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Self-avoiding walk model

Models polymers in good solvent limit.

Exactly captures universal properties such as critical
exponents.
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SAW Not a SAW
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Critical phenomena

The number of SAWs of length N, cN , tells us about how
many conformations are available to SAWs of a particular
length:

cN ∼ A Nγ−1µN [1 + corrections]

Mean square end to end distance tells us about the size of a
typical SAW:

〈R2
e 〉N ∼ DeN2ν [1 + corrections]

We wish to determine γ, ν, and µ as accurately as possible for
SAWs on Z3.

5 / 35
Efficient Monte Carlo simulation of polymers

N



SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Critical phenomena

The number of SAWs of length N, cN , tells us about how
many conformations are available to SAWs of a particular
length:

cN ∼ A Nγ−1µN [1 + corrections]

Mean square end to end distance tells us about the size of a
typical SAW:

〈R2
e 〉N ∼ DeN2ν [1 + corrections]

We wish to determine γ, ν, and µ as accurately as possible for
SAWs on Z3.

5 / 35
Efficient Monte Carlo simulation of polymers

N



SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Critical phenomena

The number of SAWs of length N, cN , tells us about how
many conformations are available to SAWs of a particular
length:

cN ∼ A Nγ−1µN [1 + corrections]

Mean square end to end distance tells us about the size of a
typical SAW:

〈R2
e 〉N ∼ DeN2ν [1 + corrections]

We wish to determine γ, ν, and µ as accurately as possible for
SAWs on Z3.

5 / 35
Efficient Monte Carlo simulation of polymers

N



SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Monte Carlo

Scheme: top-level method for sampling polymer
configurations. Examples include: Markov chain Monte Carlo,
umbrella sampling, Wang-Landau, PERM.

Move set: operations which are used to generate new
configurations from old ones.

Implementation: polymer data structure.

Focus here: moves and implementation.
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Markov chain Monte Carlo (MCMC)

Sample from a probability distribution.

Generate a new configuration from current one.

Ensure that chain samples uniformly from whole set of
configurations.

Efficiency for calculating observable A determined by degree
of correlation in the time series Ai . In particular, the
integrated autocorrelation time τint of the chain.

τint is the number of time steps necessary before an
“essentially new” configuration is reached with respect to
observable A.
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Moves

A move is a transformation of the SAW which may result in a
new SAW.

Local moves include one bead flips and the reptation or
slithering snake move.

Non-local moves include pivots and cut-and-permute moves.

Many popular local and non-local moves can be defined in
terms of “cut-and-paste” moves.
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One bead moves (from Sokal, 1994 [Sok94])
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Two bead moves (from Sokal, 1994 [Sok94])
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Slithering snake / reptation move (from Sokal, 1994 [Sok94])
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Pivot move (from Sokal, 1994 [Sok94])

Non-local move (unless close to end)
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Cut-and-paste move, arbitrary symmetry, may permute sub-walks
(from Janse van Rensburg, 2009 [JvR09])

Scale of move depends on size of sub-walks – any length scale
possible. Pivots are a special case of cut-and-paste moves.
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Rotating a single bond in the middle of a SAW, O(N) monomers
move distance O(1). Cut-and-paste moves generalise what are

usually regarded as “local” moves.
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Pivot algorithm

Invented in 1969 by Lal.

The power of the method only realised since influential paper
by Madras and Sokal in 1988 (over 500 citations).

Monte Carlo method of choice for studying SAWs and similar
models when the length of the walk is fixed.

Markov chain, pivot operations generate new SAWs. When
resulting configuration is not a SAW, move is rejected.

Will now show a sequence of successful pivots applied to an
n = 65536 site SAW on the square lattice.
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SAW-tree

How do we implement pivot algorithm efficiently?

Represent SAW as a binary tree.

Each node of tree contains global information about sub-walk,
including bounding box and global observables.

Ensures all cut-and-paste moves can be performed in time
O(log N) via tree-rotations, as height of binary tree O(log N).

Calculation of change of interaction energy is system
dependent:

O(log N) for SAWs, even for global moves
unknown for polymers in θ or collapsed phases; may have
complicated dependence on N - should be worse than log N.
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SAW-tree

Bounding box
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SAW-tree

Bounding box
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SAW-tree
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Pivot algorithm

After applying pivot to a SAW with 64 sites, will show
algorithm to determine whether new configuration is
self-avoiding.

Can be easily adapted to ISAW and related models.

Algorithm uses “depth-first search” in an attempt to find
intersections, recursively applying the observation that when
the bounding box of two sub-walks do not intersect, then the
sub-walks themselves cannot intersect.
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Implementing cut-and-paste moves via the SAW-tree:

Split polymer into pieces, O(log N).

