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Elements of population dynamics

Malthusian growth : population u(¢) satisties

du_

— =vyu
a7’

u(t) = u(0) e”



Elements of population dynamics

Logistic growth : growth rate decreases with u

@_( _z)u
dt / n

u(t) =>ny as t —>



Birth-death processes & fluctuations

U(t) =population at time ¢

py(t) = P{U(¢) =N}

Master Equation :

dp,, (N +1)° N?

——=yY(N-1Dpy_,— yNpy + Pna— — Pn
dt n n




Birth-death processes & fluctuations
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Birth-death processes & fluctuations

Defining u(¢) = E{U(?)} = inN(t)

N=l

Variance Var{U} =E{U*}-E{U}* >0

~ O(u) 1n quasistationary state



Competition & evolutionary dynamics

Competing species with populations u,(¢) & u,(7):

Principle of competetive exclusion :

generally one or the other prevails ...



Spatial inhomogeneities & mobility

Faster dispersers or slower dispersers may have
an advantage 1n inhomogeneous environments...

... Which in turn would affect whether dispersal
rates evolve toward faster or slower values.

Examples: spatio-temporal variability in the
environment tends to increase dispersal rates ...

... but spatial variability alone may reduce
dispersal rates.



Mathematical modeling & analysis

* Hastings (Th. Pop. Bio. 1983) and Dockery, Hutson,

Mischaikow & Pernarowski, (J. Math. Bio. 1998):

deterministic, continuous population, continuous
space models of IV species in inhomogenous environment:

ou | <
L= DVu. + u| y(x)-— Eu
0"t l l l(y( ) n _— Z)

where u,(x,t) = population of i** species, D; = dispersal rate of
ith species, and ny(x) = heterogeneous carrying capacity.

* Theorem: 1n pairwise competition the slower dispersing
species always drives a competing species to extinction.



Direct numerical simulations
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Dockery et al conjectured that the “victory” of the slower
competitor generalizes beyond pair-wise competitions
suggesting that dispersal rates tend to evolve towards
zero 1n environments with any spatial variation.

Question: how much does this qualitative conclusion
depend on the continuous population assumption?

.... 18 the conclusion robust under the inclusion of
demographic fluctuations, a.k.a., birth-death noise?

Kessler & Sander Physical Review E (2009) performed

Monte-Carlo simulations of discrete population version of
the reaction-diffusion model suggesting the answer ....

LN J nOo



» L = spatial sites (1 <i < L) with y, = growth rate at site i
* F; = number of fast-dispersers, hopping rate D,, at site i
* S. = number of slow-dispersers, hopping rate D, at site 1

* n = population scale ... carrying capacity at a site i is ny,

Site 1: Sterile Site 3: Fertile

F moves: D,

Death:

S moves: (f3+s3) n

Site 2: Fertile




Moments:

L
=E<{lim— ) —
) 1ML 25
<f2>_<f>2:E<hmlL(£—
L_>00Li=1 n

Et cetera ...




Direct (Monte-Carlo) simulations
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In these simulations y= 0 or 1 with ¢ = E{y} = 0.85
n=50, D,=10, and D,=0.

(Averaged over L = 100 sites and 100 realizations.)



Direct (Monte-Carlo) simulations
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Moment evolution equations

=L (yf) - (fs) @Q’

o v Y

Et cetera ...



Simplifying limits and closure ...

* Lety,=0or1...
... and define ¢ = E{y} so ¢(1-¢) = Var{y;
* Let Dy — o0 ..,
... then v, — «p/n
... and <yf> = ¢¢f>
... and <«fs> — <<, etc.

* Let D, —0...

... then (for compatible initial data) <yS>= <8>.



Exact reduced system

SO p(i-g)  q=LL

Vp(t)E

¢ ¢ 9
dq _ (.1 :
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weote

M,p“°" Exaet reduced system
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Theory versus simulations
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Solid lines: ODEs setting £= 0, Circles & crosses: simulations.
Here ¢ = E{y} = 0.50, n =40, D;,=10, and D,=0.001
(Averaged over L = 100 sites and 100 realizations.)



Theory versus simulations
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Solid lines: ODEs setting £= 0, Circles & crosses: simulations.
Here ¢ = E{y} = 0.99, n = 40, D= 10, and D,=0.001

(Averaged over L = 100 sites and 100 realizations.)



Theory versus simulations

*  Monte-Carlo Simulation
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— threshold from ODEs setting £ = 0: Slow wins or ODEs break down!
(Simulations: D,= 10 & D, = 0, averaged over L = 100 sites and 100 realizations.)
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Slow species’ stability/sensitivity:

Fixed points of the § =0 system (for n = 8) : (qal?a"p) =
(0,0,0) — All extinct

(1 -%, 0, O) — Fast wins

3 - 1 _ 1 .
(O, Zy 1/”—8, R L. —) — Slow wins
4 16n 8 64 n 2n

(O, ; i \/g, Ly \/g ; z—ln) — Slow's viability boundary

0|

Slow wins fixed point is stable (against invasion by Fast) when
2 2

> =
¢o(1-¢)  Var{y}
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Theory versus simulations

*  Monte-Carlo Simulation
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----------- Slow wins fixed point of ODEs marginally stable to Fast invasion!

(Simulations: D,= 10 & D, = 0, averaged over L = 100 sites and 100 realizations.)



Conclusions & remarks

Wanderlust may be advantageous despite it’s risks ...
... ability to exploit occasional random opportunities!
Moment dynamics may succeed in predicting victors ...
... sometimes useful information in a model’s failure!

Var{y} = 2/n analytical Slow wins boundary agrees
quantitatively w/Kessler-Sander simulations for 1-d,
simple diffusion & “mild” environmental fluctuations.

Major question: given environment with given level of
demographic fluctuations, i1s there optimal mobility?

Seems so!



Variable mobility competition
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Pairwise invasibility plot. Resident species begins at carrying
capacity on each fecund site, mutant begins with one individual
on each site. Grey scale represents fraction of trials where
invader goes extinct in 100 runs with n=10, L=500, ¢=0.5.



|

Thanks for your attention!

f
X



