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INTRODUCTION

Universality conjecture for disordered quantum systems (vague):

There are two regimes, depending on disorder strength:

i) Strong disorder: localization and Poisson local spectral statistics

ii) Weak disorder: delocalization and random matrix (GUE, GOE)
local statistics (RMT).



Two well studied models

e Random Schrodinger operators: represented by a narrow band
matrix with nonzero elements at finite distance from the diagonal
(E.g. d=1, —A + \V is tridiagonal).
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e Wigner random matrices: H = (Hzy)y yen, With Hgy centered i.i.d.
up to symmetry constraint (H = H*).

Mean-field hopping mechanism with random quantum transition rates.
No spatial structure (dim d is irrelevant), even for sparse matrices.
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Intermediate model: random band matrices (RBM) with band width
Hgzy are independent, centered,

W in a d-dimensional box A C Z4.

with variance

Szy — E|H$y|27

such that szy = 0 for |x —y| >

(*
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(W = 0O(1) ~ Random Schrodinger; W = A, d = 1 is Wigner)
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More generally, sz = W]'f('a3 y') [ f = 1. Nontriv. spatial structure
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ANDERSON TRANSITION FOR BAND MATRICES
W = 0(1) [~ Random Schrodinger]

In d = 1 always localized [Goldsheid-Molchanov-Pastur]
In d > 1 large energy and band edge localization [Frohlich-Spencer...]
Poisson statistics [Minami, Klopp-Germinet, ...]

W = |A|, d =1 [Wigner ensemble]

Always delocalized [E-Schlein-Yau]
RMT statistics [Dyson-Mehta-Gaudin, E-Schlein-Yau-Yin]

Varying 1 K W < |A| = N can test the transition even in d = 1.

RBM'’s interpolate between random Schrodinger and Wigner.



PHYSICAL PICTURE FOR BAND MATRICES

The system exhibits metal-insulator transition:

e In d=1 the localization length is £ ~ W2,
Complete delocalization and RMT statistics for N <« W2
Poisson statistics for N > W?2

e In d= 2 the localization length is ¢ is exponential in W

e In d > 3 the localization length is ¢ ~ L (system size, L% = N)
Complete delocalization, RMT.

Based on SUSY Fyodorov-Mirlin (91) ind=1
and on RG scaling arguments by Abrahams et. al (79) in d = 2
See: Tom Spencer’s overview article/lecture notes on band matrices.
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SELF-CONSISTENT EQUATION

|G|? is self-averaging:
_ 2 2
Ty = ) swalGayl” = Ex|Gayl
a

and satisfies the (matrix) equation (up to some errors)

Y

r —z

T ~ |m|2[S + ST1, m(z) = QW/

Solution
Im|2S

T =
1 — |m|2S

It was first obtained as the ladder diagram in diagrammatic pertur-
bation theory [Spencer]



2 S)  ip(a—y)
Gl ~ [ sy 9 o

Taylor expansion

S(p) = e*Psqp ~ f(Wp) = 1 — Dg(Wp)? + ...
k

m(2)| =1 —an+ O(n?), a=a(E)=
4 — E?

thus the small p behaviour is

S(p) - 1
1 —|m|2S(p) Do(Wp)2+ an

Main result informally: Rigorous proof of (1) and the self-averaging
property in a certain regime of the parameters.



RESOLVENT PROFILE

ep(z—y) C(E 1 _ [nlz—y
(Wp)<+n Nn — W./n
1 e e > W
- L
wWv/n N
1
NN X —y

Expect: Diffusion on scale W until the localization length is achieved,
VIW < 0=W?2, ie. up to time t < W=2. (Note t ~ 1/n).

The profile is visible only if n > (W/N)?2.
Corresponds to time ¢t < (N/W)Q, i.e. before v/tW reaches N.



Theorem [E-Knowles-Yau-Yin, '12] Let N < W4, n > (W/N)2.
Let K, = expectation in the entries in the z-column of H. Then

1 )
BalGayl? = T8, + Saylm|? + O - + L)

Nn — W./Mm
1
s32|Gay|? = T +0(—)
zz: rz Y r—y N”]’]

All bounds hold with high probability and up to W¢ corrections.

