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FIG. 3 Normalized velocity autocorrelation function pp(t) =
Cp(t)/(v*(0)) as a function of the dimensionless time t* =
t/to, where to is the mean-free time. The crosses indicate com-
puter results obtained by Wood and Erpenbeck (1975) for a
system of 4000 hard spheres at a reduced density correspond-
ing to V/Vo = 3, where V is the actual volume and Vp is the
close-packing volume. The dashed curve represents the theo-
retical curve pp(t) = ap (t*) /2. The solid curve represents
a more complete evaluation of the mode-coupling formula
with contributions from all possible hydrodynamic modes and
with finite-size corrections included (Dorfman, 1981). From
Dorfman et al. (1994).



Question: Why do LTT occur?



Question: Why do LTT occur?

Answer: Because slow or soft modes couple to currents that are not obviously slow.



Question: Why do LTT occur?

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation: 6u,(k,t)=exp(-vk?t)=exp(-t/t(k)) t(k)=1/vk? =» o0 as k->0



Question: Why do LTT occur?

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation: 6u,(k,t)=exp(-vk?t)=exp(-t/t(k)) t(k)=1/vk? =» o0 as k->0

MMC theory gives,

) (1)=00, (t)+]dk Su,(k,t) u (-k,t) & product of soft modes



Question: Why do LTT occur?

Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation: 6u,(k,t)=exp(-vk?t)=exp(-t/t(k)) t(k)=1/vk? =» oo as k->0

MMC theory gives,

) (1)=00, (t)+]dk Su,(k,t) u (-k,t) & product of soft modes

- 8C, (t)~Idk <|u,(k,t)|><|u,(k,t) |>~[dk exp(-2vk? t}~1/t¥/2 LTT!!!
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Answer: Because slow or soft modes couple to currents that are not obviously slow.

Slow fluctuation: 6u,(k,t)=exp(-vk?t)=exp(-t/t(k)) t(k)=1/vk? =» o0 as k->0

MMC theory gives,

) (1)=00, (t)+]dk Su,(k,t) u (-kt) & product of soft modes

- 8C, (t)~Idk <|u,(k,t)|><|u,(k,t) |>~[dk exp(-2vk? t}~1/t¥/2 LTT!!!

Universal effects in liquids due to soft or slow modes coupling to........ stuff.
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Another example: Heisenberg magnet in FM phase-Ordered in z-
direction

S=(r,,1,,0)

o=m+60

<|m(k)|?>~1/k* ->GM due to BS and LRO
<[86(K) | %> | imple theory ~CONSt—> delta function correlated in space
Due to mmc—>

So(k)=600(k)+Sm(k-q)m(q)+ - -

<|8a(k)|2>~const+5<|m(k-q) | 2><|m(q)|2>~1/k*9=>singular in all d<4
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m Metallic ferromagnets whose T_can be tuned to zero:
e UGe,, ZrZn,, (MnSi)
o Clean materials all show tricritical point, with 2" order transition
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TABLE [: Systems with low-T' ferromagnetic transitions and their properties. 7. = Curie temperature, 7. = tricritical
temperature. po = residual resistivity. FM = ferromagnet, SC = superconductor. N/A = not applicable; na. = not available.

System ? Order of T /K" magnetic tuning T /K wings  Disorder Comments
Transition” moment (un’  parameter observed {po/uflem)”
MnSi 27 1st '8 295 % 0.4 % hydrostatic = 10'%  yes 2 0.33 7% weak helimagnet 7
pressure ' exotic phases =%
Zetn, ¥ 1st 29 285 % 0.17 % hydrostatic =59  y=?  >031%  confusing history,
pressure 27 see Ref. 27
SraRuz O 1t/ n* 0°* pressure ? n.a. yes ! <05 ™ foliated wing tips,
nematic phase
UGe; ® 1st 52 % 1.5 hydrostatic  247%  yes ™% p2# ensy-axis FAL
pressure 0 coexisting FM+8C **
URnGe * 1st V7 9.5 0.42 % tramsverse =17 yes T B ensy-plane FAM
B-field % coexisting FM+8C **
UCoGe ™ 1t ¥ 25% 0.03 ** none >257" no 12% coexisting FM+8C **
CoSy 1t ¥ 1Y 0.8 ¥ hydrostatic & 120 U ne 0.7 rather high 7.
pressure
Lay - »Ce,lng st 21954 na composition ¥ > 227/ no na. third phase between
FM and PM? %2
NiyAl ¥ (1st) * aM-15" 0.075 ™ hydrostatic n.a. no 084 * arder of transition
pressure “ uncertain
Yhblr,Si; * 1t 1.3-23° na. hydrostatic n.a. no 2227  FM nature of ordered
pressure 7 phase suspected **
YhCu,Si; * .. 4-6“9 na. hydrostatic n.a. no n.a. nature of magnetic
pressure ¥ order unclear
URu;_-Re:Siz 2nd ¥ 25-27  04-0.03" composition ™ N/A  N/A = 100" strongly disordered
Ni:Pd;_- Zned *° 600 - 7" nu composition @ N/A N/A na. disordered, lowest
T, rather high
YbNi P2 Zned ¥ 017 * =005 none N/A N/A 26 quasi-1d, dsordered
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Il. Quantum Ferromagnetic Transitions: Theory

1. Conventional (= mean-field) theory

m Hertz 1976: Mean-field theory correctly describes T=0 transition for d>1
in clean systems, and for d>0 in disordered ones.

m Landau free energy density: f=f,—hm+rm?+um*+wm®
Equation of state: h=rm+um3+wm>+..

