THE PAST \& THE FUTURE IN THE PRESENT

JIM CRUTCHFIELD
COMPLEXITY SCIENCES CENTER
PHYSICS DEPARTMENT
UNIVERSITY OF CALIFORNIA AT DAVIS

$107^{\text {TH }}$ STATISTICAL MECHANICS CONFERENCE RUTGERS UNIVERSITY

MAY 6-8, 2012

JOINT WORK WITH CHRIS ELLISON (UC DAVIS) \& JOHN MAHONEY (UC MERCED)

COPYRIGHT © 2009 JAMES P. CRUTCHFIELD

INFORMATION-THEORETIC ANALYSIS of Complex Systems

- Chain: $\overleftrightarrow{X}=\overleftarrow{X}_{t} \vec{X}_{t}$
- Past:

$$
\overleftarrow{X}_{t}=\ldots X_{t-3} X_{t-2} X_{t-1}
$$

- Future: $\vec{X}_{t}=X_{t} X_{t+1} X_{t+2} \ldots$
- L-Block: $X_{t}^{L}=X_{t} X_{t+1} \ldots X_{t+L-1}$
- Process: $\operatorname{Pr}(\overleftrightarrow{X})=\operatorname{Pr}\left(\ldots X_{-2} X_{-1} X_{0} X_{1} X_{2} \ldots\right)$

LAPLACE'S SPACETIME CRYSTAL

All moments, past, present, and future, always have existed, always will exist. The Tralfamadorians can look at all the different moments just the way we can look at a stretch of the Rocky Mountains, for instance. They can see how permanent all the moments are, and they can look at any moment that interests them. It is just an illusion we have here on Earth that one moment follows another one, like beads on a string, and that once a moment is gone it is gone forever.

Kurt Vonnegut, Slaughterhouse-Five (1968) p. 34.

INFORMATION-THEORETIC ANALYSIS of Complex Systems ...

- Process $\operatorname{Pr}(\overleftarrow{X}, \vec{X})$ is a communication channel from the past \overleftarrow{X} to the future \vec{X} :

INFORMATION-THEORETIC ANALYSIS of Complex Systems ...

- Process $\operatorname{Pr}(\overleftarrow{X}, \vec{X})$ is a communication channel from the past \overleftarrow{X} to the future \vec{X} :

INFORMATION-THEORETIC ANALYSIS of Complex Systems ...

- Process $\operatorname{Pr}(\overleftarrow{X}, \vec{X})$ is a communication channel from the past \overleftarrow{X} to the future \vec{X} :

Information Rate ${ }^{h_{\mu}}$

> Channel
> Capacity C

- Channel Utilization: Excess Entropy

$$
\mathbf{E}=I[\overleftarrow{X} ; \vec{X}]
$$

ROADMAP TO INFORMATION(S)

Block Entropy

$$
H(L)=H\left[\operatorname{Pr}\left(X^{L}\right)\right]
$$

J. P. Crutchfield and D. P. Feldman, "Regularities Unseen, Randomness Observed: Levels of Entropy Convergence", CHAOS 13:1 (2003) 25-54.

Is INFORMATION THEORY SUFFICIENT?

- No!
- Measurements = process states? Wrong!
- Hidden processes
- No direct measure of structure

COMPUTATIONAL MECHANICS: What are the hidden states?

- Group all histories that give same prediction:

$$
\epsilon(\overleftarrow{x})=\left\{\overleftarrow{x}^{\prime}: \operatorname{Pr}(\vec{X} \mid \overleftarrow{x})=\operatorname{Pr}\left(\vec{X} \mid \overleftarrow{x}^{\prime}\right)\right\}
$$

- Equivalence relation: $\overleftarrow{x} \sim \overleftarrow{x}^{\prime}$
- Equivalence classes are process's causal states:

$$
\mathcal{S}=\operatorname{Pr}(\overleftarrow{X}, \vec{X}) / \sim
$$

- ε-Machine: Optimal, minimal, unique predictor.
J. P. Crutchfield, K. Young, "Inferring Statistical Complexity", Physical Review Letters 63 (1989) 105-108.

