Electromagnetic cloaking and near cloaking at all frequencies

Collaborators: R.V. Kohn, H.M. Nguyen, D. Onofrei,
H. Shen, M.I. Weinstein.

Science Times

Flirting with invisibility: New materials can bend some wavelengths of light around an object (as in this idealized simulation) to make it vanish.

The cloaking device is a cylinder designed to bend microwaves of a specific wavelength.

> By KENNETH CHANG

Increasingly, physicists are constructing materials that bend light the "wrong" way, thanever lenses or maybe even make objects disappear.
Last October
Last October, scientists at Duke demonstrated a working, cloaking device, hiding worked only for microwaves.
In the experiment, a beam of microwave light splitin two as it flowed around a spe-
cially designed cylinder and then almost cially designed cylinder and then almost
seamlessly merged back together on the other side. That meant that an object placed

The device is placed in an electromagnetic field: Above, microwaves travel left to right
inside the cylinder was effectively invisible. No light waves bounced off the object, and
someone looking at it would have seen only someone looking at
what was behind it
The cloak was not perfect. An alien with
microwave vision microwave vision would not have seen the
object, but might have noticed something odd. "You'd see a darkened spot," said David R. Smith, a professor of electrical and computer engineering at Duke. "You'd see
some distortion, and you'd see some shadowing, and you would see some reflection." A much greater limitation was that this
particular cloak worked for just one particparticular cloak worked for just one partic-
ular "color," or wavelength, of microwave light, limiting its usefulness as a hiding

A wavefter entering the cloaking device is bent and diverted.

Now Yousee it Duke researchers builta simplified version of theircloaking device out glass sheets and demonstrated thatits successfully diverted microwaves.

The wave solits, flowing around the cloaked The wave splits, flowing around the cloak
place. Making a cloak that works at the much shorter wavelenghs or visibe light or
one that works over a wide range of colors is one even harder, perhaps impossible, task. Nonetheless, the demonstration showed
the newfound ability of scientists to maniputhe newfound ability of scientists to manipu-
late light through structures they call "metamaterials."
Obviously the military would be interested in any material that could be used to hide
vehicles or other equipment. But such materials could also be usefult in new types of microscopes and antennae. So far, scientists have written down the underlying equations,
performed computer simulations and conducted some proof-of-principle experiments

Since the device does not significantly reflec or disturb the wave, it is effectively invis bible. mercian Physial Scciely and stevera. Cam mer, Duke Universtit like the one at Duke. They still need to de they can bend light to their will. The method is not magic, nor are the masubiastances like fiberglass and conper to build metamaterials that look like mosaics of repeating tiles. The metamaterials interact with the electric and magnetic fields in light waves, manipulating a quantity known a way that no natural material does "There are some things that chemistry can't do on its own," said John B. Pendry, Continued on Page 4

Time harmonic solutions to the Maxwell Equations with TM symmetry:

$$
\left\{\begin{aligned}
\nabla \cdot(\sigma \nabla u)+\omega^{2} q u & =0 & & \text { in } \Omega \\
u & =f & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

The electric field has the form $U(x, t)=e^{-i \omega t} u(x)$.

Time harmonic solutions to the Maxwell Equations with TM symmetry:

$$
\left\{\begin{aligned}
\nabla \cdot(\sigma \nabla u)+\omega^{2} q u & =0 & & \text { in } \Omega \\
u & =f & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

The electric field has the form $U(x, t)=e^{-i \omega t} u(x)$.

Observable data Consist of the pairs $(f, \Lambda f)=\left(\left.u\right|_{\partial \Omega},\left.\sigma \nabla u \cdot \nu\right|_{\partial \Omega}\right)$ for all possible f.

Time harmonic solutions to the Maxwell Equations with TM symmetry:

$$
\left\{\begin{aligned}
\nabla \cdot(\sigma \nabla u)+\omega^{2} q u & =0 & & \text { in } \Omega \\
u & =f & & \text { on } \partial \Omega
\end{aligned}\right.
$$

The electric field has the form $U(x, t)=e^{-i \omega t} u(x)$.

Observable data Consist of the pairs $(f, \Lambda f)=\left(\left.u\right|_{\partial \Omega},\left.\sigma \nabla u \cdot \nu\right|_{\partial \Omega}\right)$ for all possible f.

Goal: To construct a subset D of Ω and material parameters σ, q in $\Omega \backslash D$ such that independent of what one puts inside D the observable data are the same as for $\sigma=q=1$. In that case we shall say that the subset D is perfectly cloaked.

For simplicity we now take $\omega=0$.

