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Network Models of Excitable Media   
         — Nonequilibrium Phase Transitions (Dynamics & Structure) 



Networked systems of “excitable” units  (excitable media)  

 in which signals propagate without damping, e.g., 

forest fires (waves regenerate every time a tree ignites); 

electrical activity in cardiac muscle; waves in retina of eye; ill-

condensed matter, and reaction-diffusion systems;  the 

nervous system; genetic networks;… 
 “excitability”: a unit change of state causes its neighbors to move 

over threshold; unit then relaxes remaining silent for some time   

often exhibit wandering among their dynam. “attractors” 

 overall activity changes autonomously to  converge with  t  towards one case 
(pattern of activity), and it stays around but, eventually, goes to others;  

 it may even keep constantly switching quite irregularly in a way that visits all 
or part of the different possible attractors  
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The observation   



 Experiment by Mazor & Laurent, Neuron 48, 661 (2005): 
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The observation   

  

 Response to odor 
 stimuli of certain 
 neurons in the locust 
 antennal lobe.  

 “animals brain is  
 exploring a  
 sequence of states  
 generating a  
 specific pattern of  
 activity that  
 represents one  
 specific odor” 
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The observation   

Kind of state of attention: ―instability inherent to 

chaotic motions facilitates system ability to move 

to any pattern at any time‖ 



 A processor unit (neuron) at each node 

 Global activity   σ ≡ {ςi}             (enough to assume:  ςi  = ±1) 

 Commun. line (synapses) weights  w ≡ {wij  є ℝ}      (i,j = 1,…,N) 

 Field on  i  due to weighted action of the other nodes: 

hi(σ,w)  =  ∑j≠i wij σj 

 Choice of weights, a feature of model, e.g., Hebbian + noise:  

ώij = N−1∑μ ξi
μ ξj

μ         {ξi
μ = ±1}, μ = 1,…,P  attractor patterns 

      and   wij = ώij xj ,   where   xj = stochastic variable with some  p(x) 
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The model   



hi(σ,w)  =  ∑j≠i wij σj 

wij = ώij xj     ώij  = Hebbian; x fast fluctuations with steady distribution:   

p(x)  =  ζ δ(x−) + (1−ζ) δ(x−1)  

 mimics, e.g., either synaptic fatigue / depression (  < 1) or 

facilitation  (  > 1);    = 1  →  standard model  

 ζ = f(order)  not essential what OP, even whether local or global order, e.g., 

    ζ  proportional to  ∑μ[mμ(σ)]2     

    mμ(σ) = N−1∑iσi ξi
μ     is overlap (current state / each stored pattern) 
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The model   



Furthermore, we only update a fraction  ρ = n/N 
of the nodes at each unit of time, e.g., the 
Monte Carlo step: 

 ρ → 1 :  parallel (or Little) updating 

 ρ → 0 :  sequential (or Glauber) updating 
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The model   



Parameters: 

 T : «temperature», controls the stochasticity of dynamics  

  : «noise», modulates the degree of fatigue or facilitation in 
communication lines (which depends on the current order) 

 ρ :  fraction of silent or non-synchronized (excitable) units in 

the system (e.g., chosen at random at each time) 

One may also study influence of network topology 
  (but for simplicity let us assume first a fully connected net) 
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The model   



Nonequilibrium steady states due to competition 

between several processes: 

 units (neurons) evolve at some characteristic time scale 

 efficiency of connections (synapses) depends on: 

  current activity  +  fast noise  

 possibility of “silent” neurons, which thus conserve 

information, e.g., some correlations from previous state 

Bizarre dynamics: irregular/chaotic, phase transitions, 

      roaming among attractors,… 
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Results   



MC simulation: 

Evidence of destabilization of 
attractors, and of transitions 
from regular to chaotic, as  ρ  
is varied. 

 Overlap (versus ρ) between activity 
and a (randomly generated) pattern, 
for   Φ = 0.5,   N = 3600 and   β = 20.   

 

Lyapunov exponent (same 
case) with positive value in 
some (random) ranges  

 standard, Hopfield–Hebb case 
(namely, Φ = 1). 



After convergence, stability of 

one of the attractors  — In fact, an 

anti-pattern  (and practically zero 

overlap with the others) —   for        

ρ  =  0.08  <  ρC  =  0.085 

TYPICAL (MC) RUNS  (after eventual transients) 
overlap versus time 
(N = 1600,  P = 3 uncorrelated patterns,  Φ = 0.4,  T = 1/20) 

Fully irregular (positive Lyapu-

nov exponent) behavior for          

ρ  =  0.50  >  ρC 

Regular oscillation between one 

attractor and its anti-pattern  for   

ρ  =  0.65  >  ρC 

Onset of chaos (again) as  ρ  is 

incresed somewhat;  ρ  =  0.92  

in this case 

Rapid and ordered periodic 

oscillations between one pattern 

and its antipattern (all nodes 

synchronized,   ρ = 1) 



Phase diagram for  N = 1600,  P = 5  and  T = 0.1 (low) 

Equilibrium 

 Ph1 : memory phase 

 Ph2 : mixture phase 

 Ph3 : disordered phase 

Nonequilibrium 

 Ph4 : irregular roaming 

 Ph5 : irregular roaming randomly interr. by oscill.  