COMPUTATIONAL MECHANICS

- ε-Machine:

$$
M=\left\{\mathcal{S},\left\{T^{(x)}: x \in \mathcal{A}\right\}\right\}
$$

- Dynamic:

$$
\begin{array}{r}
T_{\sigma, \sigma^{\prime}}^{(x)}=\operatorname{Pr}\left(\sigma^{\prime} \mid \sigma, x\right) \\
\sigma, \sigma^{\prime} \in \mathcal{S}
\end{array}
$$

State State

VARIETIES OF

ε-MACHINE

Denumerable Causal States

Fractal

Continuous
J. P. Crutchfield, "Calculi of Emergence: Computation, Dynamics, and Induction", Physica D 75 (1994) 11-54.

Kinds OF

INTRINSIC COMPUTING

- Directly from ε-Machine:
- Stored information (Statistical complexity):

$$
C_{\mu}=-\sum_{\sigma \in \mathcal{S}} \operatorname{Pr}(\sigma) \log _{2} \operatorname{Pr}(\sigma)
$$

- Information production (Entropy rate):

$$
h_{\mu}=-\sum_{\sigma \in \mathcal{S}} \operatorname{Pr}(\sigma) \sum_{\sigma^{\prime} \in \mathcal{S}, s \in \mathcal{A}} \operatorname{Pr}\left(\sigma \rightarrow_{s} \sigma^{\prime}\right) \log _{2} \operatorname{Pr}\left(\sigma \rightarrow_{s} \sigma^{\prime}\right)
$$

Prediction V. Modeling

- Hidden: State information via measurement.
- So, how accessible is information?
- How do measurements reveal internal states?
- Quantitative version:
- Prediction $\sim \mathbf{E}$
- Modeling $\sim C_{\mu}$
- Can get h_{μ} and C_{μ} directly from ε-Machine.
- How to calculate \mathbf{E} from ε-Machine?

DIRECTIONAL COMPUTATIONAL MECHANICS

- Previously, $\overleftrightarrow{X}=\ldots X_{-2} X_{-1} X_{0} X_{1} X_{2} \ldots$

Scan direction

- "Forward" ε-Machine: M^{+}
- Equivalence Relation $\vec{x} \sim^{+} \vec{x}^{\prime}: \epsilon^{+}(\vec{x})$
- Forward Causal States: \mathcal{S}^{+}
- Measures:
- Entropy Rate: h_{μ}^{+}
- Statistical Complexity: C_{μ}^{+}

DIRECTIONAL COMPUTATIONAL MECHANICS

- Now, reverse ε-Machine:

$$
\stackrel{\leftrightarrow}{X}=\ldots \underbrace{X_{-2} X_{-1} X_{0} X_{1} X_{2}}_{\text {Scan direction }} \ldots
$$

- Retrodictive equivalence relation: $\vec{x} \sim^{-} \vec{x}^{\prime}$

$$
\epsilon^{-}(\vec{x})=\left\{\vec{x}^{\prime}: \operatorname{Pr}(\overleftarrow{X} \mid \vec{x})=\operatorname{Pr}\left(\overleftarrow{X} \mid \vec{x}^{\prime}\right)\right\}
$$

- Retrodictive causal states: $\mathcal{S}^{-}=\operatorname{Pr}(\overleftarrow{X}, \vec{X}) / \sim^{-}$
- Reverse ε-Machine: M^{-}
- Retrodictive entropy rate: h_{μ}^{-}
- Reverse statistical complexity: $C_{\mu}^{-} \equiv H\left[\mathcal{S}^{-}\right]$

DIRECTIONAL

COMPUTATIONAL MECHANICS

- In which time direction most predictable?
- Excess entropy:
- Stored information?
J. P. Crutchfield, "Semantics and Thermodynamics", in Nonlinear Modeling and Forecasting, M. Casdagli and S. Eubank, editors, Addison-Wesley, Reading, Massachusetts (1992) 317-359.

DIRECTIONAL

COMPUTATIONAL MECHANICS

- In which time direction most predictable?