For simplicity we now take $\omega=0$.

voltage f implies current flux g

voltage f implies same current flux g

For simplicity we now take $\omega=0$.

voltage f implies current flux g

voltage f implies same current flux g

Suppose σ_{c} cloaks $D \subset \Omega$ in the sense of giving same Dirichlet-to -Neumann map on $\partial \Omega$ (for any A inside D) as $\sigma=1$ in all of Ω.

For simplicity we now take $\omega=0$.

voltage f implies current flux g

$$
\begin{aligned}
& \sigma_{\mathrm{A}}=\mathrm{A}(\mathrm{x}) \\
& \sigma_{\mathrm{A}}=\sigma_{\mathrm{c}}(\mathrm{x})
\end{aligned}
$$

voltage f implies same current flux g

Suppose σ_{c} cloaks $D \subset \Omega$ in the sense of giving same Dirichlet-to -Neumann map on $\partial \Omega$ (for any A inside D) as $\sigma=1$ in all of Ω.

Let $\Omega \subset \Omega^{\prime}$. Then the Dirichlet-to-Neumann map of

$$
\sigma(x)= \begin{cases}A(x) & \text { for } x \in D \\ \sigma_{c}(x) & \text { for } x \in \Omega \backslash D \\ 1 & \text { for } x \in \Omega^{\prime} \backslash \Omega\end{cases}
$$

is independent of A, and identical to that of the domain Ω^{\prime} with constant conductivity $\sigma=1$.

A "mapping technique" to construct the perfect cloak σ_{c}.
Set $\Omega=B_{2}$ and $D=B_{1}$ (concentric balls of radius 2 and 1) and define

$$
F(x)=\left(1+\frac{1}{2}|x|\right) \frac{x}{|x|} \quad, \quad B_{2} \backslash\{0\} \rightarrow B_{2} \backslash \overline{B_{1}}
$$

Notice: $\left.F\right|_{\partial B_{2}}=$ identity and

$$
\int_{B_{2}}<\sigma \nabla u, \nabla u>d x=\int_{B_{2} \backslash \overline{B_{1}}}<F_{*} \sigma \nabla v, \nabla v>d x
$$

with

$$
F_{*} \sigma(x)=\frac{D F \sigma D F^{t}}{|\operatorname{det} D F|} \circ F^{-1}(x) \text { and } \quad v(x)=u \circ F^{-1}(x) .
$$

This makes

$$
\Lambda_{\sigma}=\Lambda_{F_{*} \sigma}
$$

independent of what we put inside B_{1} and so as a "perfect" cloak we
may use

$$
\begin{aligned}
\sigma_{c} & =F_{*} 1 \\
& =\frac{2^{n}}{(2+|z|)^{n-1}}\left[\left(\frac{1}{4}|z|^{n-1}+|z|^{n-2}+|z|^{n-3}\right)\left(I-\hat{x} \hat{x}^{t}\right)+\frac{1}{4}|z|^{n-1} \hat{x} \hat{x}^{t}\right]
\end{aligned}
$$

with

$$
|z|=\left|F^{-1}(x)\right|=2(|x|-1) \quad, \quad \hat{x}=\frac{x}{|x|} .
$$

A "mapping technique" to construct the approximate cloak $\sigma_{c}^{(\rho)}$.

Define

$$
F_{\rho}(x)= \begin{cases}\frac{x}{\rho} & \text { for } x \in B_{\rho} \\ \left(\frac{2-2 \rho}{2-\rho}+\frac{1}{2-\rho}|x|\right) \frac{x}{|x|} & \text { for } x \in B_{2} \backslash B_{\rho}\end{cases}
$$

and

$$
\sigma_{c}^{(\rho)}=\left(F_{\rho}\right)_{*} 1
$$

$$
\sigma_{\rho}(x): \quad \sigma_{A}(x):
$$

$\left\{\begin{array}{ll}\left(F_{\rho}^{-1}\right)_{*} A(x) & \text { for } x \in B_{\rho} \\ 1 & \text { for } x \in B_{2} \backslash B_{\rho}\end{array} \quad \begin{cases}A(x) & \text { for } x \in B_{1} \\ \sigma_{c}^{(\rho)}(x) & \text { for } x \in B_{2} \backslash B_{1}\end{cases}\right.$

$$
\sigma_{\rho}(x): \quad \sigma_{A}(x):
$$

$\left\{\begin{array}{ll}\left(F_{\rho}^{-1}\right)_{*} A(x) & \text { for } x \in B_{\rho} \\ 1 & \text { for } x \in B_{2} \backslash B_{\rho}\end{array} \quad \begin{cases}A(x) & \text { for } x \in B_{1} \\ \sigma_{c}^{(\rho)}(x) & \text { for } x \in B_{2} \backslash B_{1}\end{cases}\right.$

Then $\Lambda_{\sigma_{A}}=\Lambda_{\sigma_{\rho}}$ and so

$$
\left\|\Lambda_{\sigma_{A}}-\Lambda_{1}\right\|=\left\|\Lambda_{\sigma_{\rho}}-\Lambda_{1}\right\| \leq C \rho^{n}
$$

This asserts that "near cloaking" may be achieved at any prescribed level

- the essential fact being that the constant C is independent of $A!$!

