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Network Models of Excitable Media   
         — Nonequilibrium Phase Transitions (Dynamics & Structure) 



Networked systems of “excitable” units  (excitable media)  

 in which signals propagate without damping, e.g., 

forest fires (waves regenerate every time a tree ignites); 

electrical activity in cardiac muscle; waves in retina of eye; ill-

condensed matter, and reaction-diffusion systems;  the 

nervous system; genetic networks;… 
 “excitability”: a unit change of state causes its neighbors to move 

over threshold; unit then relaxes remaining silent for some time   

often exhibit wandering among their dynam. “attractors” 

 overall activity changes autonomously to  converge with  t  towards one case 
(pattern of activity), and it stays around but, eventually, goes to others;  

 it may even keep constantly switching quite irregularly in a way that visits all 
or part of the different possible attractors  
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The observation   



 Experiment by Mazor & Laurent, Neuron 48, 661 (2005): 
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The observation   

  

 Response to odor 
 stimuli of certain 
 neurons in the locust 
 antennal lobe.  

 “animals brain is  
 exploring a  
 sequence of states  
 generating a  
 specific pattern of  
 activity that  
 represents one  
 specific odor” 
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The observation   

Kind of state of attention: ―instability inherent to 

chaotic motions facilitates system ability to move 

to any pattern at any time‖ 



 A processor unit (neuron) at each node 

 Global activity   σ ≡ {ςi}             (enough to assume:  ςi  = ±1) 

 Commun. line (synapses) weights  w ≡ {wij  є ℝ}      (i,j = 1,…,N) 

 Field on  i  due to weighted action of the other nodes: 

hi(σ,w)  =  ∑j≠i wij σj 

 Choice of weights, a feature of model, e.g., Hebbian + noise:  

ώij = N−1∑μ ξi
μ ξj

μ         {ξi
μ = ±1}, μ = 1,…,P  attractor patterns 

      and   wij = ώij xj ,   where   xj = stochastic variable with some  p(x) 
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The model   



hi(σ,w)  =  ∑j≠i wij σj 

wij = ώij xj     ώij  = Hebbian; x fast fluctuations with steady distribution:   

p(x)  =  ζ δ(x−) + (1−ζ) δ(x−1)  

 mimics, e.g., either synaptic fatigue / depression (  < 1) or 

facilitation  (  > 1);    = 1  →  standard model  

 ζ = f(order)  not essential what OP, even whether local or global order, e.g., 

    ζ  proportional to  ∑μ[mμ(σ)]2     

    mμ(σ) = N−1∑iσi ξi
μ     is overlap (current state / each stored pattern) 
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The model   



Furthermore, we only update a fraction  ρ = n/N 
of the nodes at each unit of time, e.g., the 
Monte Carlo step: 

 ρ → 1 :  parallel (or Little) updating 

 ρ → 0 :  sequential (or Glauber) updating 
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The model   



Parameters: 

 T : «temperature», controls the stochasticity of dynamics  

  : «noise», modulates the degree of fatigue or facilitation in 
communication lines (which depends on the current order) 

 ρ :  fraction of silent or non-synchronized (excitable) units in 

the system (e.g., chosen at random at each time) 

One may also study influence of network topology 
  (but for simplicity let us assume first a fully connected net) 
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The model   



Nonequilibrium steady states due to competition 

between several processes: 

 units (neurons) evolve at some characteristic time scale 

 efficiency of connections (synapses) depends on: 

  current activity  +  fast noise  

 possibility of “silent” neurons, which thus conserve 

information, e.g., some correlations from previous state 

Bizarre dynamics: irregular/chaotic, phase transitions, 

      roaming among attractors,… 

      http://ergodic.ugr.es/jmarro/                                                                    jmarro@ugr.es 

Results   



MC simulation: 

Evidence of destabilization of 
attractors, and of transitions 
from regular to chaotic, as  ρ  
is varied. 

 Overlap (versus ρ) between activity 
and a (randomly generated) pattern, 
for   Φ = 0.5,   N = 3600 and   β = 20.   

 

Lyapunov exponent (same 
case) with positive value in 
some (random) ranges  

 standard, Hopfield–Hebb case 
(namely, Φ = 1). 



After convergence, stability of 

one of the attractors  — In fact, an 

anti-pattern  (and practically zero 

overlap with the others) —   for        

ρ  =  0.08  <  ρC  =  0.085 

TYPICAL (MC) RUNS  (after eventual transients) 
overlap versus time 
(N = 1600,  P = 3 uncorrelated patterns,  Φ = 0.4,  T = 1/20) 

Fully irregular (positive Lyapu-

nov exponent) behavior for          

ρ  =  0.50  >  ρC 

Regular oscillation between one 

attractor and its anti-pattern  for   

ρ  =  0.65  >  ρC 

Onset of chaos (again) as  ρ  is 

incresed somewhat;  ρ  =  0.92  

in this case 

Rapid and ordered periodic 

oscillations between one pattern 

and its antipattern (all nodes 

synchronized,   ρ = 1) 



Phase diagram for  N = 1600,  P = 5  and  T = 0.1 (low) 

Equilibrium 

 Ph1 : memory phase 

 Ph2 : mixture phase 

 Ph3 : disordered phase 

Nonequilibrium 

 Ph4 : irregular roaming 

 Ph5 : irregular roaming randomly interr. by oscill.  

