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Real-space RG methods for 1+1 dimensional 

quantum spin systems 

 

• Starting point: Wilson‟s numerical renormalization group for 

simulating Kondo impurity („75) 

– Crucial ingredient: exponentially decreasing energy scales 

– Central problem: does not work for translational invariant 

systems 

 

• Breakthrough: White‟s density matrix renormalization group („92) 

– Crucial ingredient: information about all long-range correlations 

of the wavefunction are stored in a local density matrix 

–  yields extremely precise results for simulating ground states of 

spin and fermionic systems in 1+1 dimension 

 

 

 

 

 

 

 

 

 

 

 



Variational methods for strongly interacting 

quantum spin systems (II) 

• More recent conceptual advances: 

 

– NRG and DMRG work so well because they are variational 

methods within the class of matrix product states                                                       

     (Romer and Ostlund, Nishino, FV and Cirac,) 

– Matrix product states capture the physics for representing any 

ground state of a local Hamiltonian faithfully: area laws  
          (Peschel, Vidal,  FV and Cirac, Hastings) 

 

• Rephrasing DMRG in language of MPS allowed to extend the 

formalism to  

 

– higher dimensions: Projected Entangled Pair States  
     (FV and Cirac , precursors by Martin-Delgado and Sierra,  Nishino) 

– real-time evolution of low-energy states (Vidal et al.) 

 

 



Matrix product states  

• Those real-space RG methods can be reformulated as variational methods over the 

class of matrix product state wavefunctions 

 

– Matrix product states also known as  “Finitely Correlated States”  (Fannes, 

Nachtergaele and Werner), which are on their turn generalizations of the valence 

bond AKLT-states of Affleck-Kennedy-Lieb-Tasaki 

 

 

 

 

 

 

 

 

 

 

– Variational method in practice: recursive optimization of different projectors  

       => we can go back to adjust initial choices made   (== DMRG) 

• DMRG yields numerical algorithm that works basically up to machine precision  
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Transfer matrices and matrix product states 

• Contracting tensor networks consisting of MPS and matrix product 

operators can be done recursively 

 

 

 

 

 

 

 

 

 

 

 

 

• Also yields connections between MPS and the algrebraic Bethe ansatz: 

novel ways of evaluting correlation functions 

 

 



Matrix product states and area laws 

• All MPS exhibit very few block entanglement : 

 

 

 

 

 

• Converse is also true: if the block entropy is measured by Renyi entropies 

with                     , then small entanglement implies approximable by MPS 
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Is it possible to construct similar variational 

wavefunctions for QFT? 
 

• It would be very interesting to develop wave-function based 

formalism to describe quantum field theory 

 

– Divergencies may disappear automatically if the wavefunctions 

have some build-in cut-off 

 

– Would open the door for describing non-equilibrium behaviour in 

Minkowski space: real-time evolution 

 

– Might lead to a better understanding of topological quantum 

order, magnetic monopoles, … 

 

– Would describe current experiments in optical lattices, atom 

chips, etc. 



 

• Feynman‟s last talk: “Difficulties in Applying the Variational Principle 

to Quantum Field Theories” 

 

 

– “… I didn‟t get anywhere. So I want to take, for the sake of 

arguments, a very strong view – which is stronger than I really 

believe – and argue that it is no damn good at all! ” 

 

– 3 Major Objections: 

 

• Sensitivity to high frequencies 

• Only exponential trial states 

• We still have to do a functional integral in 1 dimension lower 

 

– One visionary insight: local parameterization of the global 

wavefunction 

Proc. Int. Workshop on Variational Calculus in Quantum 

Field Theory, Wangerooge, West Germany, Sept. 1-4, 1987. 



Feynman Objection I:  

Sensitivity to High Frequencies 

• Energy contributions to the total energy of the high frequency modes 

are much more important than the low-energy ones (cfr. Zero-point 

energy) 

 

• Therefore any variational method will try to get the high-frequencies 

right, even at the cost of getting low-energy behaviour wrong 

 

– “… what happens when I allow it to adjust its parameter (to lower the total 

energy), is it improves the imperfect function I was using at the high 

frequencies…” 

 

• This is obviously not what we want! 