Related results: (i) Exponential decay of the analogue of EG,y and
localization in a related lattice SUSY o-model. [Disertori-Spencer]

1 1 1
(ii) Diffusion up to t < W3 [E-Knowles]: t = W3T, z = WV W3X
1 4 )
~ [ dX\—

0 7'("/1_)\2

GO\T, X)

ot, @) = B|(ale""/2)0)
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IMPROVED BOUND ON DELOCALIZATION

Corollary [E-Knowles-Yau-Yin, '12]
For N < W>/%, most eigenfunctions are delocalized (¢ ~ N).

Previous results
e Delocalization for N < W7/6 (via Chebyshev) [E-Knowles, 2010]

e Localization for N > W8 (with loc length ¢ < W8) [Schenker]

New method: Self-consistent equation for E|Gqyy|?.
Previously: Self-consistent equation for TrG and Ggg.
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DERIVATION OF THE SELF-CONSISTENT EQUATION

Let Eq, Qo = I — Eq4 projections. Define
Txy = ZSCCCL|GCI,y|2 = staEa|Gay|2 _|_ g;cy, ggjy = staQa|Gay|2
a a a
Perform E, by expanding Ggay in a:

p

Eo|Gay|?2 = |m|? [(say + 5 saplGEO12 4 ] ~ |m|? laay + Ty + . ..
b

Expansion is in the small parameter A := maXgy |Gzy — dzym|.

m|?
1 — |m|2S
For the error, we need £ = O(A%) and the spectral gap of S.

T=|mP[S+ST]+€& =— T= £
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FLUCTUATION AVERAGING THEOREM

We need to control the fluctuation term
gacy — staQa|Gay|2 — sta(l — Ea)|Gay|2
a a

Naive size of £y is O(A?)
But E€ = 0; need to exploit a cancellation, like CLT.

Main difficulty: the correlation between |Gqy|? and |Ga/y|2 is not
sufficiently small for any CLT type argument to work.

We use a detailed expansion for the high moments and identify
correlation structure hierarchically.

We will need to control general monomials.
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Theorem [Special cases| (x,v, 2, ... are fixed, “external’)
blue = naive size, red = gain:

staGay < /\1+1, staQaGay < /\1+2
a a
Z Sxa,Gya,Ga,Z < /\2+1, Z Sxa,Gya,GZy < /\2+O
a a
Z SxCLQCL [GyaGaz} < /\2+17 Z Sxa,Qa, [Gyany] < /\2+2
a a
SraS bGZCLGabGZu < /\3+1, Sxas an GzaGabqu = /\3+17
b ’ b ’
a a
> swasypQy|GzaGapGhy,| < A3T2, > swasypQaQ | GzaGapGi, | < NPT,
ab ab

“Good" indices: that connect GG or G*G*:
GraGay or G;@any

Gains come either from @Q’'s or from “good’ indices.
Sometimes not from both (a good index with Q may be useless)
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SUMMARY
e Diffusion resolvent profile for N < W5/4, n > (W/N)?
e Delocalization for N < W5/4,

e General fluctuation averaging mechanism for the Green function.

MAJOR OPEN QUESTIONS:
o Improve N < W>/4 to N < W2 for delocalization.
e Control resolvent for n <« W—1.

e RMT universality (w/o Gaussian component) in the deloc. regime.
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TIME EVOLUTION: DIFFUSION
Our previous result considered the quantum evolution directly.

Let z,y € Ay = [0, L]% C Z¢ label H with E H;, = 0 and variance

L le =yl
o2, ::E|ny|2:Wdf< = )

s.t. [f =1 and covariance ¥;; := [paz;z;f(x)dz.

Define the quantum transition probability from O to = in time t by
2

Y

o(t, ) 1= E|(z|e~"H/2|0)

clearly o(t,-) is a probability density on A. Goal: ¢t > 1.

This is like controlling EGo,(2)G:y(2"), for z = E4in, 2/ = E' 4 in
with small n ~ 1/t. Note the expectation and star.
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Theorem (Quantum diffusion) [E-Knowles, 2010] Fix 0 < Kk < 1/3.
For any T > 0 and any testfunction ¢ € Cp(R%) we have

. dr L _
S s W) o) = LAY LT X) e(X), (@)
CCE/\N
uniformly in N > Wltd/6 and 0 < T < Ty. Here
1 4 )2
LT, X) = [ dx2 GOT, X) (3)

0 7'(',/1_)\2

IS a superposition of heat kernels

1 ~ L xs-lx
G(T,X) = e 2T :
(1,X) (27T)4/2\/det =

A € [0,1] in (3) represents the fraction of the macroscopic time T
that the particle spends moving effectively; the remaining fraction
1 — X\ of T represents the time the particle “wastes” in backtracking.
Backtracking is due to a self-energy renormalization.

