Animal Gaits

and

Symmetries of Periodic Solutions

Statistical Mechanics December 17, 2010

Martin Golubitsky Mathematical Biosciences Institute and Department of Mathematics Ohio State University

Standard Gait Phases

Gait Symmetries

Gait	Spatio-temporal symmetries			
Trot	(Left/Right, $\frac{1}{2}$)	and	(Front/Back, $\frac{1}{2}$)	
Pace	(Left/Right, $\frac{1}{2}$)	and	(Front/Back, 0)	
Walk	(Figure Eight, $\frac{1}{4}$)			

Walk, trot, pace are different gaits

Collins and Stewart (1993)

Central Pattern Generators (CPG)

Gaits modeled mechanically and/or electrically — we discuss electrical system

- Assumption: In nervous system is network of neurons that produces gait rhythms
- Hodgkin Huxley: Neuron modeled by system of differential equations
- CPG = network of coupled identical systems
- Design simplest network to produce walk, trot, and pace

Two Identical Cells

- Robust time-periodic solutions:
 - in phase oscillation

$$x_2(t) = x_1(t)$$

Note: $x_1 = x_2$ is flow-invariant subspace

half-period out-of-phase oscillation

$$x_2(t) = x_1(t + \frac{T}{2})$$

Spatio-Temporal Symmetries

- A symmetry $\dot{x} = F(x)$ is a linear map γ where γ (sol'n) = sol'n $\iff F(\gamma x) = \gamma F(x)$
- Let x(t) be a time-periodic solution
 - $K = \{ \gamma \in \Gamma : \gamma x(t) = x(t) \}$ space symmetries
 - $H = \{\gamma \in \Gamma : \gamma\{x(t)\} = \{x(t)\}\}$ spatiotemporal symm's

Facts:

- $\gamma \in H \Longrightarrow \theta \in \mathbf{S}^1$ such that $\gamma x(t) = x(t + \theta)$
- H/K is cyclic since $\gamma \mapsto \theta$ is a homomorphism with kernel K

• **Example:**
$$H = \mathbf{Z}_2(1\ 2); K = 1; \theta = \frac{T}{2}$$

Three-Cell Bidirectional Ring: $\Gamma = \mathbf{S}_3$

Discrete rotating waves: $H = \mathbb{Z}_3, K = \mathbb{I}$ $x_2(t) = x_1 \left(t + \frac{T}{3} \right) \quad \text{and} \quad x_3(t) = x_2 \left(t + \frac{T}{3} \right)$

In-phase periodic solutions: $H = \mathbf{Z}_2(1 \ 3) = K$

 $x_3(t) = x_1(t)$

Out-of-phase periodic solutions: $H = \mathbb{Z}_2(1 \ 3), K = \mathbb{I}$ $x_3(t) = x_1 \left(t + \frac{T}{2}\right)$ and $x_2(t) = x_2 \left(t + \frac{T}{2}\right)$ G. and Stewart (1986)

Out of Phase

Central Pattern Generators (CPG)

Use gait symmetries to construct coupled network

- 1) walk \implies four-cycle ω in symmetry group
- 2) pace or trot \implies transposition κ in symmetry group
- Simplest network has $\mathbf{Z}_4(\omega) \times \mathbf{Z}_2(\kappa)$ symmetry

G., Stewart, Buono, and Collins (1999); Buono and G. (2001)

Primary Gaits: $H = \mathbf{Z}_4(\omega) \times \mathbf{Z}_2(\kappa)$

K	Phase Diagram	Gait
$\mathbf{Z}_4(\omega) imes \mathbf{Z}_2(\kappa)$	0 0	pronk
$\mathbf{L}_4(\omega) \wedge \mathbf{L}_2(\kappa)$	0 0	PIONK
${f Z}_4(\omega)$	$0 \frac{1}{2}$	pace
$\mathbf{Z}_4(\omega)$	$0 \frac{1}{2}$	
$\mathbf{Z}_4(\kappa\omega)$	$\frac{1}{2}$ 0	trot
$\mathbf{Z}_4(\mathbf{n}\omega)$	$0 \frac{1}{2}$	liOl
$\mathbf{Z}_2(\kappa) imes \mathbf{Z}_2(\omega^2)$	$\frac{1}{2}$ $\frac{1}{2}$	bound
$\mathbf{D}_2(n) \wedge \mathbf{D}_2(\omega)$	0 0	bound
${f Z}_2(\kappa\omega^2)$	$\frac{1}{4}$ $\frac{3}{4}$	walk
$\mathbf{Z}_{2}(\mathbf{k}\omega)$	$0 \frac{1}{2}$	wain
$\mathbf{Z}_2(\kappa)$	0 0	iumo
~ 2(<i>k</i>)	$\frac{1}{4}$ $\frac{1}{4}$	jump