Neither! $h_{\mu}^{-}=h_{\mu}^{+}$

- Excess entropy:
- Stored information?
J. P. Crutchfield, "Semantics and Thermodynamics", in Nonlinear Modeling and Forecasting, M. Casdagli and S. Eubank, editors, Addison-Wesley, Reading, Massachusetts (1992) 317-359.

DIRECTIONAL

COMPUTATIONAL MECHANICS

- In which time direction most predictable?

Neither! $h_{\mu}^{-}=h_{\mu}^{+}$

- Excess entropy:

$$
\mathbf{E} \equiv I[\overleftarrow{X} ; \vec{X}]=I[\vec{X} ; \overleftarrow{X}]
$$

- Stored information?
J. P. Crutchfield, "Semantics and Thermodynamics", in Nonlinear Modeling and Forecasting, M. Casdagli and S. Eubank, editors, Addison-Wesley, Reading, Massachusetts (1992) 317-359.

DIRECTIONAL

COMPUTATIONAL MECHANICS

- In which time direction most predictable?

Neither! $h_{\mu}^{-}=h_{\mu}^{+}$

- Excess entropy:

$$
\mathbf{E} \equiv I[\overleftarrow{X} ; \vec{X}]=I[\vec{X} ; \overleftarrow{X}]
$$

- Stored information?

$$
C_{\mu}^{-} \neq C_{\mu}^{+}
$$

J. P. Crutchfield, "Semantics and Thermodynamics", in Nonlinear Modeling and Forecasting, M. Casdagli and S. Eubank, editors, Addison-Wesley, Reading, Massachusetts (1992) 317-359.

DIRECTIONAL

COMPUTATIONAL MECHANICS

- Random Insertion Process

Forward ε-machine

DIRECTIONAL

COMPUTATIONAL MECHANICS

- Random Insertion Process

Forward ε-machine
Reverse ε-machine

DIRECTIONAL

COMPUTATIONAL MECHANICS

- Random Insertion Process

Forward ε-machine

Reverse ε-machine

DIRECTIONAL COMPUTATIONAL MECHANICS

- At Most Two 0s + Isolated $1 \Rightarrow$ at most One 0

Forward ε-machine

DIRECTIONAL
 COMPUTATIONAL MECHANICS

- At Most Two 0s + Isolated $1 \Rightarrow$ at most One 0

Reverse ε-machine: Countably infinite!

DIRECTIONAL COMPUTATIONAL MECHANICS

- Theorem:

$$
\mathbf{E}=I\left[\mathcal{S}^{+} ; \mathcal{S}^{-}\right]
$$

- Effective transmission capacity of channel between forward and reverse processes.
- Time agnostic representation: The BiMachine.
J. P. Crutchfield, C. J. Ellison, and J. R. Mahoney, "Time's Barbed Arrow: Irreversibility, Crypticity, and Stored Information", Physical Review Letters 103:9 (2009) 094101.

INFORMATION Accessibility

- How hidden is a hidden Process?
- Crypticity:

$$
\chi=C_{\mu} C_{\mu}-\underset{\uparrow}{\mathbf{E}}
$$

Stored
Apparent
Information Information

SUMMARY

Information stored in the present

 is notthat shared between the past and the future.

Cautiona羂乌ALES

- Cryptic Processes: Excess entropy can be arbitrarily small ($\mathbf{E} \approx 0$).
- Even for very structured ($C_{\mu} \gg 1$) processes.
- Care when applying informational analyses to complex systems; esp. mutual information.
- Best to focus on causal architecture, then calculate what you need.

SO IT GOES.

We went to the New York World's Fair, saw what the past had been like, according to Ford Motor Car Company and Walt Disney, saw what the future would be like, according to General Motors.

And I asked myself about the present: how wide it was, how deep it was, how much was mine to keep.

> Kurt Vonnegut (1922-2007) Slaughterhouse-Five (1968) p. 23.

