Delocalization for Random Band Matrices

László Erdős Ludwig-Maximilians-Universität, Munich, Germany

Rutgers, May 6, 2012

107th Statistical Physics Meeting

Joint with Antti Knowles, Horng-Tzer Yau and Jun Yin

INTRODUCTION

Universality conjecture for disordered quantum systems (vague):

There are two regimes, depending on disorder strength:

- i) Strong disorder: localization and Poisson local spectral statistics
- ii) Weak disorder: delocalization and random matrix (GUE, GOE) local statistics (RMT).

Two well studied models

• Random Schrödinger operators: represented by a narrow band matrix with nonzero elements at finite distance from the diagonal (E.g. d=1, $-\Delta + \lambda V$ is tridiagonal).

• Wigner random matrices: $H = (H_{xy})_{x,y \in \Lambda}$, with H_{xy} centered i.i.d. up to symmetry constraint $(H = H^*)$.

Mean-field hopping mechanism with random quantum transition rates. No spatial structure (dim d is irrelevant), even for sparse matrices.

Intermediate model: random band matrices (RBM) with band width W in a d-dimensional box $\Lambda \subset \mathbb{Z}^d$. H_{xy} are independent, centered, with variance

$$s_{xy} = \mathbb{E}|H_{xy}|^2, \qquad \sum_{y} s_{xy} = 1 \quad \forall y$$

such that $s_{xy} = 0$ for $|x - y| \ge W$. E.g. (W = 3, N = 7):

$$H = \begin{pmatrix} * & * & * & 0 & 0 & 0 & 0 \\ * & * & * & * & 0 & 0 & 0 \\ * & * & * & * & * & 0 & 0 \\ 0 & * & * & * & * & * & 0 \\ 0 & 0 & * & * & * & * & * \\ 0 & 0 & 0 & * & * & * & * \\ 0 & 0 & 0 & 0 & * & * & * \end{pmatrix},$$

 $(W = O(1) \sim \text{Random Schrödinger}; W = \Lambda, d = 1 \text{ is Wigner})$

More generally, $s_{xy} = \frac{1}{W} f\left(\frac{|x-y|}{W}\right)$, $\int f = 1$. Nontriv. spatial structure

ANDERSON TRANSITION FOR BAND MATRICES

W = O(1) [~ Random Schrödinger]

In d=1 always localized [Goldsheid-Molchanov-Pastur] In d>1 large energy and band edge localization [Fröhlich-Spencer...] Poisson statistics [Minami, Klopp-Germinet, ...]

 $W = |\Lambda|, d = 1$ [Wigner ensemble]

Always delocalized [E-Schlein-Yau]

RMT statistics [Dyson-Mehta-Gaudin, E-Schlein-Yau-Yin]

Varying $1 \ll W \ll |\Lambda| = N$ can test the transition even in d = 1.

RBM's interpolate between random Schrödinger and Wigner.

PHYSICAL PICTURE FOR BAND MATRICES

The system exhibits metal-insulator transition:

- In d=1 the localization length is $\ell \sim W^2$. Complete delocalization and RMT statistics for $N \ll W^2$ Poisson statistics for $N \gg W^2$
- In d=2 the localization length is ℓ is exponential in W

• In $d \geqslant 3$ the localization length is $\ell \sim L$ (system size, $L^d = N$) Complete delocalization, RMT.

Based on SUSY Fyodorov-Mirlin (91) in d=1 and on RG scaling arguments by Abrahams *et. al* (79) in d=2 See: Tom Spencer's overview article/lecture notes on band matrices.

SELF-CONSISTENT EQUATION

 $|G|^2$ is self-averaging:

$$T_{xy} = \sum_{a} s_{xa} |G_{ay}|^2 \approx \mathbb{E}_x |G_{xy}|^2$$

and satisfies the (matrix) equation (up to some errors)

$$T \approx |m|^2 [S + ST],$$
 $m(z) := \frac{1}{2\pi} \int \frac{\sqrt{4 - x^2}}{x - z} dx$

Solution

$$T = \frac{|m|^2 S}{1 - |m|^2 S}$$

It was first obtained as the ladder diagram in diagrammatic perturbation theory [Spencer]

$$\mathbb{E}|G_{xy}|^2 \sim \int \frac{S(p)}{1 - |m|^2 S(p)} e^{ip(x-y)} dp$$
 (1)

Taylor expansion

$$S(p) := \sum_{k} e^{ikp} s_{0k} \approx \widehat{f}(Wp) \approx 1 - D_0(Wp)^2 + \dots$$

$$|m(z)| = 1 - \alpha \eta + O(\eta^2), \qquad \alpha = \alpha(E) = \frac{2}{\sqrt{4 - E^2}}$$

thus the small p behaviour is

$$\frac{S(p)}{1 - |m|^2 S(p)} \approx \frac{1}{D_0(Wp)^2 + \alpha \eta}$$

Main result informally: Rigorous proof of (1) and the self-averaging property in a certain regime of the parameters.

