

Institute *"Carlos I"* for Theoretical and Computational Physics, University of Granada, Spain

http://ergodic.ugr.es/jmarro/

Network Models of Excitable Media — Nonequilibrium Phase Transitions (Dynamics & Structure)

with Samuel Johnson, Joaquín J. Torres, Miguel Angel Muñoz, Jorge Mejias, Sebastiano de Franciscis:

- Euro Physics Letters **83**, 46006 (2008)
- Physical Review E <u>79</u>, 050104R (2009)
- Physical Review Letters **<u>104</u>**, 108702 (2010)
- *J. of Statistical Mechanics* P03003 (2010)
- Physical Review E <u>82</u>, 041105 (2010)
- & some work to be published in 2011

http://ergodic.ugr.es/jmarro/

The observation

Networked systems of "<u>excitable</u>" units (*excitable media*) in which signals propagate without damping, e.g.,

forest fires (waves regenerate every time a tree ignites);

electrical activity in cardiac muscle; waves in retina of eye; ill-

condensed matter, and reaction-diffusion systems; the

nervous system; genetic networks;...

"excitability": a unit change of state causes its neighbors to move over threshold; unit then relaxes remaining silent for some time

often exhibit wandering among their dynam. "attractors"

overall activity changes autonomously to converge with t towards one case (pattern of activity), and it stays around but, eventually, goes to others;

it may even keep constantly switching quite irregularly in a way that visits all or part of the different possible attractors

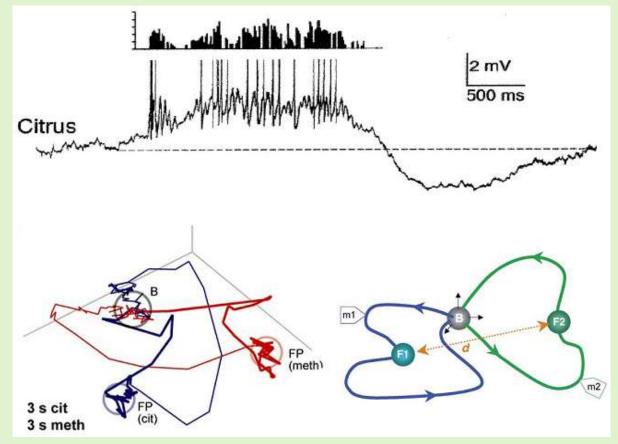
http://ergodic.ugr.es/jmarro/

The observation

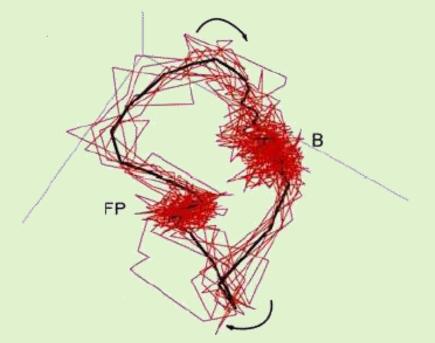
Experiment by Mazor & Laurent, Neuron 48, 661 (2005):

Response to odor stimuli of certain neurons in the locust antennal lobe.

"animals brain is exploring a sequence of states generating a specific pattern of activity that represents one specific odor"



The observation



Kind of <u>state of attention</u>: "instability inherent to chaotic motions facilitates system ability to move to any pattern at any time"

http://ergodic.ugr.es/jmarro/

- A processor unit (*neuron*) at each node
- Global activity $\sigma \equiv \{\sigma_i\}$ (enough to assume: $\sigma_i = \pm 1$)
- Commun. line (*synapses*) weights $\mathbf{W} \equiv \{W_{ij} \in \mathbb{R}\}$ (*i,j* = 1,...,N)
- Field on *i* due to weighted action of the other nodes:

$$h_i(\boldsymbol{\sigma}, \boldsymbol{w}) = \sum_{j \neq i} w_{ij} \sigma_j$$

• Choice of weights, a feature of model, e.g., Hebbian + noise:

 $\dot{\omega}_{ij} = N^{-1} \sum_{\mu} \xi_i^{\mu} \xi_j^{\mu} \qquad \{\xi_i^{\mu} = \pm 1\}, \mu = 1, \dots, P \text{ attractor patterns}$

and $W_{ij} = \dot{\omega}_{ij} X_j$, where x_j = stochastic variable with some p(x)http://ergodic.ugr.es/jmarro/ jmarro@ugr.es

 $h_i(\sigma, \mathbf{w}) = \sum_{j \neq i} w_{ij} \sigma_j$

 $w_{ij} = \dot{\omega}_{ij} x_j \qquad \dot{\omega}_{ij} = \text{Hebbian}; x \text{ fast fluctuations with steady distribution}:$ $p(x) = \zeta \,\delta(x - \phi) + (1 - \zeta) \,\delta(x - 1)$

mimics, e.g., either synaptic fatigue / depression ($\phi < 1$) or facilitation ($\phi > 1$); $\phi = 1 \rightarrow$ standard model

 $\zeta = f(order)$ not essential what OP, even whether local or global order, e.g.,

