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Goal: To construct a subset D of Ω and material parameters σ , q in

Ω \D such that independent of what one puts inside D the observable

data are the same as for σ = q = 1. In that case we shall say that the

subset D is perfectly cloaked.
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Suppose σc cloaks D ⊂ Ω in the sense of giving same Dirichlet-to

-Neumann map on ∂Ω (for any A inside D) as σ = 1 in all of Ω.

Let Ω ⊂ Ω′. Then the Dirichlet-to-Neumann map of

σ(x) =

8>>><>>>:
A(x) for x ∈ D

σc(x) for x ∈ Ω \D

1 for x ∈ Ω′ \ Ω

is independent of A, and identical to that of the domain Ω′ with constant

conductivity σ = 1.



A “mapping technique” to construct the perfect cloak σc.

Set Ω = B2 and D = B1 (concentric balls of radius 2 and 1) and define

F (x) = (1 +
1

2
|x|) x

|x| , B2 \ {0} → B2 \B1

Notice: F |∂B2 = identity andZ
B2

< σ∇u ,∇u > dx =

Z
B2\B1

< F∗σ∇v ,∇v > dx

with

F∗σ(x) =
DFσDF t

|detDF | ◦ F−1(x) and v(x) = u ◦ F−1(x) .

This makes

Λσ = ΛF∗σ

independent of what we put inside B1 and so as a “perfect” cloak we



may use

σc = F∗1

=
2n

(2 + |z|)n−1

»
(
1

4
|z|n−1 + |z|n−2 + |z|n−3)(I − x̂x̂t) +

1

4
|z|n−1x̂x̂t

–
with

|z| = |F−1(x)| = 2(|x| − 1) , x̂ =
x

|x| .

A “mapping technique” to construct the approximate cloak σ
(ρ)
c .

Define

Fρ(x) =

8<: x
ρ

for x ∈ Bρ

( 2−2ρ
2−ρ

+ 1
2−ρ

|x|) x
|x| for x ∈ B2 \Bρ

and

σ(ρ)
c = (Fρ)∗1
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Then ΛσA = Λσρ and so

‖ΛσA − Λ1‖ = ‖Λσρ − Λ1‖ ≤ Cρn

This asserts that “near cloaking” may be achieved at any prescribed level
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We have studied the uniformity of C with respect to frequency ω. To

avoid some of the eigenvalue issue we have conducted this study in the

context of the scattering problem (Ω = IRn). We have considered only



incident plane waves:

uρ,s(x) = uρ(x)− eiωx·η

With 8>>>>>><>>>>>>:

σρ = qρ = 1 in Ω \Bρ

σρ = 1, qρ = 1 + i
ωρλ

in Bρ \Bρ/2

σρ, qρ arbitrary, real in Bρ/2

,

and uρ,s satisfying the outgoing radiation condition,



a typical L2 estimate now reads



a typical L2 estimate now reads

For ω > 1/ρ : ‖uρ,s‖L2(K) ≤ Cρ
n−1

2 , n = 2, 3 ,



a typical L2 estimate now reads

For ω > 1/ρ : ‖uρ,s‖L2(K) ≤ Cρ
n−1

2 , n = 2, 3 ,

For ω ≤ 1/ρ , and n = 3 :

‖uρ,s‖L2(K) ≤ C max{1, λ/(ωρ)}ρ ,



a typical L2 estimate now reads

For ω > 1/ρ : ‖uρ,s‖L2(K) ≤ Cρ
n−1

2 , n = 2, 3 ,

For ω ≤ 1/ρ , and n = 3 :

‖uρ,s‖L2(K) ≤ C max{1, λ/(ωρ)}ρ ,

For ω ≤ 1/ρ , and n = 2 :

‖uρ,s‖L2(K) ≤ C max{1, λ/(ωρ)} |H
(1)
0 (ω)|

|H(1)
0 (ρω)|

.



a typical L2 estimate now reads

For ω > 1/ρ : ‖uρ,s‖L2(K) ≤ Cρ
n−1

2 , n = 2, 3 ,

For ω ≤ 1/ρ , and n = 3 :

‖uρ,s‖L2(K) ≤ C max{1, λ/(ωρ)}ρ ,

For ω ≤ 1/ρ , and n = 2 :

‖uρ,s‖L2(K) ≤ C max{1, λ/(ωρ)} |H
(1)
0 (ω)|

|H(1)
0 (ρω)|

.

K is a compact subset of IRn \B2.



a typical L2 estimate now reads

For ω > 1/ρ : ‖uρ,s‖L2(K) ≤ Cρ
n−1

2 , n = 2, 3 ,

For ω ≤ 1/ρ , and n = 3 :

‖uρ,s‖L2(K) ≤ C max{1, λ/(ωρ)}ρ ,

For ω ≤ 1/ρ , and n = 2 :

‖uρ,s‖L2(K) ≤ C max{1, λ/(ωρ)} |H
(1)
0 (ω)|

|H(1)
0 (ρω)|

.

K is a compact subset of IRn \B2.



Let u and uc be the solutions to the 3d wave equations:8>>>>>>>><>>>>>>>>:

∂2
ttu−∆u = f,

u(t = 0) = u0,

∂tu(t = 0) = u1.

(1)

and 8>>>>>>>><>>>>>>>>:

qB∂2
ttuc −∇ · (σA∇uc) + γ∂tuc = f,

uc(t = 0) = u0,

∂tuc(t = 0) = u1.

(2)



Here

σA, qB , γ =

8>>>>>>>><>>>>>>>>:

Fρ∗I, Fρ∗1, 0 in IR3 \B1,

Fρ∗I, Fρ∗1, Fρ∗

“
1/ρ2+α

”
in B1 \B1/2,

A, B, 0 in B1/2.

We will assume that suppf ⊂ [0, T ]× (B4 \B2) for some T > 0,

suppu0, suppu1 ⊂ B4 \B2, f, u0, u1 are smooth.

For α > 1/2 there exists a positive constant C

depending on the range of A and B such that

sup
t>0

‖uc(t)− u(t)‖L2(K) ≤ Cρ
“
‖f‖+ ‖u0‖+ ‖u1‖

”
.

K is a compact subset of IRn \B2. Here

‖f‖ = ‖f‖C2 , ‖u0‖ = ‖u0‖C2 , and ‖u1‖ = ‖u1‖C1 .