Apply move(s) to sub-walk(s), O(1).

Calculate change in interaction energy between sub-walks. For
SAWs, O(log N).

Accept / reject move.

Merge chains, O(log N).
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SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Madras and Sokal (1988): implementation CPU time of
approximately O(N0.89) per attempted pivot for Z3.

Kennedy (2002): implementation which is approximately
O(N0.74).

SAW-tree implementation of the pivot algorithm, average case
O(log N) for N-step SAWs [Cli10a]. Enables simulation of
much longer SAWs, so far up to 265 million steps.

Estimated ν = 0.587597(7) [Cli10b].

Previous estimates are 0.5874(2) (MC, Prellberg, 2001) and
0.58756(5) (MCRG, Belohorec, 1997).
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CPU time per attempted pivot, for SAWs of length N:
Z2 Z3

N S-t (µs) M&S/S-t K/S-t S-t (µs) M&S/S-t K/S-t

31 0.41 0.894 1.06 0.59 0.981 1.37
1023 0.87 5.15 1.90 1.71 6.31 3.75

32767 1.27 68.6 4.92 3.36 79.2 21.5
1048575 2.91 2510 32.2 7.53 3830 385

33554431 4.57 35200 134 12.58 61700 7130
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Dimerization

Most straightforward method to calculate γ: dimerization, i.e.
concatenating two SAWs to see if they form a longer SAW.

Indicator function for successful concatenation is our
observable, and

B(ω1, ω2) =

{
0 if ω1 ◦ ω2 not self-avoiding

1 if ω1 ◦ ω2 self-avoiding
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B(ω1, ω2) = 1 B(ω1, ω2) = 0
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Dimerization

〈B〉 =
Number of 2N − 1 step SAWs

Number of pairs of N − 1 step SAWs

=
c2N−1

c2
N−1

∼ Aµ2N−1(2N − 1)γ−1

A2µ2N−2(N − 1)2γ−2

∼ 2γ−1µ

A
N1−γ [1 + corrections]

Generate two Markov chains of N − 1 step SAWs using pivot
algorithm.

Sample B(ω1, ω2) for every time step.
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SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

How many pivots must be completed before two walks are
essentially new configurations with respect to observable B?

Shape of walks close to the joint clearly important.

Simple argument suggests mean distance from joint where
first intersection occurs is O(N2−γ).

For uniform sampling, probability that pivot site is before
O(N2−γ) is O(N1−γ). Is τint = O(Nγ−1)?

No. Require full probability distribution, not mean, to
determine τint; in fact τint = Ω(N) for uniform sampling.
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SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Choose pivot sites preferentially close to the joint.

Natural to choose using a power law.

Robust choice: Pr(d) ∝ 1
d , d is distance from joint.

Sites chosen at all length scales with equal probability.
Probability that i ∈ [L, 2L] is O(1/ log N); “scale-free” pivot
moves.

Lower bound for τint: the time necessary to achieve a pivot
before the first intersection.

Plausible upper bound for τint: time necessary for successful
pivots to be achieved at all possible length scales, i.e.
O(log N) successful pivots.

τint = O(Np log N).

29 / 35
Efficient Monte Carlo simulation of polymers

N



SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Choose pivot sites preferentially close to the joint.

Natural to choose using a power law.

Robust choice: Pr(d) ∝ 1
d , d is distance from joint.

Sites chosen at all length scales with equal probability.
Probability that i ∈ [L, 2L] is O(1/ log N); “scale-free” pivot
moves.

Lower bound for τint: the time necessary to achieve a pivot
before the first intersection.

Plausible upper bound for τint: time necessary for successful
pivots to be achieved at all possible length scales, i.e.
O(log N) successful pivots.

τint = O(Np log N).

29 / 35
Efficient Monte Carlo simulation of polymers

N



SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Choose pivot sites preferentially close to the joint.

Natural to choose using a power law.

Robust choice: Pr(d) ∝ 1
d , d is distance from joint.

Sites chosen at all length scales with equal probability.
Probability that i ∈ [L, 2L] is O(1/ log N); “scale-free” pivot
moves.

Lower bound for τint: the time necessary to achieve a pivot
before the first intersection.

Plausible upper bound for τint: time necessary for successful
pivots to be achieved at all possible length scales, i.e.
O(log N) successful pivots.

τint = O(Np log N).

29 / 35
Efficient Monte Carlo simulation of polymers

N



SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Choose pivot sites preferentially close to the joint.