THANKS!

http: / / csc.ucdavis.edu/ ~chaos/

- J. P. Crutchfield, C. J. Ellison, and J. R. Mahoney, "Time's Barbed Arrow: Irreversibility, Crypticity, and Stored Information", Physical Review Letters 103:9 (2009) 094101.
- J. R. Mahoney, C. J. Ellison, and J. P. Crutchfield, "Information Accessibility and Cryptic Processes", Journal of Physics A: Math. Theo. 42 (2009) 362002.
- C. J. Ellison, J. R. Mahoney, and J. P. Crutchfield, "Prediction, Retrodiction, and the Amount of Information Stored in the Present", Journal of Statistical Physics 137:6 (2009) 1005-1034.
- J. Mahoney, C. J. Ellison, and J. P. Crutchfield, "Information Accessibility and Cryptic Processes: Linear Combinations of Causal States", arxiv.org:0906.5099 [cond-mat].
- J. P. Crutchfield, C. J. Ellison, J. R. Mahoney, and R. G. James, "Synchronization and Control in Intrinsic and Designed Computation: An Information-Theoretic Analysis of Competing Models of Stochastic Computation", CHAOS 20:3 (2010) 037105.

Extras

TIME'S BARBED ARROW: THE PAST \& THE FUTURE IN THE PRESENT

JIM CRUTCHFIELD
 COMPLEXITY SCIENCES CENTER PHYSICS DEPARTMENT UNIVERSITY OF CALIFORNIA AT DAVIS
 THEORETICAL NEUROSCIENCE SEMINAR CENTER FOR NEUROSCIENCE UNIVERSITY OF CALIFORNIA AT DAVIS
 18 FEBRUARY 2011

```
JOINT WORK WITH CHRIS ELLISON (UC DAVIS PHYSICS) & JOHN MAHONEY (UC MERCED)
```


THE PAST AND THE FUTURE IN THE PRESENT:

DIRECTIONAL COMPUTATIONAL MECHANICS

> JIM CRUTCHFIELD
> COMPLEXITY SCIENCES CENTER PHYSICS DEPARTMENT
> UNIVERSITY OF CALIFORNIA AT DAVIS
> WORKSHOP ON
> MODELING DYNAMICAL SYSTEMS UNIVERSITY OF CALIFORNIA AT DAVIS
> 13 MARCH 2010

JOINT WORK WITH CHRIS ELLISON (UCD PHYSICS) \& JOHN MAHONEY (UCD PHYSICS)

TIME'S BARBED ARROW: THE PAST \& THE FUTURE IN THE PRESENT

JIM CRUTCHFIELD
COMPLEXITY SCIENCES CENTER
PHYSICS DEPARTMENT UNIVERSITY OF CALIFORNIA AT DAVIS

REDWOOD CENTER FOR THEORETICAL NEUROSCIENCE UNIVERSITY OF CALIFORNIA AT BERKELEY

8 OCTOBER 2010

THE PAST \& THE FUTURE IN THE PRESENT

JIM CRUTCHFIELD
COMPLEXITY SCIENCES CENTER
PHYSICS DEPARTMENT
UNIVERSITY OF CALIFORNIA AT DAVIS

COLLOQUIUM
SANTA FE INSTITUTE
SANTA FE, NEW MEXICO

10 MARCH 2011

JOINT WORK WITH CHRIS ELLISON (UC DAVIS) \& JOHN MAHONEY (UC MERCED)

The LeARNing CHANNEL

N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, "Geometry from a Time Series", Physical Review Letters 45 (1980) 712. J. P. Crutchfield, B. S. McNamara, "Equations of Motion from a Data Series", Complex Systems 1 (1987) 417-452.

COMPUTATIONAL MECHANICS

- Theorem (Causal Shielding):

$$
\operatorname{Pr}(\overleftarrow{X}, \vec{X} \mid \mathcal{S})=\operatorname{Pr}(\overleftarrow{X} \mid \mathcal{S}) \operatorname{Pr}(\vec{X} \mid \mathcal{S})
$$

- Theorem (Optimal Prediction):

$$
\operatorname{Pr}(\vec{X} \mid \mathcal{S})=\operatorname{Pr}(\vec{X} \mid \overleftarrow{X})
$$

- Corollary (Capture All Shared Information):

$$
I[\mathcal{S} ; \vec{X}]=\mathbf{E}
$$

(Prescient models)

- Theorem: ε-Machine is smallest prescient model

$$
C_{\mu} \equiv H[\mathcal{S}] \leq H[\widehat{\mathcal{R}}]
$$

COMPUTATIONAL MECHANICS

- A prediction: Map from a past to possible futures

$$
\operatorname{Pr}(\vec{X} \mid \overleftarrow{x})
$$

- A good predictor $\widehat{\mathcal{R}}$ captures all of the predictable information between past and future:

$$
\mathbf{E}=I[\widehat{\mathcal{R}} ; \vec{X}]
$$

- Modeling:
- Make good predictions, but also
- Represent underlying mechanisms
J. P. Crutchfield, K. Young, "Inferring Statistical Complexity", Physical Review Letters 63 (1989) 105-108.