For the Helmholtz equation (non-zero fixed frequency) we similarly obtain

$$
\left\|\Lambda_{\sigma_{A}, q_{B}}-\Lambda_{1,1}\right\|=\left\|\Lambda_{\sigma_{\rho}, q_{\rho}}-\Lambda_{1,1}\right\| \leq \frac{C}{|\log \rho|} \text { for } n=2
$$

For $n=3$ the similar bound becomes $C \rho^{1}$. The constant C is independent of A and B (the coefficients we are attempting to cloak).

- the essential fact being that the constant C is independent of $A!$!

For the Helmholtz equation (non-zero fixed frequency) we similarly obtain

$$
\left\|\Lambda_{\sigma_{A}, q_{B}}-\Lambda_{1,1}\right\|=\left\|\Lambda_{\sigma_{\rho}, q_{\rho}}-\Lambda_{1,1}\right\| \leq \frac{C}{|\log \rho|} \text { for } n=2
$$

For $n=3$ the similar bound becomes $C \rho^{1}$. The constant C is independent of A and B (the coefficients we are attempting to cloak). An additional (absorbing) layer of conductivity $\approx \rho^{-2}$, and occupying $B_{\rho} \backslash \overline{B_{\rho / 2}}$, is necessary. The "cloaked" region then becomes $B_{1 / 2}$.

- the essential fact being that the constant C is independent of $A!$!

For the Helmholtz equation (non-zero fixed frequency) we similarly obtain

$$
\left\|\Lambda_{\sigma_{A}, q_{B}}-\Lambda_{1,1}\right\|=\left\|\Lambda_{\sigma_{\rho}, q_{\rho}}-\Lambda_{1,1}\right\| \leq \frac{C}{|\log \rho|} \text { for } n=2
$$

For $n=3$ the similar bound becomes $C \rho^{1}$. The constant C is independent of A and B (the coefficients we are attempting to cloak).

An additional (absorbing) layer of conductivity $\approx \rho^{-2}$, and occupying $B_{\rho} \backslash \overline{B_{\rho / 2}}$, is necessary. The "cloaked" region then becomes $B_{1 / 2}$.

The constant C depends on ω but is completely independent of σ_{A} and q_{B} inside $B_{1 / 2}$.

- the essential fact being that the constant C is independent of $A!!$

For the Helmholtz equation (non-zero fixed frequency) we similarly obtain

$$
\left\|\Lambda_{\sigma_{A}, q_{B}}-\Lambda_{1,1}\right\|=\left\|\Lambda_{\sigma_{\rho}, q_{\rho}}-\Lambda_{1,1}\right\| \leq \frac{C}{|\log \rho|} \text { for } n=2
$$

For $n=3$ the similar bound becomes $C \rho^{1}$. The constant C is independent of A and B (the coefficients we are attempting to cloak).

An additional (absorbing) layer of conductivity $\approx \rho^{-2}$, and occupying $B_{\rho} \backslash \overline{B_{\rho / 2}}$, is necessary. The "cloaked" region then becomes $B_{1 / 2}$.

The constant C depends on ω but is completely independent of σ_{A} and q_{B} inside $B_{1 / 2}$.

We have studied the uniformity of C with respect to frequency ω. To avoid some of the eigenvalue issue we have conducted this study in the context of the scattering problem $\left(\Omega=\mathbb{R}^{n}\right)$. We have considered only
incident plane waves:

$$
u_{\rho, s}(x)=u_{\rho}(x)-e^{i \omega x \cdot \eta}
$$

With

$$
\sigma_{\rho}=q_{\rho}=1 \quad \text { in } \Omega \backslash B_{\rho}
$$

$$
\sigma_{\rho}=1, q_{\rho}=1+\frac{i}{\omega \rho \lambda} \quad \text { in } B_{\rho} \backslash B_{\rho / 2}
$$

$$
\sigma_{\rho}, q_{\rho} \text { arbitrary, real }
$$

$$
\text { in } B_{\rho / 2}
$$

and $u_{\rho, s}$ satisfying the outgoing radiation condition,
a typical L^{2} estimate now reads
a typical L^{2} estimate now reads

$$
\text { For } \omega>1 / \rho: \quad\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \rho^{\frac{n-1}{2}}, n=2,3
$$

a typical L^{2} estimate now reads

$$
\text { For } \omega>1 / \rho: \quad\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \rho^{\frac{n-1}{2}}, n=2,3
$$

