Delocalization for Random Band Matrices

László Erdős
Ludwig-Maximilians-Universität, Munich, Germany

Rutgers, May 6, 2012

107th Statistical Physics Meeting

Joint with Antti Knowles, Horng-Tzer Yau and Jun Yin

INTRODUCTION

Universality conjecture for disordered quantum systems (vague):

There are two regimes, depending on disorder strength:
i) Strong disorder: localization and Poisson local spectral statistics
ii) Weak disorder: delocalization and random matrix (GUE, GOE) local statistics (RMT).

Two well studied models

- Random Schrödinger operators: represented by a narrow band matrix with nonzero elements at finite distance from the diagonal (E.g. $d=1,-\Delta+\lambda V$ is tridiagonal).

- Wigner random matrices: $H=\left(H_{x y}\right)_{x, y \in \Lambda}$, with $H_{x y}$ centered i.i.d. up to symmetry constraint $\left(H=H^{*}\right)$.

Mean-field hopping mechanism with random quantum transition rates. No spatial structure (dim d is irrelevant), even for sparse matrices.

Intermediate model: random band matrices (RBM) with band width W in a d-dimensional box $\wedge \subset \mathbb{Z}^{d} . H_{x y}$ are independent, centered, with variance

$$
s_{x y}=\mathbb{E}\left|H_{x y}\right|^{2}, \quad \sum_{y} s_{x y}=1 \quad \forall y
$$

such that $s_{x y}=0$ for $|x-y| \geqslant W$. E.g. $(W=3, N=7)$:

$$
H=\left(\begin{array}{lllllll}
* & * & * & 0 & 0 & 0 & 0 \\
* & * & * & * & 0 & 0 & 0 \\
* & * & * & * & * & 0 & 0 \\
0 & * & * & * & * & * & 0 \\
0 & 0 & * & * & * & * & * \\
0 & 0 & 0 & * & * & * & * \\
0 & 0 & 0 & 0 & * & * & *
\end{array}\right),
$$

$(W=O(1) \sim$ Random Schrödinger; $W=\wedge, d=1$ is Wigner)
More generally, $s_{x y}=\frac{1}{W} f\left(\frac{|x-y|}{W}\right), \int f=1$. Nontriv. spatial structure

ANDERSON TRANSITION FOR BAND MATRICES

$W=O(1)[\sim$ Random Schrödinger]

In $d=1$ always localized [Goldsheid-Molchanov-Pastur]
In $d>1$ large energy and band edge localization [Fröhlich-Spencer...] Poisson statistics [Minami, Klopp-Germinet, ...]
$W=|\wedge|, d=1$ [Wigner ensemble]

Always delocalized [E-Schlein-Yau]
RMT statistics [Dyson-Mehta-Gaudin, E-Schlein-Yau-Yin]

Varying $1 \ll W \ll|\wedge|=N$ can test the transition even in $d=1$.

RBM's interpolate between random Schrödinger and Wigner.

PHYSICAL PICTURE FOR BAND MATRICES

The system exhibits metal-insulator transition:

- In $d=1$ the localization length is $\ell \sim W^{2}$.

Complete delocalization and RMT statistics for $N \ll W^{2}$ Poisson statistics for $N \gg W^{2}$

- In $d=2$ the localization length is ℓ is exponential in W
- In $d \geqslant 3$ the localization length is $\ell \sim L$ (system size, $L^{d}=N$) Complete delocalization, RMT.

Based on SUSY Fyodorov-Mirlin (91) in $d=1$ and on RG scaling arguments by Abrahams et. al (79) in $d=2$ See: Tom Spencer's overview article/lecture notes on band matrices.