 Ph6 : pure pattern–antipattern oscillations 



Critical behavior as irregular dynamics is approached 
(memory phase Ph1  →  Irregular roaming Ph4  or Ph5;  at very low T ) 

ρ = 0.325 ≈ ρC 

 = −0.8 

T = 0.01 

Conclusion: for large N (and P) (e.g., N=6400, P=40), one has 

criticality  ~∆τ −β,  β ≈ 1 → 2  (same from Fourier spectra, where 

one observes non-Gaussian 1/f noise in transition  Ph1 → Ph4) 

Distribution of times of permanence around a value of the local field h  (∆h = 0.1) 

Ph1 

    supercriticals 

  

critical 

N increases 



Critical behavior as irregular dynamics is approached 
(memory phase Ph1  →  Irregular roaming Ph4  or Ph5;  at very low T ) 

ρ = 0.325 ≈ ρC 

 = −0.8 

T = 0.01 

Distribution of times of permanence around a value of the local field h  (∆h = 0.1) 

Ph1 

    supercriticals 

  

critical 

N increases 

Qualitatively similar behavior observed experimentally during heavy brain activity, e.g., 

• Eguiluz et al., Phys. Rev. Lett. 94, 018102 (2005) 

• Freemen et al., Clin. Neurophysiol. 117, 1228 (2006) 

• Magnasco et al., Phys, Rev. Lett. 102, 258102 (2009) 

• Petermann et al., PNAS 106, 15921 (2009) 

 



Chaotic switching 

among attractors 

— simulates states of 

attention in the brain, and 

illustrates possible role of 

chaos in complex systems 

number of attractors visited 

increases with  ρ   

 — until activity settles down to a 

periodic jumping between one of 

the patterns and its anti-pattern. 

mean firing rate  

 m = (2N)–1 ∑i (1 + σi) 

 versus time,  and phase 

space trajectories   

 Φ = ½,  N = 1600,   β = 167,    

ρC = 0.38, and three patterns, 

namely,  ξ μ  μ =1,2,3. 

 



number of attractors visited increases with  ρ   

 this shows phase space trajectories of mean firing rate :    m = (2N)–1 ∑i (1 + σi) 

  (as in previous slide, for  Φ = ½,  N = 1600,   β = 167,  and three patterns). 

 



*Torres, Marro, Cortes & Wemmenhove, Neural Networks 21, 1272 (2008) 

 Phase space trajectories, and   t  
variation of mean firing rate: 

 m = (2N)–1 ∑i (1+ςi) 

 Trying to recreate Mazor & Laurent 
experiment, this shows two MC 
simulations for  N = 1600,  β = 4,  Φ = 
0.45,  ρ = 3/64 < ρC  and six patterns. 

 Different stimuli of same intensity and 
duration correspond to green and red. 

 In this case, one has destabilization 
by stimulus in the absence of chaos. 

 
 (Top graph involves standard false-neighbor method with 

embedding  d = 5  and time delay  τ = 20.) 

Mazor &  Laurent, Neuron 48, 661 (2005)  



*Torres, Marro, Cortes & Wemmenhove, Neural Networks 21, 1272 (2008) 

 Phase space trajectories, and   t  
variation of mean firing rate: 

 m = (2N)–1 ∑i (1+ςi) 

 Trying to recreate Mazor & Laurent 
experiment, this shows two MC 
simulations for  N = 1600,  β = 4,  Φ = 
0.45,  ρ = 3/64 < ρC  and six patterns. 

 Different stimuli of same intensity and 
duration correspond to green and red. 

 In this case, one has destabilization 
by stimulus in the absence of chaos. 

 
 (Top graph involves standard false-neighbor method with 

embedding  d = 5  and time delay  τ = 20.) 

Firing rate with time in cultured neural nets; 

Wagenaar et al. (2006) 
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What about network structure? 

 Linear preferential attachment can probably explain almost ubiquitously 
observed scale-free degree  k   (# node neighbors)  distributions  

 What if rule for a fixed-size network to evolve is nonlinear?   →   One has 
topological phase transitions and scale free solutions*   

Model: prob. for attachment/detachment fact. in two parts: 

 local term (on node degree) 
e.g., enhanced electric activity induces synaptic growth and arborization, and activity 
of a neuron depends on current from neighbors, higher the more, so that k is a proxy 

 global term (on mean network degree) 
e.g., synaptic growth and death depend on concentration of various molecules 
diffusing through large areas of tissue  

 

* Johnson, Marro & Torres, Phys. Rev. E 79, 050104R (2009); J. Stat. Mech. P03003 (2010) 
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Evolution of network structure 

 N nodes of degree  ki = ∑j aij  (adjacency matrix),  p(k,t=0)  with mean  κ(t)  

 At every step, each node gains an edge (to a random node) and loses 
(a randomly chosen) edge with probabilities which factorize: 

 

where  u, d = f(κ)  as well as  π, ς  are arbitrary (but normalized). 

