:
 - 2nd order transition at t=0 if u>0
 - 1st order transition if u<0
 - Sandeman et al 2003, Shick et al 2004: Band structure in UGe₂ \rightarrow u<0
 - Problems: Not universal
 - Does not explain the occurrence of a universal tricritical point

- 1. Conventional (= mean-field) theory
 - Hertz 1976: Mean-field theory correctly describes T=0 transition for d>1 in clean systems, and for d>0 in disordered ones.
 - Landau free energy density: $f = f_0 h m + r m^2 + u m^4 + w m^6$ Equation of state: $h = r m + u m^3 + w m^5 + ...$
 - Landau theory predicts:
 - 2nd order transition at t=0 if u>0
 - 1st order transition if u<0
 - Sandeman et al 2003, Shick et al 2004: Band structure in UGe₂ \rightarrow u<0
 - Problems: Not universal
 - Does not explain the occurrence of a universal tricritical point
 - Conclusion: Conventional theory not viable

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

Soft modes in FL?

Physically exist because FS and finite DOS at FS exist-> gapless excitations

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

- Physically exist because FS and finite DOS at FS exist-> gapless excitations
- In general can be related to a BS and a Goldstone theorem mode.

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

- Physically exist because FS and finite DOS at FS exist-> gapless excitations
- In general can be related to a BS and a Goldstone theorem mode.
- Massive (not soft) electron degrees of freedom couple to these soft modes....If Q=non soft mode and q=soft electron mode →

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

- Physically exist because FS and finite DOS at FS exist-> gapless excitations
- In general can be related to a BS and a Goldstone theorem mode.
- Massive (not soft) electron degrees of freedom couple to these soft modes....If Q=non soft mode and q=soft electron mode →
- $Q=Q^{(0)}+\sum qq+\cdots\leftarrow mmc term$

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

- Physically exist because FS and finite DOS at FS exist-> gapless excitations
- In general can be related to a BS and a Goldstone theorem mode.
- Massive (not soft) electron degrees of freedom couple to these soft modes....If Q=non soft mode and q=soft electron mode →
- $Q=Q^{(0)} + \sum qq + \cdots$ ← mmc term Just like,
- $J_{xy} = J_{xy}^{(0)} + \sum u_x u_y + \cdots$ ← mmc term

Idea: Soft fermion modes couple to the magnetization OP generically causing a fluctuation driven 1st PT.

- Physically exist because FS and finite DOS at FS exist-> gapless excitations
- In general can be related to a BS and a Goldstone theorem mode.
- Massive (not soft) electron degrees of freedom couple to these soft modes....If Q=non soft mode and q=soft electron mode →
- $Q=Q^{(0)} + \sum qq + \cdots$ ← mmc term Just like,
- $J_{xy} = J_{xy}^{(0)} + \sum u_x u_y + \cdots$ \leftarrow mmc term
- $\sigma = \sigma^{(0)} + \sum \pi \pi + \cdots$ ←mmc term

•
$$\delta S^{-}\int dx \ m(x) \cdot \sum Q_{nn}(x)$$

• $Q_{nn}(x)^{-}\psi_{\alpha}^{\dagger}(x,n)\sigma_{\alpha\beta}\psi_{\beta}(x,n)$

•
$$\delta S^{-}\int dx \ m(x) \cdot \sum Q_{nn}(x)$$

•
$$Q_{nn}(x)^{-}\psi_{\alpha}^{\dagger}(x,n)\sigma_{\alpha\beta}\psi_{\beta}(x,n)$$

• → Due to mmc

•
$$\delta S^{-}\int dx \ m(x) \cdot \sum Q_{nn}(x)$$

- $Q_{nn}(x)^{-}\psi_{\alpha}^{\dagger}(x,n)\sigma_{\alpha\beta}\psi_{\beta}(x,n)$
- \rightarrow Due to mmc
- $\delta S^{-}\int dx m(x) \cdot q(x)q^{+}(x)$

- Question: How do the conduction electrons couple to the magnetization that may in general be caused by other electrons → Zeeman coupling:
- $\delta S \sim \int dx \ m(x) \cdot \sum Q_{nn}(x)$
- $Q_{nn}(x)^{-}\psi_{\alpha}^{\dagger}(x,n)\sigma_{\alpha\beta}\psi_{\beta}(x,n)$
- → Due to mmc
- δS~∫dx m(x)·q(x)q[†](x)
- Using the soft electronic CF (structurally like)
- $<|q(k,\omega)|^2>^{-}[k+|\omega|]^{-1}$