For $\omega \leq 1 / \rho, \quad$ and $n=3$:

$$
\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \max \{1, \lambda /(\omega \rho)\} \rho,
$$

a typical L^{2} estimate now reads

For $\omega>1 / \rho: \quad\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \rho^{\frac{n-1}{2}}, n=2,3$,

For $\omega \leq 1 / \rho, \quad$ and $n=3$:

$$
\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \max \{1, \lambda /(\omega \rho)\} \rho,
$$

For $\omega \leq 1 / \rho, \quad$ and $n=2$:

$$
\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \max \{1, \lambda /(\omega \rho)\} \frac{\left|H_{0}^{(1)}(\omega)\right|}{\left|H_{0}^{(1)}(\rho \omega)\right|}
$$

a typical L^{2} estimate now reads

$$
\text { For } \omega>1 / \rho: \quad\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \rho^{\frac{n-1}{2}}, n=2,3
$$

For $\omega \leq 1 / \rho, \quad$ and $n=3$:

$$
\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \max \{1, \lambda /(\omega \rho)\} \rho,
$$

For $\omega \leq 1 / \rho, \quad$ and $n=2$:

$$
\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \max \{1, \lambda /(\omega \rho)\} \frac{\left|H_{0}^{(1)}(\omega)\right|}{\left|H_{0}^{(1)}(\rho \omega)\right|} .
$$

K is a compact subset of $\mathbb{R}^{n} \backslash \overline{B_{2}}$.
a typical L^{2} estimate now reads

$$
\text { For } \omega>1 / \rho: \quad\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \rho^{\frac{n-1}{2}}, n=2,3
$$

For $\omega \leq 1 / \rho, \quad$ and $n=3$:

$$
\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \max \{1, \lambda /(\omega \rho)\} \rho,
$$

For $\omega \leq 1 / \rho, \quad$ and $n=2$:

$$
\left\|u_{\rho, s}\right\|_{L^{2}(K)} \leq C \max \{1, \lambda /(\omega \rho)\} \frac{\left|H_{0}^{(1)}(\omega)\right|}{\left|H_{0}^{(1)}(\rho \omega)\right|} .
$$

K is a compact subset of $\mathbb{R}^{n} \backslash \overline{B_{2}}$.

Let u and u_{c} be the solutions to the $3 d$ wave equations:

$$
\left\{\begin{array}{l}
\partial_{t t}^{2} u-\Delta u=f \tag{1}\\
u(t=0)=u_{0} \\
\\
\partial_{t} u(t=0)=u_{1}
\end{array}\right.
$$

Here

$$
\sigma_{A}, q_{B}, \gamma= \begin{cases}F_{\rho_{*}} I, F_{\rho_{*}} 1,0 & \text { in } \mathbb{R}^{3} \backslash B_{1} \\ F_{\rho_{*}} I, F_{\rho_{*}} 1, F_{\rho_{*}}\left(1 / \rho^{2+\alpha}\right) & \text { in } B_{1} \backslash B_{1 / 2} \\ A, B, 0 & \text { in } B_{1 / 2}\end{cases}
$$

We will assume that $\operatorname{supp} f \subset[0, T] \times\left(B_{4} \backslash B_{2}\right)$ for some $T>0$, $\operatorname{supp} u_{0}, \operatorname{supp} u_{1} \subset B_{4} \backslash B_{2}, f, u_{0}, u_{1}$ are smooth.

For $\alpha>1 / 2$ there exists a positive constant C depending on the range of A and B such that

$$
\sup _{t>0}\left\|u_{c}(t)-u(t)\right\|_{L^{2}(K)} \leq C \rho\left(\|f\|+\left\|u_{0}\right\|+\left\|u_{1}\right\|\right) .
$$

K is a compact subset of $\mathbb{R}^{n} \backslash \overline{B_{2}}$. Here

$$
\|f\|=\|f\|_{C^{2}}, \quad\left\|u_{0}\right\|=\left\|u_{0}\right\|_{C^{2}}, \quad \text { and } \quad\left\|u_{1}\right\|=\left\|u_{1}\right\|_{C^{1}}
$$

