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The observation

Networked systems of “excitable” units (excitable media)
in which signals propagate without damping, e.g.,

forest fires (waves regenerate every time a tree ignites);
electrical activity in cardiac muscle; waves in retina of eye; ill-
condensed matter, and reaction-diffusion systems; the

nervous system; genetic networks;...

“excitability”: a unit change of state causes its neighbors to move
over threshold; unit then relaxes remaining silent for some time

often exhibit wandering among their dynam. “attractors”

overall activity changes autonomously to converge with t towards one case
(pattern of activity), and it stays around but, eventually, goes to others;

it may even keep constantly switching quite irregularly in a way that visits all
or part of the different possible attractors

http://ergodic.ugr.es/jmarro/ jmarro@ugr.es



The observation

Experiment by Mazor & Laurent, Neuron 48, 661 (2005):

Response to odor

stimuli of certain lz mv
neurons in the locust 500 ms
Cltrus

antennal lobe.

... U R SR s T ———————

“animals brain is
exploring a
sequence of states
generating a
specific pattern of
activity that
represents one
specific odor” 3 s cit

3 s meth



The observation

Kind of state of attention: “instability inherent to
chaotic motions facilitates system ability to move
to any pattern at any time”




The model

A processor unit (neuron) at each node
Global activity o = {Gi} (enough to assume: o, = +1)
Commun. line (synapses) weights W = {W,-j e R} (ij=1,..N)
Field on i due to weighted action of the other nodes:
h{o,w) = 3., w;0;
Choice of weights, a feature of model, e.g., Hebbian + noise:
(b,-j = N_lzu f,,-” f,j“ {€#=+1}, u=1,..P attractor patterns

and W (.UU Xj , Where x; = stochastic variable with some p(x)



The model

h{o,w) = . w;0;
Wi; = a'),-j X; w; = Hebbian; x fast fluctuations with steady distribution:

p(x) = Co(x-9) + (1-7) 6(x-1)

mimics, e.g., either synaptic fatigue / depression (¢ < 1) or
facilitation (¢ >1); ¢=1 - standard model

Z - f(Order) not essential what OP, even whether local or global order, €.8.,
( proportional to zu[m“(o)]z

m“(G) = N_lzio'i E.,'“ is overlap (current state / each stored pattern)



The model

Furthermore, we only update a fraction p =n/N
of the nodes at each unit of time, e.g., the
Monte Carlo step:

p = 1: parallel (or Little) updating
p - 0: sequential (or Glauber) updating

http://ergodic.ugr.es/jmarro/ jmarro@ugr.es



The model

Parameters:

T : «temperature», controls the stochasticity of dynamics

¢ . «noise», modulates the degree of fatigue or facilitation in
communication lines (which depends on the current order)

P . fraction of silent or non-synchronized (excitable) units in
the system (e.g., chosen at random at each time)

One may also study influence of network topology

(but for simplicity let us assume first a fully connected net)

http://ergodic.ugr.es/jmarro/ jmarro@ugr.es



Results

Nonequilibrium steady states due to competition

between several processes:

units (neurons) evolve at some characteristic time scale
efficiency of connections (synapses) depends on:

current activity + fast noise

possibility of “silent” neurons, which thus conserve

information, e.g., some correlations from previous state

Bizarre dynamics: irregular/chaotic, phase transitions,

roaming among attractors,...

http://ergodic.ugr.es/jmarro/ jmarro@ugr.es
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MC simulation:

Evidence of destabilization of
attractors, and of transitions
from regular to chaotic, as p
is varied.

Overlap (versus p) between activity
and a (randomly generated) pattern,
for ®=0.5, N=3600and 6 =20.

Lyapunov exponent (same
case) with positive value in
some (random) ranges

standard, Hopfield—Hebb case
(namely, ® =1).