- Question: How do the conduction electrons couple to the magnetization that may in general be caused by other electrons → Zeeman coupling:
- $\delta S^{-}\int dx \ m(x) \cdot \sum Q_{nn}(x)$
- $Q_{nn}(x)^{-}\psi_{\alpha}^{\dagger}(x,n)\sigma_{\alpha\beta}\psi_{\beta}(x,n)$
- → Due to mmc
- δS~∫dx m(x)·q(x)q[†](x)
- Using the soft electronic CF (structurally like)
- $<|q(k,\omega)|^2>^{-}[k+|\omega|]^{-1}$
- Integrate out soft electronic modes to obtain a generalized MFT,

2. Renormalized mean-field theory.

- In general, conventional theory misses effects of fermion soft modes:
 - Contribution to f₀:

$$\int d\mathbf{k} \int d\Omega \ln((k+\Omega)^2 + m^2)$$

• Contribution to eq. of state:

• Renormalized mean-field equation of state:

$$\frac{d}{dm} \int d\mathbf{k} \int d\Omega \, \ln[(k+\Omega)^2 + m^2] \sim \, m \begin{cases} \text{const.} - m^{d-1} & (1 < d < 3) \\ \text{const.} + m^2 \ln m & (d = 3) \end{cases}$$

- \rightarrow h=tm+vm³lnm+um³ (clean, d=3, T=0)
 - v>0

Transition is generically 1st order! (TRK, T Vojta, DB 1999)

Physics?-Free energy gain by making soft fluctuations massive.

→ Coleman-Weinberg mechanism

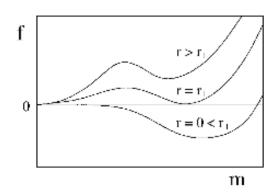
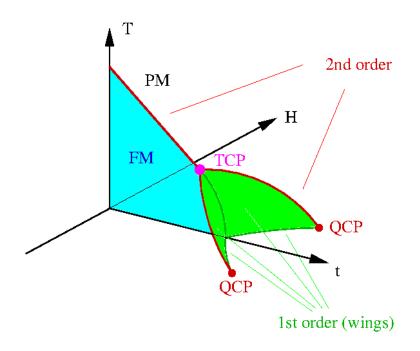
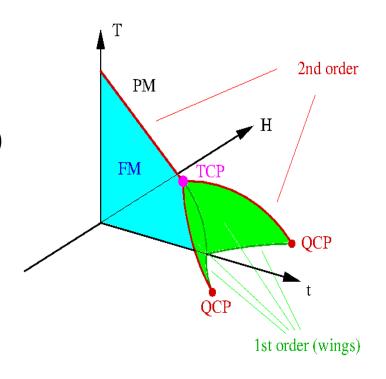
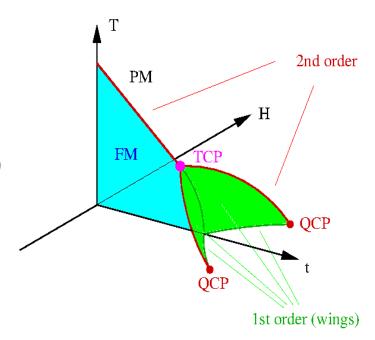
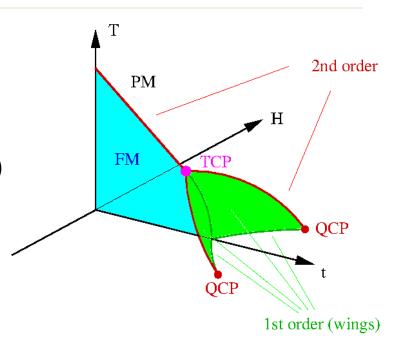




FIG. 2: Schematic sketch of the free energy for three values of the parameter r. The first-order transition occurs at r = $r_1 > 0$. It pre-empts the second-order transition of Landau theory which would occur at r = 0.

