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Information-Theoretic Analysis 
of Complex Systems

• Chain:
• Past:
• Future:
• L-Block:

• Process: 

←
Xt= . . . Xt−3Xt−2Xt−1
→
Xt= XtXt+1Xt+2 . . .

XL
t = XtXt+1 . . . Xt+L−1

←→
X =

←−
X t
−→
X t

Pr(
↔
X) = Pr(. . . X−2X−1X0X1X2 . . .)
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Laplace’s Spacetime Crystal

...
All moments, past, present, and future, always have 
existed, always will exist. The Tralfamadorians can look 
at all the different moments just the way we can look at 
a stretch of the Rocky Mountains, for instance. They 
can see how permanent all the moments are, and they 
can look at any moment that interests them. It is just an 
illusion we have here on Earth that one moment 
follows another one, like beads on a string, and that 
once a moment is gone it is gone forever.

Kurt Vonnegut, Slaughterhouse-Five (1968) p. 34.
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• Process                 is a communication channel 
from the past      to the future    :

Pr(
←−
X,
−→
X )
←−
X

−→
X

Past Future

Channel

Present

Information-Theoretic Analysis 
of Complex Systems ...
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• Process                 is a communication channel 
from the past      to the future    :

Pr(
←−
X,
−→
X )
←−
X

−→
X

Past Future

Channel

Present

Information-Theoretic Analysis 
of Complex Systems ...

Capacity C

Information
Rate hµ

• Channel Utilization: Excess Entropy

E = I[
←−
X ;
−→
X ]
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Roadmap to
Information(s)

0 L

H(L)

µ+ h  L
E

E

H(L)

0

T

h  Lµ

E

J. P. Crutchfield and D. P. Feldman, “Regularities Unseen, Randomness Observed: Levels of Entropy Convergence”,
       CHAOS 13:1 (2003) 25-54.

Block Entropy
H(L) = H[Pr(XL)]
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Is Information Theory 
Sufficient?

• No!

• Measurements = process states? Wrong!
• Hidden processes

• No direct measure of structure
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• Group all histories that give same prediction:

• Equivalence relation:
• Equivalence classes are process’s causal states:

• ε-Machine: Optimal, minimal, unique predictor.

�(←−x ) = {←−x � : Pr(
−→
X |←−x ) = Pr(

−→
X |←−x �)}

←−x ∼ ←−x �

S = Pr(
←−
X,
−→
X )/ ∼

Computational Mechanics:
What are the hidden states?

J. P. Crutchfield, K. Young, “Inferring Statistical Complexity”, Physical Review Letters 63 (1989) 105-108.
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• ε-Machine:

• Dynamic:
T (x)

σ,σ� = Pr(σ�|σ, x)

Computational 
Mechanics

State State

Transient
States

Recurrent
States

BA

D

C

1| 2
3

1| 3
4

0| 1
4

0| 1
3

0| 1
2

1| 1
2

1|1

M =
�

S, {T (x) : x ∈ A}
�

σ,σ� ∈ S
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Varieties of
ε-Machine

Denumerable
Causal States

Fractal

Continuous
J. P. Crutchfield, “Calculi of Emergence: Computation, 
Dynamics, and Induction”, Physica D 75 (1994) 11-54.
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Kinds of
Intrinsic Computing

• Directly from ε-Machine:
• Stored information  (Statistical complexity):

• Information production (Entropy rate):

Cµ = −
�

σ∈S

Pr(σ) log2 Pr(σ)

hµ = −
�

σ∈S

Pr(σ)
�

σ�∈S,s∈A
Pr(σ →s σ�) log2 Pr(σ →s σ�)
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Prediction V. Modeling

• Hidden: State information via measurement.
• So, how accessible is information?
• How do measurements reveal internal states?
• Quantitative version:

• Prediction ~ 
• Modeling ~ 

• Can get      and      directly from ε-Machine.
• How to calculate     from ε-Machine?

E

Cµ

Cµhµ

E
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Directional
Computational Mechanics

• Previously,

• “Forward” ε-Machine:
• Equivalence Relation                 :

• Forward Causal States:

• Measures:

• Entropy Rate:

• Statistical Complexity:

S+

−→x ∼+ −→x �

M+

C+
µ

h+
µ

↔
X= . . . X−2X−1X0X1X2 . . .