TYPICAL (MC) RUNS (after eventual transients)

overlap versus time
(N = 1600, P = 3 uncorrelated patterns, ®=0.4, T=1/20)
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After convergence, stability of

one of the attractors — In fact, an
patrt I and practically zero
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Regular oscillation between one

attractor and its anti-pattern for
p = 0.65 > p,

Onset of chaos (again) as p is
incresed somewhat; p = 0.92
in this case

Rapid and ordered periodic
oscillations between one pattern
and its antipattern (all nodes
synchronized, p=1)



Phase diagram for N=1600, P=5 and 7=0.1 (low)
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Critical behavior as irregular dynamics is approached

Distribution of times of permanence around a value of the local field h (Ah=0.1)
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Conclusion: for large N (and P) , one has
criticality ~AT?, B~1— 2




Critical behavior as irregular dynamics is approached

(memory phase Ph; -> Irregular roaming Ph, or Ph,; at very low T)

Distribution of times of permanence around a value of the local field h (Ah=0.1)
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Qualitatively similar behavior observed experimentally during heavy brain activity, e.g.,

* Eguiluz et al., Phys. Rev. Lett. 94, 018102 (2005)

* Freemen et al., Clin. Neurophysiol. 117, 1228 (2006)
 Magnasco et al., Phys, Rev. Lett. 102, 258102 (2009)
* Petermann et al., PNAS 106, 15921 (2009)




m(t+21)

Chaotic switching
among attractors

— simulates states of

attention in the brain, and
illustrates possible role of
chaos in complex systems

m(t+2) p=0.15
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— until activity settles down to a
periodic jumping between one of

m(t+2t) . t p=0.44 m(t+21) p=0.6 the patterns and its anti-pattern.
: mean firing rate
0.3
0.1
m = (2N)_1 Zi (1 + Oi)

versus time, and phase
space trajectories

® =%, N=1600, B=167,
pc = 0.38, and three patterns,
namely, & u=1,2,3.
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number of attractors visited increases with p

this shows phase space trajectories of mean firing rate : 11 = (2N)‘1 Zi (1 + 0,-)

(as in previous slide, for ® =%, N = 1600, (3= 167, and three patterns).
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Chaos, and roaming (induced by external stimuli) @s an state of attention*

T Y e
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Mazor & Laurent, Neuron 48, 661 (2005)
*Torres, Marro, Cortes & Wemmenhove, Neural Networks 21, 1272 (2008)



Chaos, and roaming (induced by external stimuli) @s an state of attention*

Firing rate with time in cultured neural nets;
1 ' ' Wagenaar et al. (2006) “
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*Torres, Marro, Cortes & Wemmenhove, Neural Networks 21, 1272 (2008)



What about network structure?

Linear preferential attachment can probably explain almost ubiquitously
observed scale-free degree k (# node neighbors) distributions

What if rule for a fixed-size network to evolve is nonlinear? -» One has
topological phase transitions and scale free solutions*

Model: prob. for attachment/detachment fact. in two parts:

local term (on node degree)

e.g., enhanced electric activity induces synaptic growth and arborization, and activity
of a neuron depends on current from neighbors, higher the more, so that k is a proxy

global term (on mean network degree)
e.g., synaptic growth and death depend on concentration of various molecules
diffusing through large areas of tissue

* Johnson, Marro & Torres, Phys. Rev. E 79, 050104R (2009); J. Stat. Mech. PO3003 (2010)
http://ergodic.ugr.es/jmarro/ jmarro@ugr.es



Evolution of network structure

N nodes of degree k;=3;a; (adjacency matrix), p(k,t=0) With mean «(t)

At every step, each node gains an edge (to a random node) and loses
(a randomly chosen) edge with probabilities which factorize:

P" =u(x) z(k) P =d (k) o (k)

where u, d=f(k) as well as n, o are arbitrary (but normalized).