– We are interested in long-range low-energy physics, this is the 

point of a quantum field theory 

   



Feynman Objection II:  

Only exponential trial states 

 

• For atoms, very good variational wavefunctions are of the form 

 

 

 

• This is not possible in the case of QFT, as the dimensions do not fit 

in formulae like  

 

 

as the wavefunction has to be “size extensive”  

 

• What we want instead is corrections of the form                                 but 

then we have to evaluate non-Gaussian functional integrals which is 

extremely hard to do with good enough precision 
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Feynman visionary suggestion as a way out: 

    “It‟s really quite insane actually: we are trying to find the energy by 

taking the expectation of an operator which is located here and we 

present ourselves with a functional which is dependent on 

everything all over the map. That‟s something wrong. Maybe there is 

some way to surround the object, or the region where we want to 

calculate things, by a surface and describe what things are coming 

in across the surface. It tells us everything that‟s going on outside. 

I‟m talking about a new kind of idea but that‟s the kind of stuff we 

shouldn‟t talk about at a talk, that‟s the kind of stuff you should 

actually do!” 



Continuous Matrix Product States in 1+1 

dimensions  

• Provides an ansatz for low-energy quantum states of quantum field 

theories for which none of the objections of Feynman apply, and 

which actually implement his idea as a way out 

 

– cMPS have an automatic high-energy cut-off built in 

– cMPS are of the exponential form but not Gaussian 

– Expectation values can be calculated exactly and with minimal effort 

– All information about long-range correlations is stored in the “density matrix” 

 

• Furthermore: 

 

– Allow for large local occupation number without an increase in the total number 

of variational parameters 

– Scale invariant by construction 

– Seem to capture the physics for describing low-energy behaviour of any local 

quantum field theory (just as MPS to for quantum spin systems) 

 



Definition of cMPS: 

FV, Cirac, PRL 2010 

 

Q(x), R(x) are DxD matrices acting on an auxiliary Hilbert space. The 

wavefunction is automatically normalized and the total number of 

parameters is exactly D2   if we use the gauge condition 



cMPS in second quantization 

 



How to calculate expectation values? 

 

Using the abovementioned gauge condition, the real parts of the 

eigenvalues of T are guaranteed to be non-positive, and there is 1 

eigenvalue equal to 0  

The correlation functions are decaying exponentially fast, and the 

correlation length is proportional to the inverse gap of the 

Lindbladian 



Illustration: the Lieb-Liniger model (I) 

 

FV, Cirac, PRL 2010 



Illustration: The Lieb-Liniger model (II) 

• Not just energies are well reproduced, also the correlation functions! 

FV, Cirac, PRL 2010 



What about high frequencies? 

• Expectation value of the non-relativistic kinetic energy: 

 

 

 

 

– This is automatically bounded if all matrices involved are 

bounded in norm 

 

– If a cMPS wavefunction is such that its second order derivative is 

continuous, then the expectation value of its high-frequency 

components scales like 

 

 

• This imposes an effective high-energy cut-off as all expectation 

values become finite; hence we can go and look at relativistic 

theories!  
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Example: free Dirac fermions with cMPS 

 

Simulation of free Dirac fermions by introducing an effective cut-off; plotted is n(k) obtained as 

the Fourier transform of the 1-particle density matrix 



Simulating the Gross Neveu model using cMPS 

 



The density matrix (I) 

• There is a simple way of calculating expectation values of CMPS in 

terms of a Lindblad  equation if working in the natural gauge:  

 

 

 

 

 

 

 

 

• The density matrix of the auxiliary field is exactly the density matrix 

arising in DMRG, and it parameterizes all the correlations present in 

the state. 

 



The density matrix (II) 

• The dynamics of this density matrix is governed by a local 

Markovian Lindblad equation   (cfr. CP-map in case of MPS) 

 

 

 

• The eigenvalues of this density matrix are the Schmidt coefficients 

of the half-chain 

 

• Note 1: entanglement entropy for cMPS is always bounded by the 

dimension of underlying matrices Q,R; to get a divergence, those 

matrices have to become infinite dimensional (cfr. Derrida et al. ‟95; 

Cirac, Sierra „10) 

 

• Note 2: relativistic theories always exhibit infinite entanglement 

entropy, but the divergence is due to the high-frequency modes, 

and those are not present if a cut-off is imposed. 