Natural to choose using a power law.

Robust choice: Pr(d) ∝ 1
d , d is distance from joint.

Sites chosen at all length scales with equal probability.
Probability that i ∈ [L, 2L] is O(1/ log N); “scale-free” pivot
moves.

Lower bound for τint: the time necessary to achieve a pivot
before the first intersection.

Plausible upper bound for τint: time necessary for successful
pivots to be achieved at all possible length scales, i.e.
O(log N) successful pivots.

τint = O(Np log N).

29 / 35
Efficient Monte Carlo simulation of polymers

N



SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Choose pivot sites preferentially close to the joint.

Natural to choose using a power law.

Robust choice: Pr(d) ∝ 1
d , d is distance from joint.

Sites chosen at all length scales with equal probability.
Probability that i ∈ [L, 2L] is O(1/ log N); “scale-free” pivot
moves.

Lower bound for τint: the time necessary to achieve a pivot
before the first intersection.

Plausible upper bound for τint: time necessary for successful
pivots to be achieved at all possible length scales, i.e.
O(log N) successful pivots.

τint = O(Np log N).

29 / 35
Efficient Monte Carlo simulation of polymers

N



SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Choose pivot sites preferentially close to the joint.

Natural to choose using a power law.

Robust choice: Pr(d) ∝ 1
d , d is distance from joint.

Sites chosen at all length scales with equal probability.
Probability that i ∈ [L, 2L] is O(1/ log N); “scale-free” pivot
moves.

Lower bound for τint: the time necessary to achieve a pivot
before the first intersection.

Plausible upper bound for τint: time necessary for successful
pivots to be achieved at all possible length scales, i.e.
O(log N) successful pivots.

τint = O(Np log N).

29 / 35
Efficient Monte Carlo simulation of polymers

N



SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Choose pivot sites preferentially close to the joint.

Natural to choose using a power law.

Robust choice: Pr(d) ∝ 1
d , d is distance from joint.

Sites chosen at all length scales with equal probability.
Probability that i ∈ [L, 2L] is O(1/ log N); “scale-free” pivot
moves.

Lower bound for τint: the time necessary to achieve a pivot
before the first intersection.

Plausible upper bound for τint: time necessary for successful
pivots to be achieved at all possible length scales, i.e.
O(log N) successful pivots.

τint = O(Np log N).

29 / 35
Efficient Monte Carlo simulation of polymers

N



SAWs MC Pivot SAW-tree Scale-free moves Applications Summary

Comparison of parameter estimates.

From 〈B〉, accurate calculation of the critical exponent γ for
d = 3, γ = 1.156957(9).

Compare with 1.1573(2) (MC, Hsu & Grassberger, 2004),
1.1575(6) (MC, Caracciolo et al. 1998), and 1.1569(6)
(enumeration, Clisby et al. 2007).
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Similar trick for the calculation of µ.

Estimated µ = 4.6840395(5) in about 15000 CPU hours.

Compare with 4.684038(6) (MC, Hsu & Grassberger, 2004),
4.684043(12) (enumeration, Clisby et al., 2007).
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Scale-free moves

If polymer system has internal length scales Nα1 ,Nα2 , · · · ,
choose moves uniformly from all possible length scales.

Moves at smallest length scales will be accepted with high
probability but result in little change.

Larger length scales: low probability, large change.

Algorithm self-selects the length scales which do the most
work, with a log N penalty for τint.
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Confined polymers

Length scales introduced by putting polymer in a confined
region, e.g. between two parallel plates, or in a tube.

Perform cut-and-paste moves on polymer.

If we select endpoints of sub-walks uniformly from
log(distance), we guarantee that all length scales will be
accounted for.

Cut-and-paste moves (including pivots).

Moves may have different characteristic length scales, e.g. for
polymer confined between parallel plates, rotations in x-y
plane global, restricted for other planes.

Automatic tuning by selecting site separation uniformly from
log(distance).
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Other systems with intermediate length scales

Polymer knotting (knots are localized on self-avoiding
polygons).

Polymers near θ (collapse) transition.

Star polymers / branched polymers (distance to branch point).

Polymers tethered to a surface.
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Summary

SAW-tree data structure has resulted in much faster
implementation of pivot algorithm, and other global moves.

Cut-and-paste moves can be tuned to arbitrary length scales.

Where there are intermediate length scales, which may be
poorly understood, using scale-free moves for polymer
simulation ensures that all length scales of the system are
probed for a modest log N penalty.

System “selects” moves which do the most work, no need to
choose length scales by hand. Robust, simple, efficient.
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