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Standard Gait Phases
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Gait Symmetries

Gait Spatio-temporal symmetries

Trot | (Left/Right, 3) and (Front/Back, 1)
Pace | (Left/Right, 3) and (Front/Back, 0)
Walk (Figure Eight, 1)

» Walk, trot, pace are different gaits

Collins and Stewart (1993)

o |
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Central Pattern Generators (CPG)

fGuaits modeled mechanically and/or electrically — we T
discuss electrical system

#® Assumption: In nervous system is network of neurons
that produces gait rhythms

#® Hodgkin - Huxley: Neuron modeled by system of
differential equations

® CPG = network of coupled identical systems

# Design simplest network to produce walk, trot, and pace

o |
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Two ldentical Cdlls

@:’@ T = f(x17x2> T, € R” —‘
9 |

#® Robust time-periodic solutions:

f(an $1)

» In phase oscillation

T9 (t) = I (t)

Note: x1 = x5 IS flow-invariant subspace

s half-period out-of-phase oscillation

:m@):xﬂﬁ+§)
J
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Spatio-Temporal Symmetries

A symmetry z = F'(x) is a linear map v where T
v(sol’'n) =sol'n <« F(yz)=~F(x)

Let x(¢) be a time-periodic solution

o \ ={yel :vx(t)=x(t)} spacesymmetries

o H={yeTl :~{z(t)} ={z(t)}} spatiotemporal symm’s

Facts:

evc H=0cS' suchthat ~a(t)=a(t+0)

e /K is cyclic since
v+ 0 18 a homomorphism with kernel K

Example: H =7Z5(12); K =1;0 = % J
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Three-Cedll Bidirectional Ring: I' = S;

T__ (D) T
7\ o
——G) 3

# Discrete rotating waves:

f(z1, 22, 73)
f(z2,73,21)
f(x?)a X1, 332)

za(t) = 21 (t + +) and

In-phase periodic solutions:

T3 (?f) = 1 (t)

-

f(z2,71,73) = f(22, 23, 71)

H=%73 K=1

CCg(t) — TI9 (t + %)

H=17513)=K

Out-of-phase periodic solutions: H =Z5(13), K =1

z3(t) = x1 (t+ %) and

G. and Stewart (1986)

ZIEQ(t) — I9 (t + %)

|



Out of Phase
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Central Pattern Generators (CPG)

® Use gait symmetries to construct coupled network

1) walk = four-cycle w in symmetry group
2) pace or trot = transposition ~ in symmetry group

# Simplest network has Zy4(w) x Za (k) symmetry

R ORC
T |
eeeee O—@® \-n

LH=

T |
LH= - (D=(0) ~ RH

G., Stewart, Buono, and Collins (1999); Buono and G. (2001)
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Primary Gaits. H = Z4(w) X Zs(k)

K Phase Diagram | Gait
0 O

Z4(w) X Zg(l-{) pronk
0 O
0 4

Z4(w) f pace
0 3
10

Z4(kw) 2 trot
0 41
2
1 1

ZQ(K/) X ZQ(CUZ) 2 2 bound
0 O
1 3

Zo(kw?) iod walk
0 41
2

0 O _

Zs(K) L jump

4 4

-



Synchrony Subspaces
=

# A polydiagonal is a subspace

A={x:z.=2x45 forsome subset of cells}

#® A synchrony subspace IS a flow-invariant polydiagonal

® Chain with Back Coupling

S
(O-@O~-O~(-E—-0-0O
x1 = f(x1,x3) xg = f(x2,%x1) x3 = f(x3,x2)
x4 = f(x4,x3) x5 = f(x5,%x4) x¢g = f(xg,X5)

L x7 = f(x7,%¢) J
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Chain with Back Coupling

a I N
- 00 -0

x1 = f(x1,x3) %2 = f(x2,x1) x3 = f(x3,x2)
5(4 — f(X47 X3) 5(5 — f(X57 X4) 5(6 — f(X67 X5)
x7 = f(x7,x¢)

® Y ={x:xX1] =X4=X7; X2 =X5; X3 =Xg} IS
flow-invariant

#® Y is a synchrony subspace

o |



Balanced Coloring

#® Let A be a polydiagonal

#® Color equivalent cells the same color
if cell coord’s in A are equal

# Coloring is balanced if all cells with same color receive
equal number of inputs from cells of a given color

00 00

®» Theorem:.: synchrony subspace < balanced

Stewart, G., and Pivato (2003); G., Stewart, and Torok (2005)

o
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Asym Network: Symmetric Quotient
/> /> /wa