RESOLVENT PROFILE

$$|G_{xy}(z)|^2 \sim T_{x-y}^{\text{det}} := \int \frac{e^{ip(x-y)}}{D(Wp)^2 + \eta} \, dp \approx \frac{C(E)}{N\eta} + \frac{1}{W\sqrt{\eta}} e^{-\sqrt{\frac{\eta}{D}} \frac{|x-y|}{W}}$$

Expect: Diffusion on scale W until the localization length is achieved, $\sqrt{t}W \leq \ell = W^2$, i.e. up to time $t \leq W^2$. (Note $t \sim 1/\eta$).

The profile is visible only if $\eta \geqslant (W/N)^2$. Corresponds to time $t \leqslant (N/W)^2$, i.e. before $\sqrt{t}W$ reaches N. **Theorem** [E-Knowles-Yau-Yin, '12] Let $N \leqslant W^{5/4}$, $\eta \geqslant (W/N)^2$. Let \mathbb{E}_x = expectation in the entries in the x-column of H. Then

$$\mathbb{E}_{x}|G_{xy}|^{2} = T_{x-y}^{\det} + \delta_{xy}|m|^{2} + O\left(\frac{1}{N\eta} + \frac{\delta_{xy}}{W\sqrt{\eta}}\right)$$
$$\sum_{z} s_{xz}|G_{zy}|^{2} = T_{x-y}^{\det} + O\left(\frac{1}{N\eta}\right)$$

All bounds hold with high probability and up to W^{ε} corrections.

Related results: (i) Exponential decay of the analogue of $\mathbb{E}G_{xy}$ and localization in a related lattice SUSY σ -model. [Disertori-Spencer]

(ii) Diffusion up to $t \le W^{\frac{1}{3}}$ [E-Knowles]: $t = W^{\frac{1}{3}}T$, $x = W\sqrt{W^{\frac{1}{3}}}X$

$$\varrho(t,x) := \mathbb{E} \left| \langle x | e^{-itH/2} | 0 \rangle \right|^2 \sim \int_0^1 d\lambda \, \frac{4}{\pi} \frac{\lambda^2}{\sqrt{1-\lambda^2}} G(\lambda T, X)$$

IMPROVED BOUND ON DELOCALIZATION

Corollary [E-Knowles-Yau-Yin, '12] For $N \leqslant W^{5/4}$, most eigenfunctions are delocalized $(\ell \sim N)$.

Previous results

- Delocalization for $N \leqslant W^{7/6}$ (via Chebyshev) [E-Knowles, 2010]
- Localization for $N \geqslant W^8$ (with loc length $\ell \leqslant W^8$) [Schenker]

New method: Self-consistent equation for $\mathbb{E}|G_{xy}|^2$.

Previously: Self-consistent equation for TrG and G_{xx} .

DERIVATION OF THE SELF-CONSISTENT EQUATION

Let \mathbb{E}_a , $Q_a = I - \mathbb{E}_a$ projections. Define

$$T_{xy} := \sum_{a} s_{xa} |G_{ay}|^2 = \sum_{a} s_{xa} \mathbb{E}_a |G_{ay}|^2 + \mathcal{E}_{xy}, \qquad \mathcal{E}_{xy} := \sum_{a} s_{xa} Q_a |G_{ay}|^2$$

Perform \mathbb{E}_a by expanding G_{ay} in a:

$$G_{ay} = G_{aa} \sum_{p} h_{ap} G_{py}^{(a)}, \qquad G^{(a)}(z) = (H^{(a)} - z)^{-1}$$
 (minor)

$$\mathbb{E}_{a}|G_{ay}|^{2} = |m|^{2} \Big[\delta_{ay} + \sum_{p} s_{ap} |G_{py}^{(a)}|^{2} + \dots \Big] \approx |m|^{2} \Big[\delta_{ay} + T_{ay} + \dots \Big]$$

Expansion is in the small parameter $\Lambda := \max_{xy} |G_{xy} - \delta_{xy} m|$.

$$T = |m|^2 [S + ST] + \mathcal{E} \implies T = \frac{|m|^2 S}{1 - |m|^2 S} + \frac{|m|^2}{1 - |m|^2 S} \mathcal{E}$$

For the error, we need $\mathcal{E} = O(\Lambda^4)$ and the spectral gap of S.