The variational problem 

• Without loss of generality, we can choose H(x)=0 by working in the 

interaction picture (corresponds to gauge transformations in auxiliary 

system); cost we have to pay is that R and Q=-1/2R*R become site-

dependent 

 

 

 

 

• For the scalar case (D=1), this reduces to the Gross-Pitaevski 

variational wavefunction 

 

• In general: write down action and corresponding Euler-Lagrange 

equations for the matrix R(x) 

– “Quantum” Gross-Pitaevski formalism 

– Also allows for e.g. time-evolution, … 



Holographic quantum states 

• The connection to the evolution of the auxiliary system exactly does 

what Feynman envisaged: if yields a local parameterization of global 

properties ! 

 

• It also leads to an equivalent way of parameterizing cMPS:  

 

– the physical system of interest can be interpreted as the 

purification of the dissipative evolution of the auxiliary system! 

 

– This is continuum version of the sequential generation scheme 

of MPS using a quantum circuit Schon, Wolf, Verstraete, Solano, Cirac „05 

Osborne, Eisert, FV „10 



Cavity QED 

 

 

 

 

• D-level atom in the cavity 

• Coupled to the cavity modes by a Hamiltonian H 

• Photons leak out of the cavity 

• Evolution of atom described by a Lindblad equation; the Lindblad 

terms correspond to quantum jumps and generate photons leaking 

out of the cavity 

• Global quantum State of all photons leaking out of cavity is precisely 

described by a cMPS 



• More formally: 

 

 

 

 

 

 

– H specifies the internal dynamics of the atom 

– R specifies how the atom couples to the cavity field 

 

• Those are precisely the type of systems that have been studied in 

cavity QED since the „80s 

 

– Time-time-time-… correlation functions of photons are equivalent to all 

correlations functions of cMPS: P. Zoller et al. effectively wrote down formulae 

for cMPS back in the ‟80s! 

– Provides connection between quantum measurement theory and quantum field 

theory! 

– This opens up possibility of simulating quantum field theories like Lieb-Liniger 

with cavity QED  
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non-equilibrium dynamics of a zero-dimensional vs 

static properties of a 1-dimensional system 
 

• Interestingly, this way of looking at the problem indicates that static 

properties of quantum field theories have a counterpart into time-time 

correlation functions of non-equilibrium systems in a dimension lower:   

holographic principle 

 

– Cfr. Classical stochastic processes in 1-D that exhibit phase transitions (traffic!) very 

much like 2-D classical partition functions 

 

– Same holds of course for MPS: instead of continuous evolution, we have evolution 

using CP-maps. This picture provides intuitive explanation for the emergence of the 

density matrix 

 

• Dissipative systems actually exhibit very rich structure and can be used 

for quantum information tasks: 

– Other manifestations: universal quantum computation using dissipative dynamics 

(FV, Wolf, Cirac Nat. Phys. ‟09), quantum Metropolis sampling (K. Temme. K. 

Vollbrecht, T. Osborne, D. Poulin, FV „09), mixing times in random walk algorithms 

(K. Temme. M. Kastoryano, M. Ruskai, M. Wolf, FV ‟10) 



Conclusions 

• We have a dream that we can develop quantum field theory with 

wavefunctions instead of path integrals 

 

• Continuous Matrix Product States seem to capture the low-energy 

physics of 1+1 dimensional quantum field theories (both relativistic 

and non-relativistic) 

 

• Intriguing connections between quantum field theory, quantum 

measurement theory, dissipative non-equilibrium phenomena and 

the holographic principle 
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What about using MPS-methods for simulating 

quantum field theories? 
 

• Obvious approach: discretize theory and put it on a lattice 

– Example: discretization of Lieb-Liniger model leads to Bose-Hubbard model:  

 

 

 

 

 

• Problems: 

– For MPS, the 2-point correlation functions are decaying exponentially in the 

number of sites between them; so it seems impossible to construct scale-

invariant solutions that yield the same correlation functions independent of the 

lattice parameter 

– For finite filling factor, the probability of having a particle is proportional to the 

lattice constant; this implies that all matrices in MPS have to become singular 

– In case of bosonic systems, we have to allow for large local occupation numbers; 

this increases numerical cost badly 

– Discretization of relativistic bosonic field theories: what mass to chose? 

– Fermion doubling problem 