 Ph6 : pure pattern–antipattern oscillations 



Critical behavior as irregular dynamics is approached 
(memory phase Ph1  →  Irregular roaming Ph4  or Ph5;  at very low T ) 

ρ = 0.325 ≈ ρC 

 = −0.8 

T = 0.01 

Conclusion: for large N (and P) (e.g., N=6400, P=40), one has 

criticality  ~∆τ −β,  β ≈ 1 → 2  (same from Fourier spectra, where 

one observes non-Gaussian 1/f noise in transition  Ph1 → Ph4) 

Distribution of times of permanence around a value of the local field h  (∆h = 0.1) 

Ph1 

    supercriticals 

  

critical 

N increases 



Critical behavior as irregular dynamics is approached 
(memory phase Ph1  →  Irregular roaming Ph4  or Ph5;  at very low T ) 

ρ = 0.325 ≈ ρC 

 = −0.8 

T = 0.01 

Distribution of times of permanence around a value of the local field h  (∆h = 0.1) 

Ph1 

    supercriticals 

  

critical 

N increases 

Qualitatively similar behavior observed experimentally during heavy brain activity, e.g., 

• Eguiluz et al., Phys. Rev. Lett. 94, 018102 (2005) 

• Freemen et al., Clin. Neurophysiol. 117, 1228 (2006) 

• Magnasco et al., Phys, Rev. Lett. 102, 258102 (2009) 

• Petermann et al., PNAS 106, 15921 (2009) 

 



Chaotic switching 

among attractors 

— simulates states of 

attention in the brain, and 

illustrates possible role of 

chaos in complex systems 

number of attractors visited 

increases with  ρ   

 — until activity settles down to a 

periodic jumping between one of 

the patterns and its anti-pattern. 

mean firing rate  

 m = (2N)–1 ∑i (1 + σi) 

 versus time,  and phase 

space trajectories   

 Φ = ½,  N = 1600,   β = 167,    

ρC = 0.38, and three patterns, 

namely,  ξ μ  μ =1,2,3. 

 



number of attractors visited increases with  ρ   

 this shows phase space trajectories of mean firing rate :    m = (2N)–1 ∑i (1 + σi) 

  (as in previous slide, for  Φ = ½,  N = 1600,   β = 167,  and three patterns). 

 



*Torres, Marro, Cortes & Wemmenhove, Neural Networks 21, 1272 (2008) 

 Phase space trajectories, and   t  
variation of mean firing rate: 

 m = (2N)–1 ∑i (1+ςi) 

 Trying to recreate Mazor & Laurent 
experiment, this shows two MC 
simulations for  N = 1600,  β = 4,  Φ = 
0.45,  ρ = 3/64 < ρC  and six patterns. 

 Different stimuli of same intensity and 
duration correspond to green and red. 

 In this case, one has destabilization 
by stimulus in the absence of chaos. 

 
 (Top graph involves standard false-neighbor method with 

embedding  d = 5  and time delay  τ = 20.) 

Mazor &  Laurent, Neuron 48, 661 (2005)  



*Torres, Marro, Cortes & Wemmenhove, Neural Networks 21, 1272 (2008) 

 Phase space trajectories, and   t  
variation of mean firing rate: 

 m = (2N)–1 ∑i (1+ςi) 

 Trying to recreate Mazor & Laurent 
experiment, this shows two MC 
simulations for  N = 1600,  β = 4,  Φ = 
0.45,  ρ = 3/64 < ρC  and six patterns. 

 Different stimuli of same intensity and 
duration correspond to green and red. 

 In this case, one has destabilization 
by stimulus in the absence of chaos. 

 
 (Top graph involves standard false-neighbor method with 

embedding  d = 5  and time delay  τ = 20.) 

Firing rate with time in cultured neural nets; 

Wagenaar et al. (2006) 
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What about network structure? 

 Linear preferential attachment can probably explain almost ubiquitously 
observed scale-free degree  k   (# node neighbors)  distributions  

 What if rule for a fixed-size network to evolve is nonlinear?   →   One has 
topological phase transitions and scale free solutions*   

Model: prob. for attachment/detachment fact. in two parts: 

 local term (on node degree) 
e.g., enhanced electric activity induces synaptic growth and arborization, and activity 
of a neuron depends on current from neighbors, higher the more, so that k is a proxy 

 global term (on mean network degree) 
e.g., synaptic growth and death depend on concentration of various molecules 
diffusing through large areas of tissue  

 

* Johnson, Marro & Torres, Phys. Rev. E 79, 050104R (2009); J. Stat. Mech. P03003 (2010) 
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Evolution of network structure 

 N nodes of degree  ki = ∑j aij  (adjacency matrix),  p(k,t=0)  with mean  κ(t)  

 At every step, each node gains an edge (to a random node) and loses 
(a randomly chosen) edge with probabilities which factorize: 

 

where  u, d = f(κ)  as well as  π, ς  are arbitrary (but normalized). 