 It follows (approximately, large N) the master equation: 

       

 From this, one may systematically work out most details, including 
the ones of the stationary state…  

gain (κ) ( )i iP u k lose (κ) ( )i iP d k

 
             1 1 1 1

dp k
u k p k d k p k u k d k p k

dt
            

CrecimientoSinapsis.mpg
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Synaptic pruning (e.g., Chechik et al.): eliminating certain synapses improves brain 
energy consumption (¼ of humans at rest) while maintains optimal performance. 

mean degree k = mean synaptic density, so that  κ  reflects energy consumption   
→   use model with simple choice for global probabilities, e.g.:  

  

higher synaptic density  →  less likely new synapses are to sprout / more likely existing ones 

are to atrophy, as expected e.g. for finite quantity of nutrients—   and find (detailed bal.):   

 

 

1. network then evolves towards heterogeneous (some times scale free) in 
quantitative agreement with synaptic pruning experiments; and  

2. degree-degree correlations (“disassortative nets”) emerge naturally (as tends to 
be the case in biology); and  

3. evolution leads to realistic small-world parameters.  

Evolution of network structure 

   
max max

1 ,t t
t t

n n
u d

N N

 
 

 

   
     

   

max

2
 2 1– : independ. of local probs.t td n

dt N

 



 
  

 

n = expected value of # add-deleted edges / time step 

κmax = max. value the mean degree can have 
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Synaptic pruning:  
 

 

 

synaptic density  ρt = κt N/(2V) 

κ0  =  κmax   

τpruning  =  (N/n) ρt→∞   

one has for data and model  

(this includes transient growth  
+ a exp(–t/τgroth)  for inset;  τ’s 
are the only parameters to fit) 

• Data — corresponding to layers 1 (red) and 2 (black) of human auditory cortex, from autopsies: 
 Huttenlocher & Dabholkar, J. Comparative Neurology 387, 167 (1997)  

• Model: Johnson, Marro & Torres, J. Statistical Mechanics: Theor. & Exper. P03003 (2010) 

Evolution of network structure 

max

2
 2 1–t td n

dt N

 



 
  

 

days from conception 



Local probabilities: no effect on pruning but on diffusive behavior, 

which leads either to homogeneous or to heterogeneous states. 

Let a degree distribution of mean   κ  and variance   γ2 

   Define  m ≡ exp(−γ2/κ2): m(t) → 1  for regular network; 

    m(t) → 0  for highly heterogeneous 

σ(k)  =  k 

π(k)  =  kα  

C = clustering 

ℓ = mean shortest path length 

Q = λN/λ2 = lack of synchroniz.  

m
st

 =
 m

(t
→

∞
) 

α 

Network structure 



Model also allows studying mean minimum path, degree-degree correlations, 

clustering, synchronizability,..., and makes contact with other experiments: 

¿Can the neural network of worm C. Elegans  

arise via stochastic rules as in our model? 
For above global and local probs., ς = k  and  π = kα, remarkable similarities: 

Network structure (applications) 
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Mean nearest-neighbor degree function for worm (red) and model (blue): 

Comparison of parameter in both cases:  C = clustering; ℓ = mean shortest path length;  

r = Pearson’s correlation coefficient     («Theory», from other models in the literature) 

      http://ergodic.ugr.es/jmarro/                                                                    jmarro@ugr.es 



Summing up… 

► A few versions of a network model with well defined familiar limits was worked 
out both analytically and computationally. 

► Full connected case with rapid fluctuating (depressing/enhancing) edges and 
silent units (molecules, agents, neurons,…): equilibrium (disordered, memory 
and mixture) and nonequilibrium phases, one showing irregular roaming 
dynamics and 1/f noise as observed for some brain functions. 

► Assuming evolving topologies with general local and global microscopic rules 
leads to a simple scenario producing either homogeneous, scale-free (at the 
critical point) or highly heterogeneous structures. 

► This almost perfectly fits data from two experiments on nervous systems: 

► Synaptic pruning in humans: nonlinear global probs. reproduce initial increase and 
subsequent depletion (only two parameters for whole set) 

► Structure of C. Elegans neural net: assuming random deletion of edges and power-
law prob. of growth, model reproduces at critical point worm’s non-trivial features 
(small-world parameters, degree distribution, and even level of disassortativity). 

► We also explain microscopic causes of stochastic multi-resonance, i.e., signal 
enhancement during transmission trough different levels of noise.   



  

¡Gracias! 

Questions and comments:  jmarro@ugr.es 


