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Standard Gait Phases
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Gait Symmetries

Gait Spatio-temporal symmetries

Trot (Left/Right, 1
2) and (Front/Back, 1

2)
Pace (Left/Right, 1

2) and (Front/Back, 0)
Walk (Figure Eight, 1

4)

Walk, trot, pace are different gaits

Collins and Stewart (1993)
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Central Pattern Generators (CPG)

Gaits modeled mechanically and/or electrically — we
discuss electrical system

Assumption: In nervous system is network of neurons
that produces gait rhythms

Hodgkin - Huxley: Neuron modeled by system of
differential equations

CPG = network of coupled identical systems

Design simplest network to produce walk, trot, and pace
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Two Identical Cells

1 2
ẋ1 = f(x1, x2)

ẋ2 = f(x2, x1)
x1, x2 ∈ Rk

Robust time-periodic solutions:

in phase oscillation

x2(t) = x1(t)

Note: x1 = x2 is flow-invariant subspace

half-period out-of-phase oscillation

x2(t) = x1(t+
T

2
)
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Spatio-Temporal Symmetries

A symmetry ẋ = F (x) is a linear map γ where

γ(sol’n) = sol’n ⇐⇒ F (γx) = γF (x)

Let x(t) be a time-periodic solution

• K = {γ ∈ Γ : γx(t) = x(t)} space symmetries

• H = {γ ∈ Γ : γ{x(t)} = {x(t)}} spatiotemporal symm’s

Facts:

• γ ∈ H =⇒ θ ∈ S1 such that γx(t) = x(t+ θ)

• H/K is cyclic since
γ �→ θ is a homomorphism with kernel K

Example: H = Z2(1 2);K = 1; θ = T
2
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Three-Cell Bidirectional Ring: Γ = S3

1

2 3

ẋ1 = f(x1, x2, x3)

ẋ2 = f(x2, x3, x1) f(x2, x1, x3) = f(x2, x3, x1)

ẋ3 = f(x3, x1, x2)

Discrete rotating waves: H = Z3, K = 1

x2(t) = x1
(
t+ T

3

)
and x3(t) = x2

(
t+ T

3

)

In-phase periodic solutions: H = Z2(1 3) = K

x3(t) = x1(t)

Out-of-phase periodic solutions: H = Z2(1 3), K = 1

x3(t) = x1
(
t+ T

2

)
and x2(t) = x2

(
t+ T

2

)

G. and Stewart (1986)
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Out of Phase
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Central Pattern Generators (CPG)
Use gait symmetries to construct coupled network

1) walk =⇒ four-cycle ω in symmetry group
2) pace or trot =⇒ transposition κ in symmetry group

Simplest network has Z4(ω)× Z2(κ) symmetry

LF

LH RH

RF

LH

LF RF

RH

1 2

3 4

5 6

7 8

G., Stewart, Buono, and Collins (1999); Buono and G. (2001)

– p. 9/21



Primary Gaits: H = Z4(ω)× Z2(κ)

K Phase Diagram Gait
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Synchrony Subspaces

A polydiagonal is a subspace

∆ = {x : xc = xd for some subset of cells}

A synchrony subspace is a flow-invariant polydiagonal

Chain with Back Coupling

1 2 3 4 5 6 7

ẋ1 = f(x1,x3) ẋ2 = f(x2,x1) ẋ3 = f(x3,x2)

ẋ4 = f(x4,x3) ẋ5 = f(x5,x4) ẋ6 = f(x6,x5)

ẋ7 = f(x7,x6)
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Chain with Back Coupling

1 2 3 4 5 6 7

ẋ1 = f(x1,x3) ẋ2 = f(x2,x1) ẋ3 = f(x3,x2)

ẋ4 = f(x4,x3) ẋ5 = f(x5,x4) ẋ6 = f(x6,x5)

ẋ7 = f(x7,x6)

Y = {x : x1 = x4 = x7; x2 = x5; x3 = x6} is
flow-invariant

Y is a synchrony subspace
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Balanced Coloring

Let ∆ be a polydiagonal

Color equivalent cells the same color
if cell coord’s in ∆ are equal

Coloring is balanced if all cells with same color receive
equal number of inputs from cells of a given color

1 2 3 4 5 6 7

Theorem: synchrony subspace ⇐⇒ balanced

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)
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Asym Network; Symmetric Quotient
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Quotient is bidirectional 3-cell ring with D3 symmetry
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Rigid phase shift; no symmetry
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Phase-Shift Synchrony

Z(t) = (z1(t), . . . , zN (t)) is stable T -periodic solution

Phase-shift synchrony between nodes i, j

zi(t) = zj(t+ θT ) where 0 ≤ θ < 1

Phase-shift synchrony is rigid if perturbing system leads
to periodic state with same phase-shift θ

i = j =⇒ multirhythms

Theorem: Transitive network: nonzero rigid phase-shift
occurs only when phase-shift forced by symmetry on
quotient network

Stewart and Parker (2008, 2009); G., Romano and Wang (2010); Aldis (2010)
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How to Find Quotient Network

∆Z = {x : xc = xd if zc(t) = zd(t)}

∆Z is rigid if periodic state near Z in perturbed system
always has same polydiagonal

Theorem: ∆Z rigid implies coloring associated to ∆Z is
balanced

Restrict admissible system to ∆Z

On quotient network Z(t) has no zero rigid phase-shifts

G., Romano and Wang (2010); Aldis (2010)
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Theorem of Stewart & Parker

Given periodic solution Z(t) on path connected network
with a nonzero rigid phase-shift. Assume Z(t)

has no zero phase-shifts

is fully oscillatory

satisfies the rigid phase conjecture

Then there exists a network symmetry that generates the
rigid phase-shifts

Stewart and Parker (2008)
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Idea of Proof: Def’n of Symmetry

Choose a node c

Let θ > 0 be smallest phase-shift s.t. zd(t) = zc(t+ θT )

Define g(c) = d. Note

Fully oscillatory implies smallest θ exists

No zero phase-shifts implies d is unique

Rigid phase conjecture implies g is symmetry of network
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Pattern of Synchrony

Let G be a path connected network

(Q, σ) is pattern of synchrony if Q is quotient network and
σ : Q → Q is permutation symmetry

A T -periodic solution Z(t) to a G-admissible system
has pattern of synchrony (Q, σ) if

{Z(t)} ⊂ ∆Q

σZ(t) = Z
(
t+ T

m

)
where m is order of σ

If Z(t) has pattern of synchrony (Q, σ), then zc(t) = zd(t)
when nodes c and d have the same color
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Pattern of Synchrony (2)

σ = σ1 · · · σs is product of cycles of orders m1, . . . ,ms

Let σj = (c1 · · · cmj). Let Y (t) be the projection of Z(t) to
quotient network Q. Then σY (t) = Y (t+ T

m) implies

yc2(t) = yc1(t+
T
m)

yc3(t) = yc2(t+
T
m)

...
ycmj

(t) = ycmj−1
(t+ T

m)

yc1(t) = ycmj
(t+ T

m)

So yc1(t) = yc1(t+
mj

m T ) and ycj has period Tj =
mj

m T

Cycles of different lengths in σ imply multirhythms
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