MONTE CARLO METHODS FOR ESTIMATING INTERFACIAL FREE ENERGIES AND LINE TENSIONS

Kurt Binder¹⁾, Benjamin Block¹⁾, Subir Das²⁾, Peter Virnau¹⁾, and David Winter¹⁾,

 Institut f
ür Physik, Johannes Gutenberg-Universit
ät D-55099 Mainz, Staudinger Weg 7, Germany

²⁾ Theoretical Science Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064 India

Abstract

The surface free energy of (spherical) droplets (bubbles) is obtained by a thermodynamic method for three models (Ising model, binary symmetric Lennard Jones mixture, simple Lennard-Jones fluid). It is shown that for the symmetric models the surface free energy $\gamma(R)$ for the symmetric models behaves as $\gamma(\infty)/\gamma(R) = 1 + (\ell/R)^2$, R being the droplet radius and ℓ a microscopic length. For the LJ fluid, an additional (small) Tolman correction is found. From a corresponding analysis of wall-attached droplets, using $\gamma(R)$ and independently obtained contact angles as an input, estimates for the line tension are inferred. For the binary LJ mixture, which shows a 1st order wetting transition, it is found that the line tension is negative for large contact angles θ but becomes positive for $\theta \approx 30^{\circ}$, in good agreement with density functional predictions.