FLUCTUATION AVERAGING THEOREM

We need to control the fluctuation term

$$\mathcal{E}_{xy} = \sum_{a} s_{xa} Q_a |G_{ay}|^2 = \sum_{a} s_{xa} (1 - \mathbb{E}_a) |G_{ay}|^2$$

in terms of $\Lambda = \max_{xy} |G_{xy} - \delta_{xy} m_{sc}|$.

Naive size of \mathcal{E}_{xy} is $O(\Lambda^2)$

But $\mathbb{E}\mathcal{E}=0$; need to exploit a cancellation, like CLT.

Main difficulty: the correlation between $|G_{ay}|^2$ and $|G_{a'y}|^2$ is not sufficiently small for any CLT type argument to work.

We use a detailed expansion for the high moments and identify correlation structure hierarchically.

We will need to control general monomials.

Theorem [Special cases] (x, y, z, ... are fixed, "external") blue = naive size, red = gain:

blue = naive size, red = gain:
$$\sum_{a} s_{xa}G_{ay} \prec \Lambda^{1+1}, \qquad \sum_{a} s_{xa}Q_{a}G_{ay} \prec \Lambda^{1+2}$$

$$\sum_{a} s_{xa}G_{ya}G_{az} \prec \Lambda^{2+1}, \qquad \sum_{a} s_{xa}G_{ya}G_{ay}^* \prec \Lambda^{2+0}$$

$$\sum_{a} s_{xa}Q_{a}\left[G_{ya}G_{az}\right] \prec \Lambda^{2+1}, \qquad \sum_{a} s_{xa}Q_{a}\left[G_{ya}G_{ay}^*\right] \prec \Lambda^{2+2}$$

$$\sum_{a} s_{xa}s_{yb}G_{za}G_{ab}G_{bu}^* \prec \Lambda^{3+1}, \qquad \sum_{ab} s_{xa}s_{yb}Q_{a}\left[G_{za}G_{ab}G_{bu}^*\right] \prec \Lambda^{3+1},$$

$$\sum_{ab} s_{xa}s_{yb}Q_{b}\left[G_{za}G_{ab}G_{bu}^*\right] \prec \Lambda^{3+2}, \qquad \sum_{ab} s_{xa}s_{yb}Q_{a}Q_{b}\left[G_{za}G_{ab}G_{bu}^*\right] \prec \Lambda^{3+4},$$

$$\sum_{ab} s_{xa}s_{yb}Q_{a}Q_{b}\left[G_{za}G_{ab}G_{bu}^*\right] \prec \Lambda^{3+4},$$

"Good" indices: that connect GG or G^*G^* :

$$G_{x\mathbf{a}}G_{\mathbf{a}y}$$
 or $G_{x\mathbf{a}}^*G_{\mathbf{a}y}^*$

Gains come either from Q's or from "good" indices. Sometimes not from both (a good index with Q may be useless)

SUMMARY

- Diffusion resolvent profile for $N \leqslant W^{5/4}$, $\eta \geqslant (W/N)^2$
- Delocalization for $N \leq W^{5/4}$.
- General fluctuation averaging mechanism for the Green function.

MAJOR OPEN QUESTIONS:

- Improve $N \leqslant W^{5/4}$ to $N \leqslant W^2$ for delocalization.
- Control resolvent for $\eta \ll W^{-1}$.
- RMT universality (w/o Gaussian component) in the deloc. regime.

TIME EVOLUTION: DIFFUSION

Our previous result considered the quantum evolution directly.

Let $x, y \in \Lambda_N = [0, L]^d \subset \mathbb{Z}^d$ label H with $\mathbb{E} H_{xy} = 0$ and variance

$$\sigma_{xy}^2 := \mathbb{E} |H_{xy}|^2 = \frac{1}{W^d} f\left(\frac{|x - y|_L}{W}\right)$$

s.t. $\int f = 1$ and covariance $\Sigma_{ij} := \int_{\mathbb{R}^d} x_i x_j f(x) dx$.

