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We do not have a molecular-scale stat-mech theory of
liquid water.
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Basic distinctions between water and simple liquids
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is independent of T .
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You have to start some place . . .

Model Multiplicity
BNS/ST2 (4-6)

MCY (3-4)
TIPXP (5-10)
SPC (5-10)

CFM/Polarization . . . (3-5)
TTMX-R/F (3-5)

AIMD (density functionals, pseudo-potentials . . . ) > 10
liquid water (the real thing) 1

1 What should we require of a theory of liquid water?
Stat-mech — water is not a van der Waals liquid.
Applicability to each physical force-field model but one
explanation at the end.

2 What is it going to cost?
The theory will be essentially numerical.
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Molecular quasi-chemical theory

βµ(ex) = − ln p(0)(nλ = 0)

λ λ

+ ln
〈
eβε|nλ = 0

〉
+ ln p(nλ = 0)

Design goal: these contributions should be evaluated from
physical data, i.e., from simulation of the physical system.
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network-liquid theorem

βµ(ex) = − ln p(0)(nλ = 0)

λ λ

+ ln
〈
eβε|nλ = 0

〉
+ ln p(nλ = 0)

If the interactions vanish beyond λ-range (in the outer shell),
then

βµ(ex) = − ln p(0) (nλ = 0) + ln p (nλ = 0) .
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When interactions don’t vanish in the outer shell:

βµ(ex) = − ln p(0)(nλ = 0)

λ λ

+ ln
〈
eβε|nλ = 0

〉
+ ln p(nλ = 0)

ln
〈

eβε |nλ = 0
〉
≈ β 〈ε |nλ = 0〉 + β2

〈
δε2 |nλ = 0

〉
/2 ,

a Gaussian (normal distribution) model. This will be ok when
λ ∼ ∞ because then the outer-shell interactions are numerous
and weakly correlated.
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For liquid water, select the necessary (nλ = 0)
sub-ensemble

T = 300K,
p = 1 atm,
(TIP3P)
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See:1
1J. K. Shah, D. Asthagiri, L. R. Pratt, M. E. Paulaitis, J. Chem. Phys. 127,

144508 (2007): “Balancing Local Order and Long-Ranged Interactions
in the Molecular Theory of Liquid Water”
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What did you expect?

‘Water Revisited’1

(ST2)

1F. H. Stillinger Science 209, 451-457 (1980)
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Explain!

The ‘Water Revisited’
distribution is P

(
εj
)
. As

a distribution, it does not
have a useful N →∞
limit.
P (ε) is much simpler,
does not have an
obvious signature of an
H-bond energy, is broad,
but a Gaussian model is
valid.

ε =
N∑

j=1

εj
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Free energy predictions as they depend on
conditioning radius λ
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Free energy predictions as they depend on
conditioning radius λ
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The strongly conditioned distributions P (ε |nλ = 0)
are slightly sub-Gaussian:
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The free energy comes solely from the outer-shell
contribution if λ ≈ 0.33 nm.

βµ(ex) = − ln p(0)(nλ = 0)

λ λ

+ ln
〈
eβε|nλ = 0

〉
+ ln p(nλ = 0)

For that value the network-liquid contributions balance:

− ln p(0)
W (nλ = 0) + ln pW (nλ = 0) ≈ 0 .

So, for the free energy

µ
(ex)
W ≈ 〈ε |nλ = 0〉 + β

〈
δε2 |nλ = 0

〉
/2 .
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Conclusion for network-liquid models:

βµ(ex) = − ln p(0)(nλ = 0)

λ λ

+ ln
〈
eβε|nλ = 0

〉
+ ln p(nλ = 0)

If you get inner-shell occupancies pW (nλ) right, and you
get hydrophobic things p(0)

W (nλ) right, you do not get the
free energy of liquid water right. Making/breaking of
discrete H-bonds is unsatisfactory as a sole explanation for
the free energy of liquid water.
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Explain!

Interactions at outer-shell range are strong. Big,
well-recognized contributions come from outer shells.

The number of outer-shell partners of a water molecule is
large enough that a Gaussian distribution of
binding-energy distributions can be satisfactory.