SELF-CONSISTENT EQUATION

$|G|^{2}$ is self-averaging:

$$
T_{x y}=\sum_{a} s_{x a}\left|G_{a y}\right|^{2} \approx \mathbb{E}_{x}\left|G_{x y}\right|^{2}
$$

and satisfies the (matrix) equation (up to some errors)

$$
T \approx|m|^{2}[S+S T], \quad m(z):=\frac{1}{2 \pi} \int \frac{\sqrt{4-x^{2}}}{x-z} \mathrm{~d} x
$$

Solution

$$
T=\frac{|m|^{2} S}{1-|m|^{2} S}
$$

It was first obtained as the ladder diagram in diagrammatic perturbation theory [Spencer]

$$
\begin{equation*}
\mathbb{E}\left|G_{x y}\right|^{2} \sim \int \frac{S(p)}{1-|m|^{2} S(p)} e^{i p(x-y)} \mathrm{d} p \tag{1}
\end{equation*}
$$

Taylor expansion

$$
\begin{gathered}
S(p):=\sum_{k} e^{i k p} s_{0 k} \approx \widehat{f}(W p) \approx 1-D_{0}(W p)^{2}+\ldots \\
|m(z)|=1-\alpha \eta+O\left(\eta^{2}\right), \quad \alpha=\alpha(E)=\frac{2}{\sqrt{4-E^{2}}}
\end{gathered}
$$

thus the small p behaviour is

$$
\frac{S(p)}{1-|m|^{2} S(p)} \approx \frac{1}{D_{0}(W p)^{2}+\alpha \eta}
$$

Main result informally: Rigorous proof of (1) and the self-averaging property in a certain regime of the parameters.

RESOLVENT PROFILE

$$
\begin{aligned}
& \left|G_{x y}(z)\right|^{2} \sim T_{x-y}^{\mathrm{det}}:=\int \frac{e^{i p(x-y)}}{D(W p)^{2}+\eta} \mathrm{d} p \approx \frac{C(E)}{N \eta}+\frac{1}{W \sqrt{\eta}} e^{\left.-\sqrt{\frac{\eta}{D}} \right\rvert\, \frac{|x-y|}{W}} \\
& \frac{1}{\mathrm{~W} \sqrt{\eta}} \\
& \frac{1}{\mathrm{~N} \eta} \xrightarrow[l]{ }-\frac{\mathrm{w}}{\sqrt{\eta}} \\
& \mathrm{x}-\mathrm{y} \\
&
\end{aligned}
$$

Expect: Diffusion on scale W until the localization length is achieved, $\sqrt{t} W \leqslant \ell=W^{2}$, i.e. up to time $t \leqslant W^{2}$. (Note $t \sim 1 / \eta$).

The profile is visible only if $\eta \geqslant(W / N)^{2}$.
Corresponds to time $t \leqslant(N / W)^{2}$, i.e. before $\sqrt{t} W$ reaches N.

Theorem [E-Knowles-Yau-Yin, '12] Let $N \leqslant W^{5 / 4}, \eta \geqslant(W / N)^{2}$. Let $\mathbb{E}_{x}=$ expectation in the entries in the x-column of H. Then

$$
\begin{aligned}
\mathbb{E}_{x}\left|G_{x y}\right|^{2} & =T_{x-y}^{\mathrm{det}}+\delta_{x y}|m|^{2}+O\left(\frac{1}{N \eta}+\frac{\delta_{x y}}{W \sqrt{\eta}}\right) \\
\sum_{z} s_{x z}\left|G_{z y}\right|^{2} & =T_{x-y}^{\mathrm{det}}+O\left(\frac{1}{N \eta}\right)
\end{aligned}
$$

All bounds hold with high probability and up to W^{ε} corrections.

Related results: (i) Exponential decay of the analogue of $\mathbb{E} G_{x y}$ and localization in a related lattice SUSY σ-model. [Disertori-Spencer]
(ii) Diffusion up to $t \leq W^{\frac{1}{3}}$ [E-Knowles]: $t=W^{\frac{1}{3}} T, x=W \sqrt{W^{\frac{1}{3}}} X$

$$
\left.\varrho(t, x):=\mathbb{E}\left|\langle x| e^{-i t H / 2}\right| 0\right\rangle\left.\right|^{2} \sim \int_{0}^{1} \mathrm{~d} \lambda \frac{4}{\pi} \frac{\lambda^{2}}{\sqrt{1-\lambda^{2}}} G(\lambda T, X)
$$

IMPROVED BOUND ON DELOCALIZATION

Corollary [E-Knowles-Yau-Yin, '12]
For $N \leqslant W^{5 / 4}$, most eigenfunctions are delocalized $(\ell \sim N)$.

