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Elements of population dynamics 

€ 

Malthusian growth :  population u(t) satisfies

du
dt

= γ u

⇓

u(t) = u(0) eγt



Elements of population dynamics 
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Logistic growth :  growth rate decreases with u

du
dt

= γ −
u
n
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u(t)→ nγ  as  t→∞



Birth-death processes & fluctuations 

€ 

U(t) = population at time t

pN (t) =  P{U(t) = N}

Master Equation :

dpN
dt

= γ (N −1) pN−1 −  γ  N pN +  
(N +1)2

n
 pN +1 −   

N 2

n
 pN



Birth-death processes & fluctuations 
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Birth-death processes & fluctuations 
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Defining u(t) = E{U(t)} = NpN (t)
N =1

∞

∑

⇓

du
dt

=  γ −
u
n
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Variance  Var{U} ≡ E{U 2}−E{U}2 > 0

€ 

≈O(u) in quasistationary state



Competition & evolutionary dynamics 

  

€ 

Competing species with populations u1(t) &  u2(t) :

du1

dt
=  γ1 −

α1 u1 + β1 u2
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du2

dt
=  γ 2 −

α2 u1 + β2 u2

n
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 
  u2

Principle of competetive exclusion :  
generally one or the other prevails …



•  Faster dispersers or slower dispersers may have 
an advantage in inhomogeneous environments… 

•  … which in turn would affect whether dispersal 
rates evolve toward faster or slower values.  

•  Examples: spatio-temporal variability in the 
environment tends to increase dispersal rates … 

•  … but spatial variability alone may reduce 
dispersal rates. 

Spatial inhomogeneities & mobility 



 where ui(x,t) = population of ith species, Di = dispersal rate of 
ith species, and nγ(x) = heterogeneous carrying capacity.  

•   Theorem: in pairwise competition the slower dispersing 
species always drives a competing species to extinction. 

•  Hastings (Th. Pop. Bio. 1983) and Dockery, Hutson, 
Mischaikow & Pernarowski, (J. Math. Bio. 1998): 
deterministic, continuous population, continuous 
space models of N species in inhomogenous environment: 

 where ui(x,t) = population of ith species, Di = dispersal rate of 
ith species, and nγ(x) = heterogeneous carrying capacity.  
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∂ui
∂t

= Di∇
2ui + ui γ(x) −

1
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Mathematical modeling & analysis 



Direct numerical simulations 



•  Dockery et al conjectured that the “victory” of the slower 
competitor generalizes beyond pair-wise competitions 
suggesting that dispersal rates tend to evolve towards 
zero in environments with any spatial variation. 

•  Question: how much does this qualitative conclusion  
depend on the continuous population assumption? 

•  …. is the conclusion robust under the inclusion of  
demographic fluctuations, a.k.a., birth-death noise? 

•  Kessler & Sander Physical Review E (2009) performed 
Monte-Carlo simulations of discrete population version of 
the reaction-diffusion model suggesting the answer …. 

•   … no. 



•  L = spatial sites (1 ≤ i ≤ L) with γi = growth rate at site i 

•  Fi = number of fast-dispersers, hopping rate Df , at site i 

•  Si = number of slow-dispersers, hopping rate Ds, at site i 

•  n = population scale … carrying capacity at a site i is nγi  



Et cetera … 
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Moments: 



In these simulations γ = 0 or 1 with φ = E{γ} = 0.85  
n = 50,  Df = 10,  and  Ds = 0. 

(Averaged over L = 100 sites and 100 realizations.) 

Direct (Monte-Carlo) simulations 



        Df = 10,  and  Ds = 0. 

Direct (Monte-Carlo) simulations 
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dv f
dt

 =  −  2Df v f −
f
n
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γ f +  f 2
+ v f + fs
n

 +

  +  2 γ f 2 − γ f f +  f 3
+ f v f − f 3 + f fs − f 2s( )

Et cetera … 
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d f
dt

 =  γ f − fs − f 2
− v f

Moment evolution equations 



•  Let γi = 0 or 1 … g  

 … and define φ = E{γ} so φ(1-φ) = Var{γ}  

•  Let Df → ∞ … g  

 … then  vf → ‹f›/n 

  … and ‹γf › → φ‹f ›  

   … and ‹fs› → ‹f ›‹s›,  etc. 

•  Let Ds → 0 … g  

 … then (for compatible initial data) ‹γs ›= ‹s›. 

Simplifying limits and closure … 
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dq
dt

= φ 1− q − p − 1
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p(t) ≡
s
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          vp (t) ≡ vs(t)
φ

− p(t)2 1−φ( )          q(t) ≡
f
φ

Exact reduced system 



€ 

dq
dt

= φ 1− q − p − 1
nφ

 

 
 

 

 
 q

dp
dt

= 1−φq − p −
vp
p

 

 
 

 

 
 p

dvp
dt

= 2 1−φq − 2p +
1
2n

 

 
 

 

 
 vp +

(1+ p + φq)p
n

− 2ξ

€ 

p(t) ≡
s
φ

          vp (t) ≡ vs(t)
φ

− p(t)2 1−φ( )          q(t) ≡
f
φ

Exact reduced system 

X 



 Solid lines: ODEs setting ξ = 0,  Circles & crosses: simulations.  

Here φ = E{γ} = 0.50, n = 40,  Df = 10,  and  Ds = 0.001 

(Averaged over L = 100 sites and 100 realizations.) 

Theory versus simulations 



 Solid lines: ODEs setting ξ = 0,  Circles & crosses: simulations.  

Here φ = E{γ} = 0.99, n = 40,  Df = 10,  and  Ds = 0.001 

(Averaged over L = 100 sites and 100 realizations.) 

Theory versus simulations 



–– threshold from ODEs setting ξ = 0:  Slow wins or ODEs break down! 

(Simulations: Df = 10 & Ds = 0, averaged over L = 100 sites and 100 realizations.) 

Theory versus simulations 
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Slow wins fixed point is stable (against invasion by Fast) when

n >  2
φ(1- φ)

 =  2
Var{γ}

€ 

Fixed points of the ξ ≡ 0 system (for n ≥ 8) :  q, p,vp( ) =

0,0,0( )   → All extinct

1 -
1
nφ ,  0, 0( )      → Fast wins

0, 3
4 + n -8

16n
,  1

8 - n -8
64n

+
1

2n( )    → Slow wins

0, 3
4 - n -8

16n
,  1

8 + n -8
64n

+
1

2n( )   → Slow's viability boundary

Slow species’ stability/sensitivity: 



………..  Slow wins fixed point of ODEs marginally stable to Fast invasion! 

(Simulations: Df = 10 & Ds = 0, averaged over L = 100 sites and 100 realizations.) 

Theory versus simulations 
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•  Wanderlust may be advantageous despite it’s risks … . 

•  … ability to exploit occasional random opportunities! 

•  Moment dynamics may succeed in predicting victors …. 

•  … sometimes useful information in a model’s failure!  

•  Var{γ} = 2/n analytical Slow wins boundary agrees 
quantitatively w/Kessler-Sander simulations for 1-d, 
simple diffusion & “mild” environmental fluctuations. 

•   Major question: given environment with given level of 
demographic fluctuations, is there optimal mobility? 

•  Seems so! 

Conclusions & remarks 



Pairwise invasibility plot.  Resident species begins at carrying 
capacity on each fecund site, mutant begins with one individual 
on each site.  Grey scale represents fraction of trials where 
invader goes extinct in 100 runs with n = 10, L = 500, φ = 0.5. 

Variable mobility competition 



Thanks for your attention! 