# Quotient is bidirectional 3-cell ring with D3 symmetry

0.5 T T
0 WW
-0.5 L L
0 5 10 15
0.02 T T

—0.02 . : -0.5 : y
0 5 10 15 o 5 10 15
05 : : 05 : :
0 W ° \/\/\/\/\/\/\:
-05 ‘ : 05 \ ‘
o 5 10 15 o 5 10 15
002 : ‘ 05 : ;
~0.02 . : -0.5 : y
0 5 10 15 o 5 10 15
05 : : 002 : :
VAV AVAVAVAVEANY AVAVAVAVAVAVAVAVAVAVAVAVA
05 L L -0.02 . ’
o 5 10 15 0 5 10 15

L.ﬂ Rigid phase shift; no symmetry J



Phase-Shift Synchrony
- -

® 7(t)=(z1(t),...,2n(t)) Is stable T-periodic solution

® Phase-shift synchrony between nodes 1, j
zi(t) = z;(t +07T) where 0 < 4§ < 1

# Phase-shift synchrony is rigid if perturbing system leads
to periodic state with same phase-shift 4

#» = j = multirhythms

# Theorem: Transitive network: nonzero rigid phase-shift
occurs only when phase-shift forced by symmetry on
guotient network

Stewart and Parker (2008, 2009); G., Romano and Wang (2010); Aldis (2010)
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How to Find Quotient Networ k
B -

® Ay ={x:x.=xq If 2.(t) = 24(¢)}

® Ay isrigid if periodic state near Z in perturbed system
always has same polydiagonal

® Theorem: Az rigid implies coloring associated to A is
balanced

® Restrict admissible systemto Ay
On quotient network Z(t) has no zero rigid phase-shifts

G., Romano and Wang (2010); Aldis (2010)

o |
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Theorem of Stewart & Parker

-

fGuiven periodic solution Z(t) on path connected network
with a nonzero rigid phase-shift. Assume Z(t)

#® has no zero phase-shifts
# s fully oscillatory

# satisfies the rigid phase conjecture

Then there exists a network symmetry that generates the
rigid phase-shifts

Stewart and Parker (2008)

o |
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|dea of Proof. Def’n of Symmetry
- -

® Choose a node ¢

Let & > 0 be smallest phase-shift s.t. z;(¢t) = z.(t + 07T
Define ¢g(¢) = d. Note

s Fully oscillatory implies smallest 0 exists

» No zero phase-shifts implies d is unique

# Rigid phase conjecture implies g is symmetry of network

o |
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Pattern of Synchrony

fLet GG be a path connected network T

® ((Q),0) is pattern of synchrony if ) IS quotient network and
o : () — @ Is permutation symmetry

# A T-periodic solution Z(t) to a G-admissible system
has pattern of synchrony (Q, o) If

o {Z(t)} C AQ
s 0Z(t)=Z (t+ 1) where m is order of &

# If Z(t) has pattern of synchrony (Q, o), then z.(t) = z4(t)
L when nodes ¢ and d have the same color J
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Pattern of Synchrony (2)

f.o o= o1 -0, 1S product of cycles of orders mq, ..., m; T

® leto; = (c1---cm,). LetY(¢) be the projection of Z(¢) to
quotient network Q. Then oV (¢) = V(¢ + L) implies

)

ycz(t) = Yg (t—l_
Yes (1) = Yoo (T +

SIS31S

ycmj (t) — ycnz‘7 1 (t

)
yC1(t) — yCm( )

_I_
LT
m

® SOy, (t) =y, (t + 72T and y., has period 7; = ~2T

L.p Cycles of different lengths in o imply multirhythms J

—p. 20/21



lan Stewart

Luciano Buono
Jim Collins

Marcus Pivato
Andrew Torok

David Romano
Yunjiao Wang

Thanks

Warwick

UOIT
Boston U

Trent
Houston

Grinnell
MBI

Gaits & Network Theory

Gaits
Gaits

Network Theory
Network Theory

Network Theory
Network Theory

-

|

—p. 21/21



