Animal Gaits

and

Symmetries of Periodic Solutions

Statistical Mechanics
December 17, 2010

Martin Golubitsky
Mathematical Biosciences Institute

and
Department of Mathematics
Ohio State University

Standard Gait Phases

Gait Symmetries

Gait	Spatio-temporal symmetries		
Trot	(Left/Right, $\frac{1}{2}$)	and	(Front/Back, $\frac{1}{2}$)
Pace	(Left/Right, $\frac{1}{2}$)	and	(Front/Back, 0)
Walk	(Figure Eight, $\frac{1}{4}$)		

- Walk, trot, pace are different gaits

Collins and Stewart (1993)

Central Pattern Generators (CPG)

Gaits modeled mechanically and/or electrically - we discuss electrical system

- Assumption: In nervous system is network of neurons that produces gait rhythms
- Hodgkin - Huxley: Neuron modeled by system of differential equations
- $\mathrm{CPG}=$ network of coupled identical systems
- Design simplest network to produce walk, trot, and pace

Two Identical Cells

(1) $\rightleftarrows \quad \begin{aligned} & \dot{x}_{1}=f\left(x_{1}, x_{2}\right) \\ & \dot{x}_{2}=f\left(x_{2}, x_{1}\right)\end{aligned} \quad x_{1}, x_{2} \in \mathbf{R}^{k}$

- Robust time-periodic solutions:
- in phase oscillation

$$
x_{2}(t)=x_{1}(t)
$$

Note: $x_{1}=x_{2}$ is flow-invariant subspace

- half-period out-of-phase oscillation

$$
x_{2}(t)=x_{1}\left(t+\frac{T}{2}\right)
$$

Spatio-Temporal Symmetries

- A symmetry $\dot{x}=F(x)$ is a linear map γ where

$$
\gamma(\text { sol'n })=\text { sol'n } \quad \Longleftrightarrow \quad F(\gamma x)=\gamma F(x)
$$

- Let $x(t)$ be a time-periodic solution
- $K=\{\gamma \in \Gamma: \gamma x(t)=x(t)\} \quad$ space symmetries
- $H=\{\gamma \in \Gamma: \gamma\{x(t)\}=\{x(t)\}\}$ spatiotemporal symm's
- Facts:
- $\gamma \in H \Longrightarrow \theta \in \mathbf{S}^{1} \quad$ such that $\quad \gamma x(t)=x(t+\theta)$
- H / K is cyclic since
$\gamma \mapsto \theta$ is a homomorphism with kernel K
- Example: $H=\mathrm{Z}_{2}(12) ; K=1 ; \theta=\frac{T}{2}$

Three-Cell Bidirectional Ring: $\Gamma=\mathbf{S}_{3}$

$$
\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{2}, x_{3}\right) \\
& \dot{x}_{2}=f\left(x_{2}, x_{3}, x_{1}\right) \quad f\left(x_{2}, x_{1}, x_{3}\right)=f\left(x_{2}, x_{3}, x_{1}\right) \\
& \dot{x}_{3}=f\left(x_{3}, x_{1}, x_{2}\right)
\end{aligned}
$$

- Discrete rotating waves: $H=\mathrm{Z}_{3}, K=1$

$$
x_{2}(t)=x_{1}\left(t+\frac{T}{3}\right) \quad \text { and } \quad x_{3}(t)=x_{2}\left(t+\frac{T}{3}\right)
$$

In-phase periodic solutions: $\quad H=\mathbb{Z}_{2}(13)=K$

$$
x_{3}(t)=x_{1}(t)
$$

Out-of-phase periodic solutions: $\quad H=\mathrm{Z}_{2}(13), K=1$

$$
x_{3}(t)=x_{1}\left(t+\frac{T}{2}\right) \quad \text { and } \quad x_{2}(t)=x_{2}\left(t+\frac{T}{2}\right)
$$

G. and Stewart (1986)

Out of Phase

Central Pattern Generators (CPG)

- Use gait symmetries to construct coupled network

1) walk \Longrightarrow four-cycle ω in symmetry group
2) pace or trot \Longrightarrow transposition κ in symmetry group