- 2. Renormalized mean-field theory
 - External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)



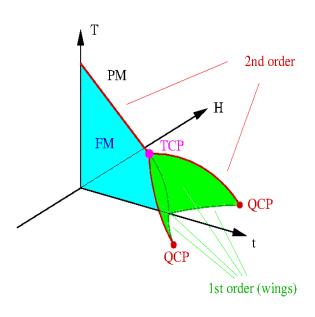
- 2. Renormalized mean-field theory
 - External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)
 - h>0 gives soft modes a mass, In m -> In (m+h) Hertz theory works (at T=0)!


2. Renormalized mean-field theory

- External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)
- h>0 gives soft modes a mass, ln m -> ln (m+h) Hertz theory works (at T=0)!
- Mean-field exponents: β=1/2, δ=3, z=3
- Magnetization at QCP: $\delta m_c \sim -T^{4/9}$

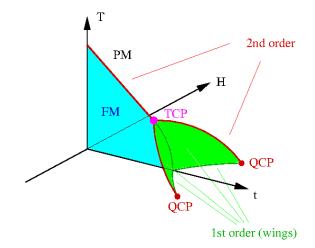
2. Renormalized mean-field theory

- External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)
- h>0 gives soft modes a mass, In m -> In (m+h) Hertz theory works (at T=0)!
- Mean-field exponents: $\beta=1/2$, $\delta=3$, z=3
- Magnetization at QCP: $\delta m_c \sim -T^{4/9}$
- Conclusion: Renormalized mean-field theory explains the experimentally observed phase diagram:



2. Renormalized mean-field theory

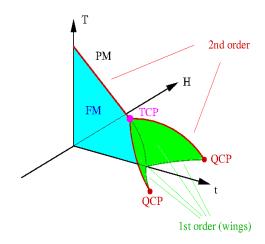
- External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)
- h>0 gives soft modes a mass, In m -> In (m+h) Hertz theory works (at T=0)!
- Mean-field exponents: $\beta=1/2$, $\delta=3$, z=3
- Magnetization at QCP: $\delta m_c \sim -T^{4/9}$
- Conclusion: Renormalized mean-field theory explains the experimentally observed phase diagram:


Landau theory with a TCP also produces tricritical wings (Griffiths 1970)

62 Sep 2008

2. Renormalized mean-field theory

- External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)
- h>0 gives soft modes a mass, ln m -> ln (m+h) Hertz theory works!
- Mean-field exponents: $\beta=1/2$, $\delta=3$, z=3
- Magnetization at QCP: $\delta m_c \sim -T^{4/9}$



- Conclusion: Renormalized mean-field theory explains experimentally observed phase diagram:
- Remarks:
 - Landau theory with a TCP also produces tricritical wings (Griffiths 1970)
 So far no OP fluctuations have been considered

63 Sep 2008

2. Renormalized mean-field theory

- External field h produces tricritical wings: (DB, TRK, J. Rollbühler 2005)
- h>0 gives soft modes a mass, In m -> In (m+h)
 Hertz theory works (at T=0)!
- Mean-field exponents: $\beta=1/2$, $\delta=3$, z=3
- Magnetization at QCP: δm_c^{\sim} -T^{4/9}

- Conclusion: Renormalized mean-field theory explains the experimentally observed phase diagram:
- Remarks:
 - Landau theory with a TCP also produces tricritical wings (Griffiths 1970)
 - So far no OP fluctuations have been considered
 - More generally, Hertz theory works if field conjugate the OP does not change the soft-mode spectrum (DB, TRK, T Vojta 2002)

64 Sep 2008

Summary and Conclusion

Summary and Conclusion

•Low T metallic FMs are complex and interesting.

- Summary and Conclusion
- •Low T metallic FMs are complex and interesting.
- •The T=0 transition is 1st order for generic reasons: A fluctuation-induced 1st order PT.

- Summary and Conclusion
- •Low T metallic FMs are complex and interesting.
- •The T=0 transition is 1st order for generic reasons: A fluctuation-induced 1st order PT.
- Preempts or replaces usual continuous PT.

- Summary and Conclusion
- Low T metallic FMs are complex and interesting.
- •The T=0 transition is 1st order for generic reasons: A fluctuation-induced 1st order PT.
- Preempts or replaces usual continuous PT.
- •Crucial for mechanism: Soft fermion modes coupling to magnetization.