Synchrony Subspaces

A polydiagonal is a subspace

$$\Delta = \{x : x_c = x_d \text{ for some subset of cells}\}$$

A synchrony subspace is a flow-invariant polydiagonal

Chain with Back Coupling

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7$$

Chain with Back Coupling

- $\mathbf{Y} = \{\mathbf{x} : \mathbf{x_1} = \mathbf{x_4} = \mathbf{x_7}; \ \mathbf{x_2} = \mathbf{x_5}; \ \mathbf{x_3} = \mathbf{x_6}\}$ is flow-invariant
- Y is a synchrony subspace

Balanced Coloring

- Let Δ be a polydiagonal
- Color equivalent cells the same color if cell coord's in Δ are equal
- Coloring is balanced if all cells with same color receive equal number of inputs from cells of a given color

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7$$

Theorem: synchrony subspace balanced

Stewart, G., and Pivato (2003); G., Stewart, and Török (2005)

Asym Network; Symmetric Quotient

Quotient is bidirectional 3-cell ring with D₃ symmetry

Rigid phase shift; no symmetry

Phase-Shift Synchrony

- $Z(t) = (z_1(t), \dots, z_N(t))$ is stable *T*-periodic solution
- **Phase-shift synchrony** between nodes i, j

$$z_i(t) = z_j(t + \theta T)$$
 where $0 \le \theta < 1$

- Phase-shift synchrony is rigid if perturbing system leads to periodic state with same phase-shift θ
- $i = j \implies$ multirhythms
- Theorem: Transitive network: nonzero rigid phase-shift occurs only when phase-shift forced by symmetry on quotient network

How to Find Quotient Network

•
$$\Delta_Z = \{x : x_c = x_d \text{ if } z_c(t) = z_d(t)\}$$

- Δ_Z is rigid if periodic state near Z in perturbed system always has same polydiagonal
- Theorem: Δ_Z rigid implies coloring associated to Δ_Z is balanced
- Restrict admissible system to Δ_Z On quotient network Z(t) has no zero rigid phase-shifts

G., Romano and Wang (2010); Aldis (2010)

Theorem of Stewart & Parker

Given periodic solution Z(t) on path connected network with a nonzero rigid phase-shift. Assume Z(t)

- has no zero phase-shifts
- is fully oscillatory
- satisfies the rigid phase conjecture

Then there exists a network symmetry that generates the rigid phase-shifts

Stewart and Parker (2008)

Idea of Proof: Def'n of Symmetry

Choose a node c

Let $\theta > 0$ be smallest phase-shift s.t. $z_d(t) = z_c(t + \theta T)$ Define g(c) = d. Note

- Fully oscillatory implies smallest θ exists
- No zero phase-shifts implies d is unique
- Rigid phase conjecture implies g is symmetry of network

Pattern of Synchrony

Let G be a path connected network

- A *T*-periodic solution Z(t) to a *G*-admissible system has pattern of synchrony (Q, σ) if

•
$$\{Z(t)\} \subset \Delta_Q$$

- $\sigma Z(t) = Z\left(t + \frac{T}{m}\right)$ where *m* is order of σ
- If Z(t) has pattern of synchrony (Q, σ) , then $z_c(t) = z_d(t)$ when nodes c and d have the same color

Pattern of Synchrony (2)

• $\sigma = \sigma_1 \cdots \sigma_s$ is product of cycles of orders m_1, \ldots, m_s

• Let $\sigma_j = (c_1 \cdots c_{m_j})$. Let Y(t) be the projection of Z(t) to quotient network Q. Then $\sigma Y(t) = Y(t + \frac{T}{m})$ implies

$$y_{c_{2}}(t) = y_{c_{1}}(t + \frac{T}{m})$$

$$y_{c_{3}}(t) = y_{c_{2}}(t + \frac{T}{m})$$

$$\vdots$$

$$y_{c_{m_{j}}}(t) = y_{c_{m_{j-1}}}(t + \frac{T}{m})$$

$$y_{c_{1}}(t) = y_{c_{m_{j}}}(t + \frac{T}{m})$$

• So $y_{c_1}(t) = y_{c_1}(t + \frac{m_j}{m}T)$ and y_{c_j} has period $T_j = \frac{m_j}{m}T$

• Cycles of different lengths in σ imply multirhythms

Thanks

Ian Stewart	Warwick	Gaits & Network Theory
Luciano Buono	UOIT	Gaits
Jim Collins	Boston U	Gaits
Marcus Pivato	Trent	Network Theory
Andrew Török	Houston	Network Theory
David Romano	Grinnell	Network Theory
Yunjiao Wang	MBI	Network Theory