- Simplest network has $Z_{4}(\omega) \times Z_{2}(\kappa)$ symmetry

G., Stewart, Buono, and Collins (1999); Buono and G. (2001)

Primary Gaits: $H=\mathbf{Z}_{4}(\omega) \times \mathbf{Z}_{2}(\kappa)$

K	Phase Diagram	Gait
$\mathbf{Z}_{4}(\omega) \times \mathbf{Z}_{2}(\kappa)$	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}$	pronk
$\mathbf{Z}_{4}(\omega)$	$\begin{array}{ll} 0 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{array}$	pace
$\mathbf{Z}_{4}(\kappa \omega)$	$\begin{array}{ll} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{array}$	trot
$\mathbf{Z}_{2}(\kappa) \times \mathbf{Z}_{2}\left(\omega^{2}\right)$	$\begin{array}{ll} \frac{1}{2} & \frac{1}{2} \\ 0 & 0 \end{array}$	bound
$\mathbf{Z}_{2}\left(\kappa \omega^{2}\right)$	$\begin{array}{ll} \hline \frac{1}{4} & \frac{3}{4} \\ 0 & \frac{1}{2} \end{array}$	walk
$\mathbf{Z}_{2}(\kappa)$	$\begin{array}{ll} 0 & 0 \\ \frac{1}{4} & \frac{1}{4} \\ \hline \end{array}$	jump

Synchrony Subspaces

- A polydiagonal is a subspace

$$
\Delta=\left\{x: x_{c}=x_{d} \quad \text { for some subset of cells }\right\}
$$

- A synchrony subspace is a flow-invariant polydiagonal
- Chain with Back Coupling

$$
\begin{aligned}
& 1 \\
& \dot{x}_{1}=f\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right) \quad \dot{x}_{2}=\mathbf{f}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) \quad \dot{x}_{3}=\mathbf{f}\left(\mathbf{x}_{3}, \mathbf{x}_{2}\right) \\
& \dot{x}_{4}=\mathbf{f}\left(\mathbf{x}_{4}, \mathbf{x}_{3}\right) \quad \dot{x}_{5}=\mathbf{f}\left(\mathbf{x}_{5}, \mathbf{x}_{4}\right) \quad \dot{x}_{6}=\mathbf{f}\left(\mathbf{x}_{6}, \mathbf{x}_{5}\right) \\
& \dot{x}_{7}=\mathbf{f}\left(\mathbf{x}_{7}, \mathbf{x}_{6}\right)
\end{aligned}
$$

Chain with Back Coupling

$$
\begin{aligned}
& \dot{\mathbf{x}}_{1}=\mathbf{f}\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right) \quad \dot{\mathbf{x}}_{2}=\mathbf{f}\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) \quad \dot{\mathbf{x}}_{3}=\mathbf{f}\left(\mathbf{x}_{3}, \mathbf{x}_{2}\right) \\
& \dot{\mathbf{x}}_{4}=\mathbf{f}\left(\mathbf{x}_{4}, \mathbf{x}_{3}\right) \\
& \dot{\mathbf{x}}_{7}=\mathbf{f}\left(\mathbf{x}_{7}, \mathbf{x}_{6}\right)
\end{aligned}
$$

- $\mathrm{Y}=\left\{\mathrm{x}: \mathrm{x}_{1}=\mathrm{x}_{4}=\mathrm{x}_{7} ; \mathrm{x}_{2}=\mathrm{x}_{5} ; \mathrm{x}_{3}=\mathrm{x}_{6}\right\}$ is flow-invariant
- \mathbf{Y} is a synchrony subspace

Balanced Coloring

- Let Δ be a polydiagonal
- Color equivalent cells the same color if cell coord's in Δ are equal
- Coloring is balanced if all cells with same color receive equal number of inputs from cells of a given color