FOcus PROBLEM: E Versus C_{μ}

- Can get h_{μ} and C_{μ} directly from ε-Machine.
- How to calculate \mathbf{E} from ε-Machine?
- Return to the larger issues at the beginning (relating modeling and prediction), but with a new "invariant": information accessibility.

FOcus PROBLEM: E Versus C_{μ}

- Known:
- Range- R spin systems:

$$
C_{\mu}=\mathbf{E}+R h_{\mu}
$$

J. P. Crutchfield and D. P. Feldman,
"Statistical Complexity of Simple One-Dimensional Spin Systems",
Physical Review E 55:2 (1997) R1239-R1243.

- Theorem: $\mathbf{E} \leq C_{\mu}$
C. R. Shalizi and J. P. Crutchfield, "Computational Mechanics: Pattern and Prediction, Structure and Simplicity", J. Stat. Phys. 104 (2001) 817-879.

DIRECTIONAL COMPUTATIONAL MECHANICS

- Temporal asymmetry:

$$
C_{\mu}^{-} \neq C_{\mu}^{+}
$$

- Causal Irreversibility:

$$
\begin{aligned}
\Xi & \equiv C_{\mu}^{+}-C_{\mu}^{-} \\
& =H\left[\mathcal{S}^{+} \mid \mathcal{S}^{-}\right]-H\left[\mathcal{S}^{-} \mid \mathcal{S}^{+}\right]
\end{aligned}
$$

- Time-symmetric component (\mathbf{E}) cancels!
J. P. Crutchfield, "Semantics and Thermodynamics", in Nonlinear Modeling and Forecasting, M. Casdagli and S. Eubank, editors, Addison-Wesley, Reading, Massachusetts (1992) 317-359.

DIRECTIONAL

COMPUTATIONAL MECHANICS

- Corollary:

$$
C_{\mu}^{ \pm}=\mathbf{E}+H\left[\mathcal{S}^{+} \mid \mathcal{S}^{-}\right]+H\left[\mathcal{S}^{-} \mid \mathcal{S}^{+}\right]
$$

- Crypticity:

$$
\chi \equiv H\left[\mathcal{S}^{+} \mid \mathcal{S}^{-}\right]+H\left[\mathcal{S}^{-} \mid \mathcal{S}^{+}\right]
$$

Distance between measurements \& model:

$$
d(X, Y)=H[X \mid Y]+H[Y \mid X]
$$

Degree to which internal information is hidden.
Information inaccessibility!

INFORMATION DIAGRAM

INFORMATION DIAGRAM

INFORMATION DIAGRAM

INFORMATION DIAGRAM

INFORMATION DIAGRAM

INFORMATION DIAGRAM

INFORMATION DIAGRAM

INFORMATION DIAGRAM

INFORMATION DIAGRAM

INFORMATION DIAGRAM

ε-MACHINE

INFORMATION DIAGRAM

ε-MACHINE INFORMATION DIAGRAM
ε-MACHINE INFORMATION DIAGRAM

ε-MACHINE INFORMATION DIAGRAM

ε-MACHINE

INFORMATION DIAGRAM

FORWARD-REVERSE \mathcal{E}-MACHINE INFORMATION DIAGRAM

FORWARD-REVERSE \mathcal{E}-MACHINE INFORMATION DIAGRAM

FORWARD-REVERSE ε-MACHINE INFORMATION DIAGRAM

FORWARD-REVERSE ε-MACHINE INFORMATION DIAGRAM

FORWARD-REVERSE ε-MACHINE INFORMATION DIAGRAM