Scan direction

�+(−→x )
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• Now, reverse ε-Machine:

• Retrodictive equivalence relation: 

Directional
Computational Mechanics

−→x ∼− −→x �

�−(−→x ) = {−→x � : Pr(
←−
X |−→x ) = Pr(

←−
X |−→x �)}

Scan direction

↔
X= . . . X−2X−1X0X1X2 . . .

• Retrodictive causal states:
• Reverse ε-Machine:
• Retrodictive entropy rate:
• Reverse statistical complexity: 

S− = Pr(
←−
X,
−→
X )/ ∼−

M−

h−µ
C
−
µ ≡ H[S−]
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Directional
Computational Mechanics

• In which time direction most predictable?

• Excess entropy:

• Stored information?

J. P. Crutchfield, “Semantics and Thermodynamics”, in Nonlinear Modeling and Forecasting, M. Casdagli and S. 
Eubank, editors, Addison-Wesley, Reading, Massachusetts (1992) 317-359.
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Directional
Computational Mechanics
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Directional
Computational Mechanics

• Random Insertion Process

Forward ε-machine

15Monday, May 14, 2012



Directional
Computational Mechanics

• Random Insertion Process

Forward ε-machine Reverse ε-machine
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Directional
Computational Mechanics

• Random Insertion Process

Forward ε-machine Reverse ε-machine
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Directional
Computational Mechanics

• At Most Two 0s + Isolated 1 ⇒ at most One 0

Forward ε-machine
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Directional
Computational Mechanics

• At Most Two 0s + Isolated 1 ⇒ at most One 0
Reverse ε-machine: Countably infinite!
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• Theorem:

• Effective transmission capacity of channel 
between forward and reverse processes.

• Time agnostic representation: The BiMachine.

E = I[S+;S−]

Directional
Computational Mechanics

J. P. Crutchfield, C. J. Ellison, and J. R. Mahoney, “Time's Barbed Arrow: Irreversibility, 
Crypticity, and Stored Information”, Physical Review Letters 103:9 (2009) 094101.
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Information 
Accessibility

• How hidden is a hidden Process?
• Crypticity:

χ = Cµ −E

Stored
Information

Apparent
Information
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Summary

Information stored in the present
is not

that shared between the past and the future.
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• Cryptic Processes: Excess 
entropy can be arbitrarily 
small (          ).

• Even for very structured 
(            ) processes.Cµ � 1

E ≈ 0

IC

• Care when applying informational analyses to 
complex systems; esp. mutual information.

• Best to focus on causal architecture, then 
calculate what you need.

Cautionary
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So it goes.

...
We went to the New York World’s Fair, saw what the 
past had been like, according to Ford Motor Car 
Company and Walt Disney, saw what the future would 
be like, according to General Motors.

And I asked myself about the present: how wide it was, 
how deep it was, how much was mine to keep.

Kurt Vonnegut (1922–2007)
Slaughterhouse-Five (1968) p. 23.
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• J. P. Crutchfield, C. J. Ellison, and J. R. Mahoney, “Time's Barbed Arrow: 
Irreversibility, Crypticity, and Stored Information”, Physical Review Letters 103:9 
(2009) 094101.

• J. R. Mahoney, C. J. Ellison, and J. P. Crutchfield, “Information Accessibility and 
Cryptic Processes”, Journal of Physics A: Math. Theo. 42 (2009) 362002.

• C. J. Ellison, J. R. Mahoney, and J. P. Crutchfield, “Prediction, Retrodiction, and 
the Amount of Information Stored in the Present”, Journal of Statistical Physics 
137:6 (2009) 1005-1034.

• J. Mahoney, C. J. Ellison, and J. P. Crutchfield, “Information Accessibility and 
Cryptic Processes: Linear Combinations of Causal States”, arxiv.org:0906.5099 
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• J. P. Crutchfield, C. J. Ellison, J. R. Mahoney, and R. G. James, “Synchronization 
and Control in Intrinsic and Designed Computation: An Information-Theoretic 
Analysis of Competing Models of Stochastic Computation”, CHAOS 20:3 (2010) 
037105.