 ζ proportional to $\sum_{\mu} [m^{\mu}(\sigma)]^2$

 $m^{\mu}(\sigma) = N^{-1} \sum_{i} \sigma_{i} \xi_{i}^{\mu}$ is overlap (current state / each stored pattern)

http://ergodic.ugr.es/jmarro/

Furthermore, we only update a fraction $\rho = n/N$ of the nodes at each unit of time, e.g., the Monte Carlo step:

- $\rho \rightarrow 1$: parallel (or Little) updating
- $\rho \rightarrow 0$: sequential (or Glauber) updating

http://ergodic.ugr.es/jmarro/

Parameters:

- **T** : *«temperature»,* controls the stochasticity of dynamics
- ϕ : «*noise*», modulates the degree of fatigue or facilitation in communication lines (which depends on the current order)

One may also study influence of network topology (but for simplicity let us assume first a fully connected net)

http://ergodic.ugr.es/jmarro/

Nonequilibrium steady states due to competition

between several processes:

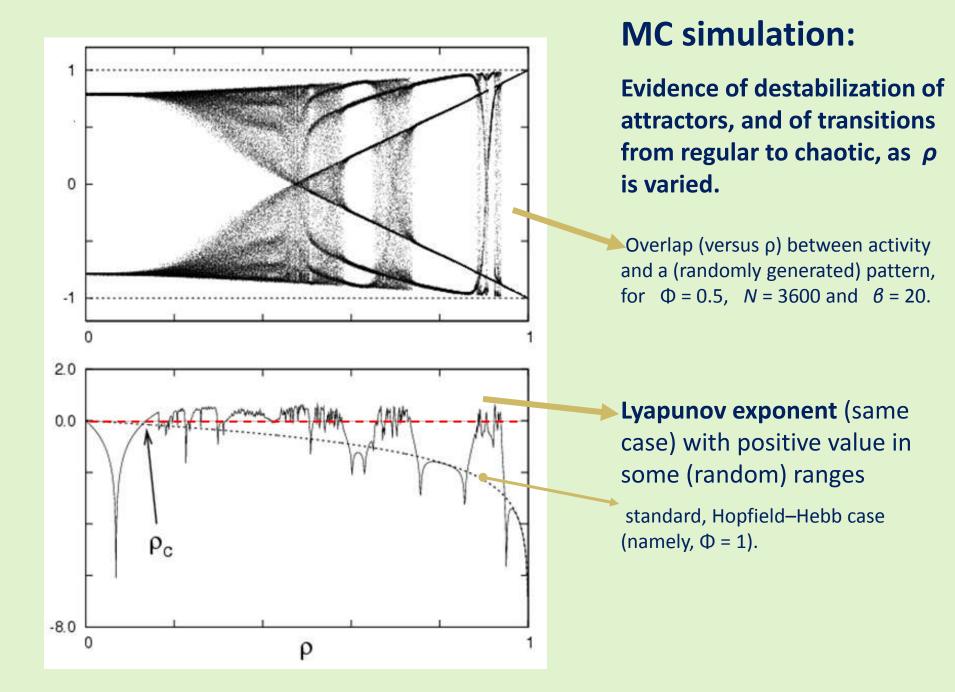
- + units (*neurons*) evolve at some characteristic time scale
- + efficiency of connections (*synapses*) depends on:

current activity + fast noise

+ possibility of "silent" neurons, which thus conserve information, e.g., some correlations from previous state

Bizarre dynamics: irregular/chaotic, phase transitions, roaming among attractors,...