- Theorem: synchrony subspace \Longleftrightarrow balanced

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

Asym Network; Symmetric Quotient

- Quotient is bidirectional 3-cell ring with D_{3} symmetry

- Rigid phase shift; no symmetry

Phase-Shift Synchrony

- $Z(t)=\left(z_{1}(t), \ldots, z_{N}(t)\right)$ is stable T-periodic solution
- Phase-shift synchrony between nodes i, j

$$
z_{i}(t)=z_{j}(t+\theta T) \text { where } 0 \leq \theta<1
$$

- Phase-shift synchrony is rigid if perturbing system leads to periodic state with same phase-shift θ
- $i=j \Longrightarrow$ multirhythms
- Theorem: Transitive network: nonzero rigid phase-shift occurs only when phase-shift forced by symmetry on quotient network

Stewart and Parker (2008, 2009); G., Romano and Wang (2010); Aldis (2010)

How to Find Quotient Network

- $\Delta_{Z}=\left\{x: x_{c}=x_{d}\right.$ if $\left.z_{c}(t)=z_{d}(t)\right\}$
- Δ_{Z} is rigid if periodic state near Z in perturbed system always has same polydiagonal
- Theorem: Δ_{Z} rigid implies coloring associated to Δ_{Z} is balanced
- Restrict admissible system to Δ_{Z} On quotient network $Z(t)$ has no zero rigid phase-shifts
G., Romano and Wang (2010); Aldis (2010)

Theorem of Stewart \& Parker

Given periodic solution $Z(t)$ on path connected network with a nonzero rigid phase-shift. Assume $Z(t)$

- has no zero phase-shifts
- is fully oscillatory
- satisfies the rigid phase conjecture

Then there exists a network symmetry that generates the rigid phase-shifts

Stewart and Parker (2008)

Idea of Proof: Def'n of Symmetry

- Choose a node c

Let $\theta>0$ be smallest phase-shift s.t. $z_{d}(t)=z_{c}(t+\theta T)$
Define $g(c)=d$. Note

- Fully oscillatory implies smallest θ exists
- No zero phase-shifts implies d is unique
- Rigid phase conjecture implies g is symmetry of network

Pattern of Synchrony

Let G be a path connected network

- (Q, σ) is pattern of synchrony if Q is quotient network and $\sigma: Q \rightarrow Q$ is permutation symmetry
- A T-periodic solution $Z(t)$ to a G-admissible system has pattern of synchrony (Q, σ) if
- $\{Z(t)\} \subset \Delta_{Q}$
- $\sigma Z(t)=Z\left(t+\frac{T}{m}\right)$ where m is order of σ
- If $Z(t)$ has pattern of synchrony (Q, σ), then $z_{c}(t)=z_{d}(t)$ when nodes c and d have the same color

Pattern of Synchrony (2)

- $\sigma=\sigma_{1} \cdots \sigma_{s}$ is product of cycles of orders m_{1}, \ldots, m_{s}
- Let $\sigma_{j}=\left(c_{1} \cdots c_{m_{j}}\right)$. Let $Y(t)$ be the projection of $Z(t)$ to quotient network Q. Then $\sigma Y(t)=Y\left(t+\frac{T}{m}\right)$ implies

$$
\begin{aligned}
y_{c_{2}}(t) & =y_{c_{1}}\left(t+\frac{T}{m}\right) \\
y_{c_{3}}(t) & =y_{c_{2}}\left(t+\frac{T}{m}\right) \\
& \vdots \\
y_{c_{m_{j}}}(t) & =y_{c_{m_{j-1}}}\left(t+\frac{T}{m}\right) \\
y_{c_{1}}(t) & =y_{c_{m_{j}}}\left(t+\frac{T}{m}\right)
\end{aligned}
$$

- So $y_{c_{1}}(t)=y_{c_{1}}\left(t+\frac{m_{j}}{m} T\right)$ and $y_{c_{j}}$ has period $T_{j}=\frac{m_{j}}{m} T$
- Cycles of different lengths in σ imply multirhythms

Thanks

Ian Stewart

Luciano Buono
Jim Collins

Marcus Pivato
Andrew Török

David Romano
Yunjiao Wang

Warwick Gaits \& Network Theory

UOIT Gaits
Boston U Gaits

Trent Network Theory
Houston Network Theory

Network Theory
Network Theory