- Summary and Conclusion
- Low T metallic FMs are complex and interesting.
- •The T=0 transition is 1st order for generic reasons: A fluctuation-induced 1st order PT.
- Preempts or replaces usual continuous PT.
- •Crucial for mechanism: Soft fermion modes coupling to magnetization.
- •Theory explains existence of generic tri-critical point and magnetic field dependence of phase diagram.

- Summary and Conclusion
- Low T metallic FMs are complex and interesting.
- •The T=0 transition is 1st order for generic reasons: A fluctuation-induced 1st order PT.
- Preempts or replaces usual continuous PT.
- •Crucial for mechanism: Soft fermion modes coupling to magnetization.
- •Theory explains existence of generic tri-critical point and magnetic field dependence of phase diagram.
- •Sufficiently strong non-magnetic disorder drives transition 2nd order. Also understood.

TABLE I: Systems with low-T ferromagnetic transitions and their properties. T_c = Curie temperature, T_{tc} = tricritical temperature. ρ_0 = residual resistivity. FM = ferromagnet, SC = superconductor. N/A = not applicable; n.a. = not available.

System °	Order of Transition	$T_{\rm c}/{ m K}^{-b}$	magnetic moment/ μ_B^d	tuning parameter	$T_{ m te}/{ m K}$	wings observed	Disorder $(\rho_0/\mu\Omega cm)^c$	Comments
MnSi $^{\rm 27}$	1st 18	$29.5^{\ 28}$	0.4 28	hydrostatic pressure 18	$\approx 10^{-18}$	yes ²⁵	0.33^{-25}	weak helimagnet ¹⁷ exotic phases ^{25,26}
$\rm ZrZn_2^{-27}$	1st ²⁹	28.5^{-29}	0.17^{-29}	hydrostatic pressure ²⁹	$\approx 5^{-29}$	yes 29	≥ 0.31 30	confusing history, see Ref. 27
$\rm Sr_3Ru_2O_7$	1st ^f	0 8	0 9	pressure g	n.a.	yes 31	< 0.5 31	foliated wing tips, nematic phase ³¹
UGe ₂ 33	1st ³⁴	52 35	1.5^{-35}	hydrostatic pressure ^{22,35}	24 36	yes 35,36	$0.2^{\ 22}$	easy-axis FM coexisting FM+SC 2
URhGe ³³	1st ³⁷	9.5^{-23}	0.42^{-23}	transverse B -field 37,39	≈ 1 37	yes ³⁷	8 38	easy-plane FM coexisting FM+SC 2
UCoGe ³³	1st 40	2.5 40	0.03^{-24}	none	> 2.5? ^h	no	12^{-24}	coexisting FM+SC 2
CoS_2	1st 41	122^{-41}	0.84 41	hydrostatic pressure 41	$\approx 120^{-41}$	no	0.7 41	rather high $T_{\rm c}$
$\text{La}_{1-x}\text{Ce}_x\text{In}_2$	1st 42	$22 - 19.5$ 42 i	n.a.	composition ⁴²	$>22?$ j	no	n.a.	third phase between FM and PM? 42
$\mathrm{Ni_3Al}$ 27	(1st) k	41 – 15 ¹	0.075 ^m	hydrostatic pressure ⁴³	n.a.	no	0.84 44	order of transition uncertain
$\mathrm{YbIr_2Si_2}^{\ n}$	1st 45	1.3 – 2.3 $^{\circ}$	n.a.	hydrostatic pressure ⁴⁵	n.a.	no	≈ 22 $^{\rm p}$	FM nature of ordere phase suspected ⁴⁵
$\rm YbCu_2Si_2^{-n}$	n.a.	$4-6^{46q}$	n.a.	hydrostatic pressure ⁴⁶	n.a.	no	n.a.	nature of magnetic order unclear
$URu_{2-x}Re_xSi_2$	2nd 47,48	25 - 2 ^r	0.4 - 0.03 48	composition ⁴⁷	N/A	N/A	≈ 100 "	strongly disordered
$\mathrm{Ni}_x\mathrm{Pd}_{1-x}$	2nd ⁵⁰	600 – 7 ^t	n.a.	composition ⁵⁰	N/A	N/A	n.a.	disordered, lowest T_c rather high
$YbNi_4P_2$	2nd 51	$0.17^{\ 51}$	≈ 0.05 51	none	N/A	N/A	2.6^{51}	quasi-1d, disordered

Many More BDs Eddie!!!

Helena and Ted