B Landau theory predicts:
e 2" order transition at t=0 if u>0

e 1%t order transition if u<0
m Sandeman et al 2003, Shick et al 2004: Band structure in UGe, = u<0

m Problems: e Not universal
e Does not explain the occurrence of a universal tricritical point

m Conclusion: Conventional theory not viable
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Universal mechanism for tri-critical point in low T metallic FM

Idea: Soft fermion modes couple to the magnetization OP generically causing a
fluctuation driven 1% PT.

Soft modes in FL?
* Physically exist because FS and finite DOS at FS exist-> gapless excitations
* In general can be related to a BS and a Goldstone theorem mode.

 Massive (not soft) electron degrees of freedom couple to these soft
modes....If Q=non soft mode and g=soft electron mode 2>

« Q=Q%+5qq+ -+ € mmcterm
Just like,
© ), O+Tuu+ - € mmcterm

¢ o0=00+3nn+- -+ &mmcterm
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Question: How do the conduction electrons couple to the magnetization
that may in general be caused by other electrons—=>Zeeman coupling:

8S~[dx m(x) 3 Quy(X)

Q,n(X)~P, T (x,n)0,5d4(x,N)

—>Due to mmc

6S~[dx m(x)-q(x)q " (x)

Using the soft electronic CF (structurally like)

<la(k,w)|*>~[k+]w]]*

Integrate out soft electronic modes to obtain a generalized MFT,



2. Renormalized mean-field theory.

m In general, conventional theory misses effects of fermion soft modes:

e Contribution to f,:

L

e Contribution to eq. of state:

® Renormalized mean-field equation of state:

d
dm

- h=tm+vm3lnm+um?3

e >0

—/dk/dQ In[(k + Q)% +m?] ~ 7n{

(clean, d=3, T=0)

Transition is generically 1%t order! (TRK, T Vojta, DB 1999)

Physics?-Free energy gain by making soft fluctuations massive.

- Coleman-Weinberg mechanism

const. — ma—1
2
const. +m-Inm

(

dk [ dQ In((k+Q)* +m?)

(1< d< 3)
(d=3)

m
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2nd order

e External field h produces tricritical wings: .

(DB, TRK, J. Rollbthler 2005)

@® h>0 gives soft modes a mass, In m->In (m+h)
Hertz theory works (at T=0)!

5" Mean-field exponents: B=1/2, 6=3, z=3 / D, qcp
= Magnetization at QCP: 6m_~ -T4/° ™

Qep

m Conclusion: Renormalized mean-field theory Ist order (wings)
explains the
experimentally observed phase
diagram:
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(DB, TRK, J. Rollbuihler 2005) e |

@® h>0 gives soft modes a mass, In m->In (m+h)
Hertz theory works!

5" Mean-field exponents: B=1/2, 6=3, z=3

QCP

I3 Magnetization at QCP: ém_~ -T#/?

1st order (wings}

m Conclusion: Renormalized mean-field theory explains

the
experimentally observed phase diagram:

m Remarks: _ o _ o
e Landau theory with a TCP also produces tricritical wings (Griffiths 1970)

® So far no OP fluctuations have been considered
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—~ 2nd order

e External field h produces tricritical wings:
(DB, TRK, J. Rollbthler 2005)

@® h>0 gives soft modes a mass, In m->In (m+h)
Hertz theory works (at T=0)!

5" Mean-field exponents: B=1/2, 6=3, z=3

QCP

& Magnetization at QCP: 6m_~ -T4/° 15t ondr (i)

m Conclusion: Renormalized mean-field theory explains the
experimentally observed phase diagram:

m Remarks:
e Landau theory with a TCP also produces tricritical wings (Griffiths 1970)

e So far no OP fluctuations have been considered

e More generally, Hertz theory works if field conjugate the OP does not
change the soft-mode spectrum (DB, TRK, T Vojta 2002)
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Summary and Conclusion
*Low T metallic FMs are complex and interesting.

*The T=0 transition is 1%t order for generic reasons: A fluctuation-
induced 1%t order PT.

*Preempts or replaces usual continuous PT.

*Crucial for mechanism: Soft fermion modes coupling to
magnetization.

*Theory explains existence of generic tri-critical point and
magnetic field dependence of phase diagram.

Sufficiently strong non-magnetic disorder drives transition 2
order. Also understood.
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pressure ¥ order unclear
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Many More BDs Eddie!!!

Helena and Ted