Previous results

- Delocalization for $N \leqslant W^{7 / 6}$ (via Chebyshev) [E-Knowles, 2010]
- Localization for $N \geqslant W^{8}$ (with loc length $\ell \leqslant W^{8}$) [Schenker]

New method: Self-consistent equation for $\mathbb{E}\left|G_{x y}\right|^{2}$. Previously: Self-consistent equation for $\operatorname{Tr} G$ and $G_{x x}$.

DERIVATION OF THE SELF-CONSISTENT EQUATION

Let $\mathbb{E}_{a}, Q_{a}=I-\mathbb{E}_{a}$ projections. Define

$$
T_{x y}:=\sum_{a} s_{x a}\left|G_{a y}\right|^{2}=\sum_{a} s_{x a} \mathbb{E}_{a}\left|G_{a y}\right|^{2}+\mathcal{E}_{x y}, \quad \mathcal{E}_{x y}:=\sum_{a} s_{x a} Q_{a}\left|G_{a y}\right|^{2}
$$

Perform \mathbb{E}_{a} by expanding $G_{a y}$ in a :

$$
\begin{gathered}
G_{a y}=G_{a a} \sum_{p} h_{a p} G_{p y}^{(a)}, \quad G^{(a)}(z)=\left(H^{(a)}-z\right)^{-1} \quad \text { (minor) } \\
\mathbb{E}_{a}\left|G_{a y}\right|^{2}=|m|^{2}\left[\delta_{a y}+\sum_{p} s_{a p}\left|G_{p y}^{(a)}\right|^{2}+\ldots\right] \approx|m|^{2}\left[\delta_{a y}+T_{a y}+\ldots\right]
\end{gathered}
$$

Expansion is in the small parameter $\wedge:=\max _{x y}\left|G_{x y}-\delta_{x y} m\right|$.

$$
T=|m|^{2}[S+S T]+\mathcal{E} \quad \Longrightarrow \quad T=\frac{|m|^{2} S}{1-|m|^{2} S}+\frac{|m|^{2}}{1-|m|^{2} S} \mathcal{E}
$$

For the error, we need $\mathcal{E}=O\left(\wedge^{4}\right)$ and the spectral gap of S.

FLUCTUATION AVERAGING THEOREM

We need to control the fluctuation term

$$
\mathcal{E}_{x y}=\sum_{a} s_{x a} Q_{a}\left|G_{a y}\right|^{2}=\sum_{a} s_{x a}\left(1-\mathbb{E}_{a}\right)\left|G_{a y}\right|^{2}
$$

in terms of $\Lambda=\max _{x y}\left|G_{x y}-\delta_{x y} m_{s c}\right|$.
Naive size of $\mathcal{E}_{x y}$ is $O\left(\Lambda^{2}\right)$
But $\mathbb{E} \mathcal{E}=0$; need to exploit a cancellation, like CLT.
Main difficulty: the correlation between $\left|G_{a y}\right|^{2}$ and $\left|G_{a^{\prime} y}\right|^{2}$ is not sufficiently small for any CLT type argument to work.

We use a detailed expansion for the high moments and identify correlation structure hierarchically.

We will need to control general monomials.

Theorem [Special cases] (x, y, z, \ldots are fixed, "external")
blue $=$ naive size, red $=$ gain:

$$
\begin{aligned}
\sum_{a} s_{x a} G_{a y} & \prec \Lambda^{1+1}, & & \sum_{a} s_{x a} Q_{a} G_{a y} \prec \Lambda^{1+2} \\
\sum_{a} s_{x a} G_{y a} G_{a z} & \prec \Lambda^{2+1}, & & \sum_{a} s_{x a} G_{y a} G_{a y}^{*} \prec \Lambda^{2+0} \\
\sum_{a} s_{x a} Q_{a}\left[G_{y a} G_{a z}\right] & \prec \Lambda^{2+1}, & & \sum_{a} s_{x a} Q_{a}\left[G_{y a} G_{a y}^{*}\right] \prec \Lambda^{2+2} \\
\sum_{a b} s_{x a} s_{y b} G_{z a} G_{a b} G_{b u}^{*} & \prec \Lambda^{3+1}, & & \sum_{a b} s_{x a} s_{y b} Q_{a}\left[G_{z a} G_{a b} G_{b u}^{*}\right] \prec \Lambda^{3+1}, \\
\sum_{a b} s_{x a} s_{y b} Q_{b}\left[G_{z a} G_{a b} G_{b u}^{*}\right] & \prec \Lambda^{3+2}, & & \sum_{a b} s_{x a} s_{y b} Q_{a} Q_{b}\left[G_{z a} G_{a b} G_{b u}^{*}\right] \prec \Lambda^{3+4},
\end{aligned}
$$

"Good" indices: that connect $G G$ or $G^{*} G^{*}$:

$$
G_{x a} G_{a y} \quad \text { or } \quad G_{x a}^{*} G_{a y}^{*}
$$

Gains come either from Q 's or from "good" indices. Sometimes not from both (a good index with Q may be useless)

SUMMARY

- Diffusion resolvent profile for $N \leqslant W^{5 / 4}, \eta \geqslant(W / N)^{2}$
- Delocalization for $N \leqslant W^{5 / 4}$.
- General fluctuation averaging mechanism for the Green function.

MAJOR OPEN QUESTIONS:

- Improve $N \leqslant W^{5 / 4}$ to $N \leqslant W^{2}$ for delocalization.
- Control resolvent for $\eta \ll W^{-1}$.
- RMT universality (w/o Gaussian component) in the deloc. regime.

TIME EVOLUTION: DIFFUSION

Our previous result considered the quantum evolution directly.

Let $x, y \in \wedge_{N}=[0, L]^{d} \subset \mathbb{Z}^{d}$ label H with $\mathbb{E} H_{x y}=0$ and variance

$$
\sigma_{x y}^{2}:=\mathbb{E}\left|H_{x y}\right|^{2}=\frac{1}{W^{d}} f\left(\frac{|x-y|_{L}}{W}\right)
$$

s.t. $\int f=1$ and covariance $\Sigma_{i j}:=\int_{\mathbb{R}^{d}} x_{i} x_{j} f(x) \mathrm{d} x$.

Define the quantum transition probability from 0 to x in time t by

$$
\left.\varrho(t, x):=\mathbb{E}\left|\langle x| e^{-i t H / 2}\right| 0\right\rangle\left.\right|^{2},
$$

clearly $\varrho(t, \cdot)$ is a probability density on \wedge. Goal: $t \gg 1$.

This is like controlling $\mathbb{E} G_{0 x}(z) G_{x 0}^{*}\left(z^{\prime}\right)$, for $z=E+i \eta, z^{\prime}=E^{\prime}+i \eta$ with small $\eta \sim 1 / t$. Note the expectation and star.

Theorem (Quantum diffusion) [E-Knowles, 2010] Fix $0<\kappa<1 / 3$. For any $T_{0}>0$ and any testfunction $\varphi \in C_{b}\left(\mathbb{R}^{d}\right)$ we have

$$
\begin{equation*}
\lim _{W \rightarrow \infty} \sum_{x \in \wedge_{N}} \rho\left(W^{d \kappa} T, x\right) \varphi\left(\frac{x}{W^{1+d \kappa / 2}}\right)=\int_{\mathbb{R}^{d}} \mathrm{~d} X L(T, X) \varphi(X) \tag{2}
\end{equation*}
$$

uniformly in $N \geqslant W^{1+d / 6}$ and $0 \leqslant T \leqslant T_{0}$. Here

$$
\begin{equation*}
L(T, X):=\int_{0}^{1} \mathrm{~d} \lambda \frac{4}{\pi} \frac{\lambda^{2}}{\sqrt{1-\lambda^{2}}} G(\lambda T, X) \tag{3}
\end{equation*}
$$

is a superposition of heat kernels

$$
G(T, X):=\frac{1}{(2 \pi T)^{d / 2} \sqrt{\operatorname{det} \Sigma}} e^{-\frac{1}{2 T} X \cdot \Sigma^{-1} X}
$$

$\lambda \in[0,1]$ in (3) represents the fraction of the macroscopic time T that the particle spends moving effectively; the remaining fraction $1-\lambda$ of T represents the time the particle "wastes" in backtracking. Backtracking is due to a self-energy renormalization.