Thanks!
http://csc.ucdavis.edu/~chaos/
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Extras
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The Learning Channel
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1 0
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ModellerSystem
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ProcessInstrument
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γ β
1
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0

00

0

1

1 1
1

N.H. Packard, J.P. Crutchfield, J.D. Farmer, R.S. Shaw, “Geometry from a Time Series”, Physical Review Letters 45 (1980) 712.
J. P. Crutchfield, B. S. McNamara, “Equations of Motion from a Data Series”, Complex Systems 1 (1987) 417-452.
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• Theorem (Causal Shielding):

• Theorem (Optimal Prediction):

• Corollary (Capture All Shared Information):

• Theorem: ε-Machine is smallest prescient model

Pr(
←−
X,
−→
X |S) = Pr(

←−
X |S)Pr(

−→
X |S)

Pr(
−→
X |S) = Pr(

−→
X |←−X )

I[S;
−→
X ] = E

Computational 
Mechanics

Cµ ≡ H[S] ≤ H[ �R]

(Prescient models)
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• A prediction: Map from a past to possible futures

• A good predictor     captures all of the predictable 
information between past and future:

• Modeling:
• Make good predictions, but also
• Represent underlying mechanisms

Pr(
−→
X |←−x )

Computational 
Mechanics

J. P. Crutchfield, K. Young, “Inferring Statistical Complexity”, Physical Review Letters 63 (1989) 105-108.

�R

E = I[ �R;
−→
X ]
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• Can get      and      directly from ε-Machine.
• How to calculate     from ε-Machine?

• Return to the larger issues at the beginning 
(relating modeling and prediction), but with a 
new “invariant”: information accessibility.

Cµhµ

E

Focus Problem:
VersusE Cµ
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Focus Problem:
Versus

• Known:
• Range-     spin systems:

Cµ = E + Rhµ

J. P. Crutchfield and D. P. Feldman,
“Statistical Complexity of Simple One-Dimensional Spin Systems”,
Physical Review E 55:2 (1997) R1239-R1243.

R

E Cµ

• Theorem: E ≤ Cµ

C. R. Shalizi and J. P. Crutchfield, “Computational Mechanics: 
Pattern and Prediction, Structure and Simplicity”, J. Stat. Phys. 
104 (2001) 817-879.
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• Temporal asymmetry:

• Causal Irreversibility:

• Time-symmetric component (    ) cancels!

J. P. Crutchfield, “Semantics and Thermodynamics”, in Nonlinear Modeling and Forecasting, 
M. Casdagli and S. Eubank, editors, Addison-Wesley, Reading, Massachusetts (1992) 317-359.

Directional
Computational Mechanics

C−µ �= C+
µ

E

Ξ ≡ C
+
µ − C

−
µ

= H[S+|S−]−H[S−|S+]
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• Crypticity:

        Distance between measurements & model:

Degree to which internal information is hidden.
Information inaccessibility!

Directional
Computational Mechanics

χ ≡ H[S+|S−] + H[S−|S+]

d(X, Y ) = H[X|Y ] + H[Y |X]

C
±
µ = E + H[S+|S−] + H[S−|S+]

• Corollary:
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Information Diagram
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Information Diagram

H(X)
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Information Diagram

H(X)

36Monday, May 14, 2012



Information Diagram

H(X)H(Y )

36Monday, May 14, 2012



Information Diagram
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H(X, Y )
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Information Diagram
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Information Diagram

H(X)H(Y ) H(X|Y )H(Y |X) I(X;Y )

H(X, Y )
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Information Diagram

H(X)H(Y ) H(X|Y )H(Y |X) I(X;Y )

H(X, Y )

d(X;Y )
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ε-machine
information Diagram
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ε-machine
information Diagram
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X ]

H[S] = Cµ

H[
−→
X |←−X ]

H[
←−
X |S] H[

−→
X |S]

E =

I[S;−→X ]

37Monday, May 14, 2012



ε-machine
information Diagram
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−→
X ]H[

←−
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−→
X |←−X ]

H[
←−
X |S] H[S|−→X ] H[

−→
X |S]

E =
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  Forward-Reverse ε-machine
information Diagram
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  Forward-Reverse ε-machine
information Diagram

Crypticity
χ+
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  Forward-Reverse ε-machine
information Diagram

Crypticity
χ+

χ−
Crypticity
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  Forward-Reverse ε-machine
information Diagram

Crypticity
χ+

χ−
Crypticity

Info Production
H[
−→
X |S+] = hµL
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