The biggest difficulty is that these binding energy
distributions are very broad.
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Ab initio Molecular Dynamics

P(0) (ε|nλ = 0) = eβ(ε−µ
(ex))P (ε|nλ = 0)
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FIG. 1. Distribution of interaction energies P (0)(ε) for a dis-
tinguished water molecule in the center of an empty cavity
of radius λ. The system comprises 32 water molecules. The
red triangles and blue circles are from the NV E simulation.
The solid line defines the Gaussian model for the respective
distribution. The black circles are from the NV T simula-
tion. The λ = 3.3 Å curve has been shifted downwards by 3
units for clarity. Observe that the thermodynamically impor-
tant (Eq. 5) low-energy tail is well-characterized. Further, for
λ = 3.3 Å, both wings of the distribution are tempered and
the Gaussian model becomes a good approximation.

tion that is most important for calculating µex
outer (Eq. 5).

Figure 1 shows that the agreement between
P (0)(ε|nλ = 0) obtained in the NV E and NV T
simulations is satisfactory, although there is somewhat
more scatter in the low-energy region for results with
NV T . This just reflects the consequence of having
an order of magnitude less data (16k versus 110k) in
constructing the binding energy distribution.

As Eq. 3 shows, x0 is an important element in obtain-
ing µex. But for large λ, the probability of finding no
water molecules around the distinguished water is low.
In these cases, one can model {xn} within a maximum
entropy approach [20, 21] using the robust estimates of
mean and variance of {xn}. However, the underlying as-
sumption of Gaussian occupancy statistics may not be
valid, especially for large λ [14, 22]. Here, we use the
maximum entropy approach and also Bayes’s theorem in
the form [22]

xn = pn+1
p(1|n+ 1)∑
m≥1 pmp(1|m)

, (7)

where p(1|m) is the conditional probability of finding one
water molecule at the center of the cavity given that m
water molecules are present in the cavity. For this pur-
pose, following an earlier study [22], the center is any
point within 0.15 Å of the geometric center of the cavity.
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FIG. 2. Observed and estimated {xn} for a N = 64 water
molecule system and different inner-shell radii λ. Symbols
denote the observed data. The solid line is obtained using
Bayes’ theorem (Eq. 7). The dashed lines are maximum en-
tropy fits using the mean and variance of {xn} and a flat prior
[21]. Observe that {xn} obtained using Eq. 7 well-describes
the simulation results.

Figure 2 depicts {xn} for the 64 particles system. The
fit using Eq. 7 is in excellent agreement with the actual
data. This gives us confidence in the estimated x0 for
λ = 3.3 Å (Fig. 2), an instance where x0 was not ob-
served in the simulation. As Fig. 2 shows, the maximum
entropy models can lead to errors in kBT lnx0 by about
a kcal/mol or more, especially for the large λ.

Table I collects the various components of the excess
chemical potential. The calculated values are within a
kcal/mol (often less) of each across the range of λ con-
sidered here. Thus averaging values obtained at different
λ, for the 64 water molecule system the excess free en-
ergy is −5.8 kcal/mol, while it is −6.1 kcal/mol for the
32 water system. These are in reasonable agreement with
the experimental value of −6.3 kcal/mol for liquid water
at 298 K (Eq. 1).

The inner-shell chemical and packing terms balance
each other for λ ≈ 3.2 Å, and µex

w (l) is primarily deter-
mined by the outer-shell contribution. This is also ap-
proximately the size for which packing and chemical con-
tributions balance in classical models as well [6, 14, 22].

The availability of µex
w (l), together with the mean bind-

ing energy 〈ε〉 of a distinguished water molecule in the
fully coupled simulation, allows estimating the excess
entropy of hydration. For the N = 32 water system
〈ε〉 = −28 kcal/mol. (Thus the heat of vaporization
per particle ∆Hvap = 〈ε〉/2 + kBT ≈ −13.4 kcal/mol is
substantially in error relative to the experimental value
of about −10.5 kcal/mol at 300 K.) Neglecting effects
due to the thermal expansion and compressibility of
the medium, the excess entropy per particle [6, 7] is

V. Weber and D. Asthagiri, “Thermodynamics of water modeled
using ab initio simulations,” J. Chem. Phys. 133, 141101(2010).
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What have we learned that’s new?

Network-liquid theorem for the free energy of
network-liquid models.

For realistic models of liquid water:
1 Network-liquid contributions to the free energy can be small

(even zero).
2 Binding energies distributions are Gaussian to a useful

degree.
3 Outer-shell contributions dominate the free energy.
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