It follows (approximately, large N) the master equation:

dpd—(tk):uzz(k—l) p(k—-1)+do(k+1)p(k+1)—|ur(k)+do(k)]|p(k)
From this, one may systematically work out most details, including

the ones of the stationary state...


CrecimientoSinapsis.mpg

Evolution of network structure

Synaptic pruning (e.g., Chechik et al.): eliminating certain synapses improves brain
energy consumption (% of humans at rest) while maintains optimal performance.

mean degree k = mean synaptic density, so that « reflects energy consumption
- use model with simple choice for global probabilities, e.g.:

n K n K n = expected value of # add-deleted edges / time ste

K = max. value the mean degree can have
N K max I ax B

m

higher synaptic density = less likely new synapses are to sprout / more likely existing ones
are to atrophy, as expected e.g. for finite quantity of nutrients— and find (detailed bal.):

dr, 21[1_ 2K,
Kmax

— . 1ndepend. of local probs.
gt N ] P P

1. network then evolves towards heterogeneous (some times scale free) in
guantitative agreement with synaptic pruning experiments; and

2. degree-degree correlations (“disassortative nets”) emerge naturally (as tends to
be the case in biology); and

3. evolution leads to realistic small-world parameters.
jmarro@ugr.es



Evolution of network structure

Svnaptic pruning:

de, _ , N[ 2K
dt N K

max

synaptic density p, = k, N/(2V)
KO = Kmax

Tpruning = (N/n) pt9°°

one has for data and model

20

5000 10000 15000 20000 25000
days from conception

» Data — corresponding to layers 1 (red) and 2 (black) of human auditory cortex, from autopsies:
Huttenlocher & Dabholkar, J. Comparative Neurology 387, 167 (1997)

* Model: Johnson, Marro & Torres, J. Statistical Mechanics: Theor. & Exper. P03003 (2010)



Network structure

Local probabilities: no effect on pruning but on diffusive behavior,
which leads either to homogeneous or to heterogeneous states.

Let a degree distribution of mean k and variance y?

Define m = exp(-y?/k?): m(t) > 1 for regular network;

m(t) = 0 for highly heterogeneous

.
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Network structure (applications)

Model also allows studying mean minimum path, degree-degree correlations,
clustering, synchronizability,..., and makes contact with other experiments:

éCan the neural network of worm C. Elegans

arise via stochastic rules as in our model?

For above global and local probs., 0 = k and m = k% remarkable similarities:

0.1
p(k)

0.01

0.001 }

1e-04



Mean nearest-neighbor degree function for worm (red) and model (blue):

Comparison of parameter in both cases: C = clustering; & = mean shortest path length;
r = Pearson’s correlation coefficient («Theory», from other models in the literature)

Experiment Simulation Theory
C 0.28 0.28 0.23 \
[ 2.46 2.19 1.86

r —0.163 —0.207 —(.305




Summing up...

>

A few versions of a network model with well defined familiar limits was worked
out both analytically and computationally.

Full connected case with rapid fluctuating (depressing/enhancing) edges and
silent units (molecules, agents, neurons,...): equilibrium (disordered, memory
and mixture) and nonequilibrium phases, one showing irregular roaming
dynamics and 1/f noise as observed for some brain functions.

Assuming evolving topologies with general local and global microscopic rules
leads to a simple scenario producing either homogeneous, scale-free (at the
critical point) or highly heterogeneous structures.

This almost perfectly fits data from two experiments on nervous systems:

» Synaptic pruning in humans: nonlinear global probs. reproduce initial increase and
subsequent depletion (only two parameters for whole set)

» Structure of C. Elegans neural net: assuming random deletion of edges and power-
law prob. of growth, model reproduces at critical point worm’s non-trivial features
(small-world parameters, degree distribution, and even level of disassortativity).

We also explain microscopic causes of stochastic multi-resonance, i.e., signal
enhancement during transmission trough different levels of noise.



iGracias!

Questions and comments: jmarro@ugr.es