Method: Chebyshev + classification of Feynman diagrams.
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LOCAL SEMICIRCLE LAW

1
)= - [4-%

S F—
-2 2

Limiting density of the eigenvalues is opsc(x) = %\/(4 — wz)_l_

1 1 1 osc(x)
mEA =g g =y 16, mela) = [0

dx

FACT: Suppose for some fixed n > 0 and any FE we have

im(2) — mse(2)| < g, z=FE4n
then the local density in spectral windows of size n about FE is given
by 0sc(E) up to a precision e. We work with G and m.
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Theorem [E-Yau-Yin, 2011]. Suppose the rescaled matrix elements
Hyy/\/szy have subexp decay. Then the local semicircle law holds

up to n =1Imz > W1
< 1 G ) < !
|m(Z) — msc(z)| ~ W—na | :cy(z) _ xymSC(ZN ~ (Wn)l/Q

(with very high probability and modulo log corrections)

Related results

e Global semicircle law for the expectation Em, uniform in n,
error W—2, (d = 3, Gaussian, with a special covariance).
[Disertori-Pinsker-Spencer, 2002] SUSY

e Local semicircle law for the expectation Em at n = W—0-99
(in d = 1, Bernoulli distr) [Sodin, 2011] Chebysev-expansion

For Em one needs to compute ETrG and not ETrGTrG* or EGyy
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FROM RESOLVENT TO LOWER BOUND ON LOC. LENGTH

Corollary (of local sc law) [E-Yau-Yin]: ¢> W1l. (nontrivial!)

Proof: |ua(:1:)|2 < nImGgz < Cn if n>w-1

For ¢ > W1 without control for small n, we need offdiag estimate.
Lemma Suppose for some L and for some w1« n < 1 we have

1
sup max |Gey(E 4 in)|° < —.
T x#y| a:y( 77)| L

Then the localization length of most eigenfunctions is at least L.

Proof: Fix x = 0. By Ward identity and local semicircle law
1
Immse < ImGgpg = Z”|G0y|2 S Z|SUDD(GOx)|
Y

Thus 77|Goy|2 has a spread of at least size L. By spectral theorem
this would contradict a strong localization on scale ¢ < L:
ua(0)ua(y)| S e W/
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Theorem [General version, informally]
Denote a = (aq1,a»,...as) the set of summation labels
Let F C {1,2,...s} be the set of (indices of) Q-labels.

AVal,aQ,...as( H Qaj>(monomial of Gg;a; and ng_aj) < AGHIFIHG
JEF
where

d .= #{offdiag. factors} (“naive size""), G := set of “good” indices

Definition of “good” : an index j € G if

either j € 7 and |y; — ]| # 2, or J&€F and v; # v},

(v; is the number a;'s appearing in any G, v is the same for G*).
Gain from F: Averaging the fluctuation (like CLT, but more subtle)

Gain from G: It has a stable self-consistent equation
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Mechanism of the gain from F (presence of Q's)

Decomposition into a sum of hierarchically classified terms in the
spirit of ‘size versus independence.”

22_ 2 2
ZQa|Gax|‘ —EZQCL|GG$| Qb|be|

a ab
If G, were independent of a (meaning, of the a-th column of H)
then this would be zero, since for any general X and a-indep Y (@)

E[Qa(X) - YW = E[Qu(XY")| = EPiQu(XY ")) = 0

E

Gy, G

Decomposition formula: Gre= G + baCraz
e Gaa

indep of a —

one order smaller

Such decomposition is done recursively for all resolvent factors up
to high order independence wrt. all summation indices:

G = qglae) L glad)g 1 glagla L L glaga+ ...+ caaa
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Mechanism of the gain from G (‘“good” index)

The quantity Rzy = >, S2aGyaGay Satisfies a similar self-consistent
equation as Ty = >, smGyany did before, but

R=m?|S+ SR] +¢, T =|m|?|S+ ST]+ €

2 2
N R m=<S £ _ m=<S
1 — |m|2S

E.
1 —m?28S

Imm = Immsc(z) > 0, |m|2=1—-0(n) and S has a small gap, so

1
1 —m?2S

1

S Imm

1
1 — |m|2S

1
()

The complete proof is a complex expansion (bookkept by Feynman
graphs) to exploit both effects up to a very high order precision.
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