Method: Chebyshev + classification of Feynman diagrams.

LOCAL SEMICIRCLE LAW

Limiting density of the eigenvalues is $\varrho_{s c}(x)=\frac{1}{2 \pi} \sqrt{\left(4-x^{2}\right)_{+}}$

$$
m(z)=\frac{1}{N} \operatorname{Tr} \frac{1}{H-z}=\frac{1}{N} \operatorname{Tr} G(z), \quad m_{s c}(z)=\int \frac{\varrho_{s c}(x)}{x-z} \mathrm{~d} x
$$

FACT: Suppose for some fixed $\eta>0$ and any E we have

$$
\left|m(z)-m_{s c}(z)\right| \leqslant \varepsilon, \quad z=E+i \eta
$$

then the local density in spectral windows of size η about E is given by $\varrho_{s c}(E)$ up to a precision ε. We work with G and m.

Theorem [E-Yau-Yin, 2011]. Suppose the rescaled matrix elements $H_{x y} / \sqrt{s_{x y}}$ have subexp decay. Then the local semicircle law holds up to $\eta=\operatorname{Im} z \gg W^{-1}$:

$$
\left|m(z)-m_{s c}(z)\right| \lesssim \frac{1}{W \eta}, \quad\left|G_{x y}(z)-\delta_{x y} m_{s c}(z)\right| \lesssim \frac{1}{(W \eta)^{1 / 2}}
$$

(with very high probability and modulo log corrections)

Related results

- Global semicircle law for the expectation $\mathbb{E} m$, uniform in η, error W^{-2}, ($d=3$, Gaussian, with a special covariance). [Disertori-Pinsker-Spencer, 2002] SUSY
- Local semicircle law for the expectation $\mathbb{E} m$ at $\eta=W^{-0.99}$ (in $d=1$, Bernoulli distr) [Sodin, 2011] Chebysev-expansion

For $\mathbb{E} m$ one needs to compute $\mathbb{E} \operatorname{Tr} G$ and not $\mathbb{E} \operatorname{Tr} G \operatorname{Tr} G^{*}$ or $\mathbb{E} G_{x x}$

FROM RESOLVENT TO LOWER BOUND ON LOC. LENGTH

Corollary (of local sc law) [E-Yau-Yin]: $\ell \geqslant W^{1}$. (nontrivial!)
Proof:

$$
\left|u_{\alpha}(x)\right|^{2} \leq \eta \operatorname{Im} G_{x x} \leq C \eta
$$

$$
\text { if } \eta \geq W^{-1}
$$

For $\ell \gg W^{1}$ without control for small η, we need offdiag estimate. Lemma Suppose for some L and for some $W^{-1} \ll \eta \ll 1$ we have

$$
\sup _{E} \max _{x \neq y}\left|G_{x y}(E+i \eta)\right|^{2} \lesssim \frac{1}{\eta L}
$$

Then the localization length of most eigenfunctions is at least L.
Proof: Fix $x=0$. By Ward identity and local semicircle law

$$
\operatorname{Im} m_{s c} \leq \operatorname{Im} G_{00}=\sum_{y} \eta\left|G_{0 y}\right|^{2} \lesssim \frac{1}{L}\left|\operatorname{Supp}\left(G_{0 x}\right)\right|
$$

Thus $\eta\left|G_{0 y}\right|^{2}$ has a spread of at least size L. By spectral theorem this would contradict a strong localization on scale $\ell \ll L$:

$$
\left|u_{\alpha}(0) u_{\alpha}(y)\right| \lesssim e^{-|y| / \ell}
$$

Theorem [General version, informally]
Denote $\mathbf{a}=\left(a_{1}, a_{2}, \ldots a_{s}\right)$ the set of summation labels Let $\mathcal{F} \subset\{1,2, \ldots s\}$ be the set of (indices of) Q-labels.