 It follows (approximately, large N) the master equation: 

       

 From this, one may systematically work out most details, including 
the ones of the stationary state…  

gain (κ) ( )i iP u k lose (κ) ( )i iP d k

 
             1 1 1 1

dp k
u k p k d k p k u k d k p k

dt
            

CrecimientoSinapsis.mpg
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Synaptic pruning (e.g., Chechik et al.): eliminating certain synapses improves brain 
energy consumption (¼ of humans at rest) while maintains optimal performance. 

mean degree k = mean synaptic density, so that  κ  reflects energy consumption   
→   use model with simple choice for global probabilities, e.g.:  

  

higher synaptic density  →  less likely new synapses are to sprout / more likely existing ones 

are to atrophy, as expected e.g. for finite quantity of nutrients—   and find (detailed bal.):   

 

 

1. network then evolves towards heterogeneous (some times scale free) in 
quantitative agreement with synaptic pruning experiments; and  

2. degree-degree correlations (“disassortative nets”) emerge naturally (as tends to 
be the case in biology); and  

3. evolution leads to realistic small-world parameters.  

Evolution of network structure 

   
max max

1 ,t t
t t

n n
u d

N N

 
 

 

   
     

   

max

2
 2 1– : independ. of local probs.t td n

dt N

 



 
  

 

n = expected value of # add-deleted edges / time step 

κmax = max. value the mean degree can have 
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Synaptic pruning:  
 

 

 

synaptic density  ρt = κt N/(2V) 

κ0  =  κmax   

τpruning  =  (N/n) ρt→∞   

one has for data and model  

(this includes transient growth  
+ a exp(–t/τgroth)  for inset;  τ’s 
are the only parameters to fit) 

• Data — corresponding to layers 1 (red) and 2 (black) of human auditory cortex, from autopsies: 
 Huttenlocher & Dabholkar, J. Comparative Neurology 387, 167 (1997)  

• Model: Johnson, Marro & Torres, J. Statistical Mechanics: Theor. & Exper. P03003 (2010) 

Evolution of network structure 

max

2
 2 1–t td n

dt N

 



 
  

 

days from conception 



Local probabilities: no effect on pruning but on diffusive behavior, 

which leads either to homogeneous or to heterogeneous states. 

Let a degree distribution of mean   κ  and variance   γ2 

   Define  m ≡ exp(−γ2/κ2): m(t) → 1  for regular network; 

    m(t) → 0  for highly heterogeneous 

σ(k)  =  k 

π(k)  =  kα  

C = clustering 

ℓ = mean shortest path length 

Q = λN/λ2 = lack of synchroniz.  

m
st

 =
 m

(t
→

∞
) 

α 

Network structure 



Model also allows studying mean minimum path, degree-degree correlations, 

clustering, synchronizability,..., and makes contact with other experiments: 

¿Can the neural network of worm C. Elegans  

arise via stochastic rules as in our model? 
For above global and local probs., ς = k  and  π = kα, remarkable similarities: 

Network structure (applications) 
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Mean nearest-neighbor degree function for worm (red) and model (blue): 

Comparison of parameter in both cases:  C = clustering; ℓ = mean shortest path length;  

r = Pearson’s correlation coefficient     («Theory», from other models in the literature) 
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Summing up… 

► A few versions of a network model with well defined familiar limits was worked 
out both analytically and computationally. 

► Full connected case with rapid fluctuating (depressing/enhancing) edges and 
silent units (molecules, agents, neurons,…): equilibrium (disordered, memory 
and mixture) and nonequilibrium phases, one showing irregular roaming 
dynamics and 1/f noise as observed for some brain functions. 

► Assuming evolving topologies with general local and global microscopic rules 
leads to a simple scenario producing either homogeneous, scale-free (at the 
critical point) or highly heterogeneous structures. 

► This almost perfectly fits data from two experiments on nervous systems: 

► Synaptic pruning in humans: nonlinear global probs. reproduce initial increase and 
subsequent depletion (only two parameters for whole set) 

► Structure of C. Elegans neural net: assuming random deletion of edges and power-
law prob. of growth, model reproduces at critical point worm’s non-trivial features 
(small-world parameters, degree distribution, and even level of disassortativity). 

► We also explain microscopic causes of stochastic multi-resonance, i.e., signal 
enhancement during transmission trough different levels of noise.   



  

¡Gracias! 

Questions and comments:  jmarro@ugr.es 