Define the quantum transition probability from 0 to \boldsymbol{x} in time t by

$$\varrho(t,x) := \mathbb{E} |\langle x|e^{-itH/2}|0\rangle|^2,$$

clearly $\varrho(t,\cdot)$ is a probability density on Λ . Goal: $t\gg 1$.

This is like controlling $\mathbb{E}G_{0x}(z)G_{x0}^*(z')$, for $z=E+i\eta$, $z'=E'+i\eta$ with small $\eta \sim 1/t$. Note the expectation and star.

Theorem (Quantum diffusion) [E-Knowles, 2010] Fix $0 < \kappa < 1/3$. For any $T_0 > 0$ and any testfunction $\varphi \in C_b(\mathbb{R}^d)$ we have

$$\lim_{W \to \infty} \sum_{x \in \Lambda_N} \rho(W^{d\kappa}T, x) \, \varphi\left(\frac{x}{W^{1 + d\kappa/2}}\right) = \int_{\mathbb{R}^d} dX \, L(T, X) \, \varphi(X) \,, \quad (2)$$

uniformly in $N \geqslant W^{1+d/6}$ and $0 \leqslant T \leqslant T_0$. Here

$$L(T,X) := \int_0^1 d\lambda \, \frac{4}{\pi} \frac{\lambda^2}{\sqrt{1-\lambda^2}} G(\lambda T, X) \tag{3}$$

is a superposition of heat kernels

$$G(T,X) := \frac{1}{(2\pi T)^{d/2} \sqrt{\det \Sigma}} e^{-\frac{1}{2T}X \cdot \Sigma^{-1}X},$$

 $\lambda \in [0,1]$ in (3) represents the fraction of the macroscopic time T that the particle spends moving effectively; the remaining fraction $1-\lambda$ of T represents the time the particle "wastes" in backtracking. Backtracking is due to a self-energy renormalization.

Method: Chebyshev + classification of Feynman diagrams.

LOCAL SEMICIRCLE LAW

Limiting density of the eigenvalues is $\varrho_{sc}(x) = \frac{1}{2\pi}\sqrt{(4-x^2)_+}$

$$m(z) = \frac{1}{N} \operatorname{Tr} \frac{1}{H-z} = \frac{1}{N} \operatorname{Tr} G(z), \qquad m_{sc}(z) = \int \frac{\varrho_{sc}(x)}{x-z} \mathrm{d}x$$

FACT: Suppose for some fixed $\eta > 0$ and any E we have

$$|m(z) - m_{sc}(z)| \leq \varepsilon, \qquad z = E + i\eta$$

then the local density in spectral windows of size η about E is given by $\varrho_{sc}(E)$ up to a precision ε . We work with G and m.

Theorem [E-Yau-Yin, 2011]. Suppose the rescaled matrix elements $H_{xy}/\sqrt{s_{xy}}$ have subexp decay. Then the local semicircle law holds up to $\eta = {\rm Im}z \gg W^{-1}$:

$$|m(z)-m_{sc}(z)|\lesssim \frac{1}{W\eta}, \qquad |G_{xy}(z)-\delta_{xy}m_{sc}(z)|\lesssim \frac{1}{(W\eta)^{1/2}}$$

(with very high probability and modulo log corrections)

Related results

- Global semicircle law for the expectation $\mathbb{E}m$, uniform in η , error W^{-2} , (d=3, Gaussian, with a special covariance). [Disertori-Pinsker-Spencer, 2002] SUSY
- Local semicircle law for the expectation $\mathbb{E}m$ at $\eta=W^{-0.99}$ (in d=1, Bernoulli distr) [Sodin, 2011] Chebysev-expansion

For $\mathbb{E}m$ one needs to compute $\mathbb{E}\mathsf{Tr}G$ and not $\mathbb{E}\mathsf{Tr}G\mathsf{Tr}G^*$ or $\mathbb{E}G_{xx}$

FROM RESOLVENT TO LOWER BOUND ON LOC. LENGTH

Corollary (of local sc law) [E-Yau-Yin]: $\ell \geqslant W^1$. (nontrivial!)

Proof: $|u_{\alpha}(x)|^2 \le \eta \operatorname{Im} G_{xx} \le C\eta$ if $\eta \ge W^{-1}$

For $\ell\gg W^1$ without control for small η , we need offdiag estimate. Lemma Suppose for some L and for some $W^{-1}\ll\eta\ll1$ we have

$$\sup_{E} \max_{x \neq y} |G_{xy}(E+i\eta)|^2 \lesssim \frac{1}{\eta L}.$$

Then the localization length of most eigenfunctions is at least L.