$$
\left.\mathrm{A} \vee_{a_{1}, a_{2}, \ldots a_{s}}\left(\prod_{j \in F} Q_{a_{j}}\right) \text { (monomial of } G_{a_{i} a_{j}} \text { and } G_{a_{i} a_{j}}^{*}\right) \prec \Lambda^{d+|\mathcal{F}|+|\mathcal{G}|}
$$

where
$d:=\#\{$ offdiag. factors $\}$ ("naive size"), $\mathcal{G}:=$ set of "good" indices

Definition of "good" : an index $j \in \mathcal{G}$ if
either $j \in \mathcal{F}$ and $\left|\nu_{i}-\nu_{i}^{*}\right| \neq 2, \quad$ or $\quad j \notin \mathcal{F}$ and $\nu_{i} \neq \nu_{i}^{*}$.
(ν_{i} is the number a_{i} 's appearing in any G, ν_{i}^{*} is the same for G^{*}).

Gain from \mathcal{F} : Averaging the fluctuation (like CLT, but more subtle)
Gain from \mathcal{G} : It has a stable self-consistent equation

Mechanism of the gain from \mathcal{F} (presence of Q^{\prime})

Decomposition into a sum of hierarchically classified terms in the spirit of "size versus independence."

$$
\left.\left.\mathbb{E}\left|\sum_{a} Q_{a}\right| G_{a x}\right|^{2}\right|^{2}=\mathbb{E} \sum_{a b} Q_{a}\left|G_{a x}\right|^{2} Q_{b}\left|G_{b x}\right|^{2}
$$

If $G_{b x}$ were independent of a (meaning, of the a-th column of H) then this would be zero, since for any general X and a-indep $Y^{(a)}$

$$
\mathbb{E}\left[Q_{a}(X) \cdot Y^{(a)}\right]=\mathbb{E}\left[Q_{a}\left(X Y^{(a)}\right)\right]=\mathbb{E} P_{a} Q_{a}\left(X Y^{(a)}\right)=0
$$

Decomposition formula: $\quad G_{b x}=\underbrace{G_{b x}^{(a)}}_{\text {indep of a }}+\underbrace{\frac{G_{b a} G_{a x}}{G_{a a}}}_{\text {one order smaller }}$
Such decomposition is done recursively for all resolvent factors up to high order independence wrt. all summation indices:

$$
G=G^{(a b c)}+G^{(a b)} G+G^{(a)} G^{(c)}+\ldots+G^{(a)} G G+\ldots+G G G G
$$

Mechanism of the gain from \mathcal{G} ("good" index)

The quantity $R_{x y}=\sum_{a} s_{x a} G_{y a} G_{a y}$ satisfies a similar self-consistent equation as $T_{x y}=\sum_{a} s_{x a} G_{y a} G_{a y}^{*}$ did before, but

$$
\begin{aligned}
R=m^{2}[S+S R]+\mathcal{E}, & & T=|m|^{2}[S+S T]+\mathcal{E} \\
R=\frac{m^{2} S}{1-m^{2} S} \mathcal{E}, & T & =\frac{m^{2} S}{1-|m|^{2} S} \mathcal{E} .
\end{aligned}
$$

$\operatorname{Im} m=\operatorname{Im} m_{s c}(z)>0,|m|^{2}=1-O(\eta)$ and S has a small gap, so

$$
\left\|\frac{1}{1-m^{2} S}\right\| \leqslant \frac{1}{\operatorname{Im} m} \leqslant C, \quad\left\|\left.\frac{1}{1-|m|^{2} S}\right|_{1^{\perp}}\right\| \leqslant \frac{1}{\eta+\left(\frac{W}{N}\right)^{2}}
$$

The complete proof is a complex expansion (bookkept by Feynman graphs) to exploit both effects up to a very high order precision.