Proof: Fix x = 0. By Ward identity and local semicircle law

$$\operatorname{Im} m_{sc} \leq \operatorname{Im} G_{00} = \sum_{y} \eta |G_{0y}|^2 \lesssim \frac{1}{L} |\operatorname{Supp}(G_{0x})|$$

Thus $\eta |G_{0y}|^2$ has a spread of at least size L. By spectral theorem this would contradict a strong localization on scale $\ell \ll L$:

$$|u_{\alpha}(0)u_{\alpha}(y)| \lesssim e^{-|y|/\ell}$$

Theorem [General version, informally]

Denote $a = (a_1, a_2, \dots a_s)$ the set of summation labels Let $\mathcal{F} \subset \{1, 2, \dots s\}$ be the set of (indices of) Q-labels.

$$\mathsf{AV}_{a_1,a_2,\dots a_s}\Big(\prod_{j\in F}Q_{a_j}\Big)$$
 (monomial of $G_{a_ia_j}$ and $G^*_{a_ia_j}$) $\prec \mathsf{\Lambda}^{d+|\mathcal{F}|+|\mathcal{G}|}$

where

$$d:=\# \Big\{ \text{offdiag. factors} \Big\} \quad \text{(``naive size'')}, \quad \mathcal{G}:= \text{set of ``good'' indices}$$

Definition of "good" : an index $j \in \mathcal{G}$ if

either
$$j \in \mathcal{F}$$
 and $|\nu_i - \nu_i^*| \neq 2$, or $j \notin \mathcal{F}$ and $\nu_i \neq \nu_i^*$.

(ν_i is the number a_i 's appearing in any G, ν_i^* is the same for G^*).

Gain from \mathcal{F} : Averaging the fluctuation (like CLT, but more subtle)

Gain from \mathcal{G} : It has a stable self-consistent equation

Mechanism of the gain from \mathcal{F} (presence of Q's)

Decomposition into a sum of hierarchically classified terms in the spirit of "size versus independence."

$$\mathbb{E} \left| \sum_{a} Q_{a} |G_{ax}|^{2} \right|^{2} = \mathbb{E} \sum_{ab} Q_{a} |G_{ax}|^{2} |Q_{b}| |G_{bx}|^{2}$$

If G_{bx} were independent of a (meaning, of the a-th column of H) then this would be zero, since for any general X and a-indep $Y^{(a)}$

$$\mathbb{E}\left[Q_a(X)\cdot Y^{(a)}\right] = \mathbb{E}\left[Q_a(XY^{(a)})\right] = \mathbb{E}P_aQ_a(XY^{(a)}) = 0$$

Decomposition formula:

$$G_{bx} = \underbrace{G_{bx}^{(a)}}_{\text{indep of a}} + \underbrace{\frac{G_{ba}G_{ax}}{G_{aa}}}_{\text{one order smaller}}$$

Such decomposition is done recursively for all resolvent factors up to high order independence wrt. all summation indices:

$$G = G^{(abc)} + G^{(ab)}G + G^{(a)}G^{(c)} + \dots + G^{(a)}GG + \dots + GGGG$$

Mechanism of the gain from G ("good" index)

The quantity $R_{xy} = \sum_a s_{xa} G_{ya} G_{ay}$ satisfies a similar self-consistent equation as $T_{xy} = \sum_a s_{xa} G_{ya} G_{ay}^*$ did before, but

$$R = m^{2}[S + SR] + \mathcal{E}, \qquad T = |m|^{2}[S + ST] + \mathcal{E}$$

$$\Longrightarrow \qquad R = \frac{m^{2}S}{1 - m^{2}S} \mathcal{E}, \qquad T = \frac{m^{2}S}{1 - |m|^{2}S} \mathcal{E}.$$

 $\mathrm{Im} m = \mathrm{Im} m_{sc}(z) > 0$, $|m|^2 = 1 - O(\eta)$ and S has a small gap, so

$$\left\| \frac{1}{1 - m^2 S} \right\| \le \frac{1}{\text{Im} m} \le C, \qquad \left\| \frac{1}{1 - |m|^2 S} \right|_{1^{\perp}} \le \frac{1}{\eta + \left(\frac{W}{N}\right)^2}$$

The complete proof is a complex expansion (bookkept by Feynman graphs) to exploit both effects up to a very high order precision.