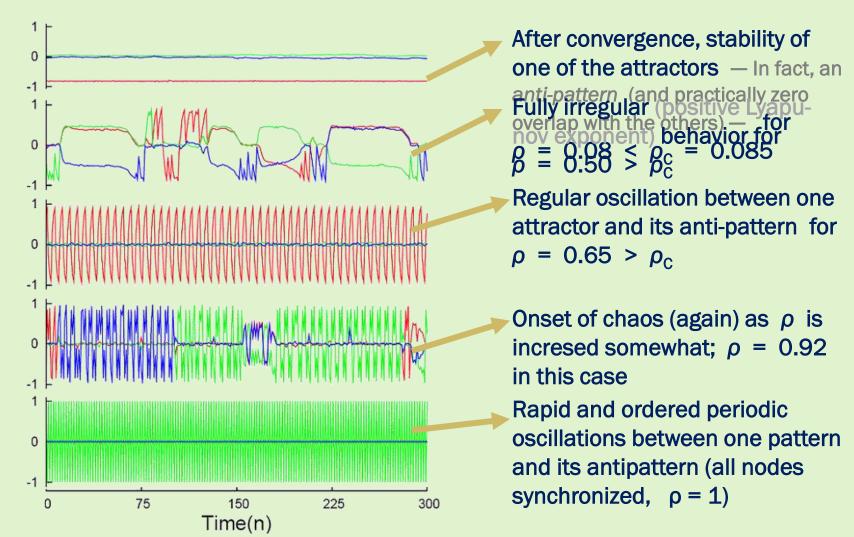
http://ergodic.ugr.es/jmarro/



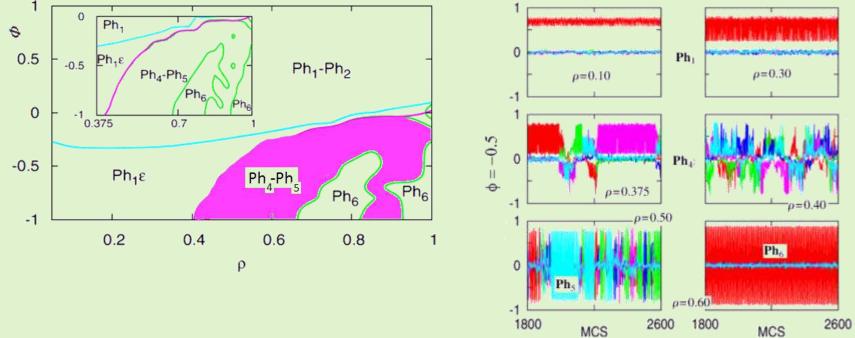
TYPICAL (MC) RUNS (after eventual transients)

overlap versus time (N = 1600, P = 3)

 $(N = 1600, P = 3 \text{ uncorrelated patterns}, \Phi = 0.4, T = 1/20)$



Phase diagram for N = 1600, P = 5 and T = 0.1 (low)



Equilibrium

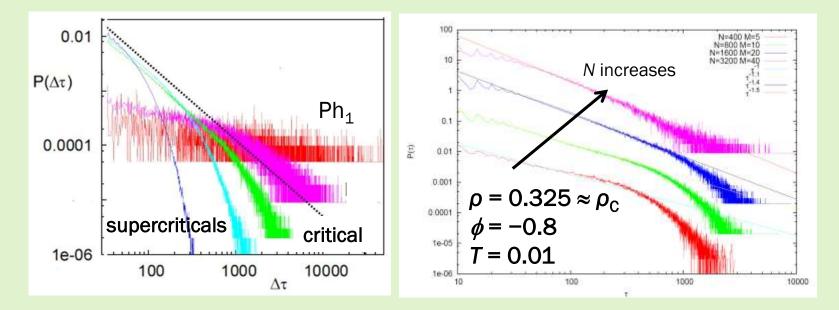
- ▶ Ph₁: memory phase
- ▶ Ph₂: mixture phase
- ▶ **Ph**₃: disordered phase

Nonequilibrium

- Ph₄: irregular roaming
- **Ph**₅: irregular roaming randomly interr. by oscill.
- Ph₆: pure pattern-antipattern oscillations

Critical behavior as irregular dynamics is approached (memory phase $Ph_1 \rightarrow Irregular roaming Ph_4$ or Ph_5 ; at very low 7)

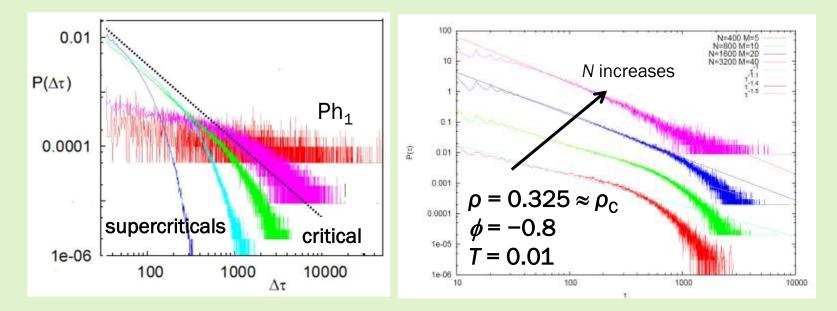
Distribution of times of permanence around a value of the local field h ($\Delta h = 0.1$)



<u>Conclusion</u>: for large *N* (and *P*) (e.g., *N*=6400, *P*=40), one has criticality $\sim \Delta \tau^{-\beta}$, $\beta \approx 1 \rightarrow 2$ (same from Fourier spectra, where one observes non-Gaussian 1/*f* noise in transition $Ph_1 \rightarrow Ph_4$)

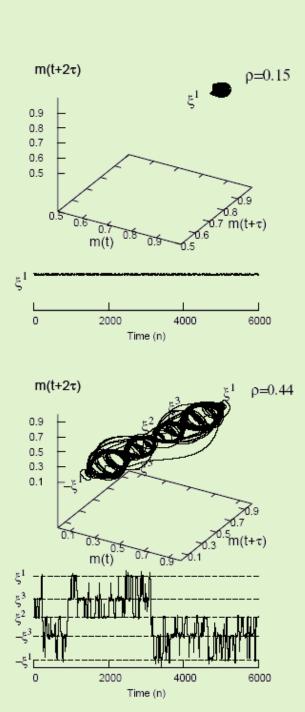
Critical behavior as irregular dynamics is approached (memory phase $Ph_1 \rightarrow Irregular roaming Ph_4$ or Ph_5 ; at very low 7)

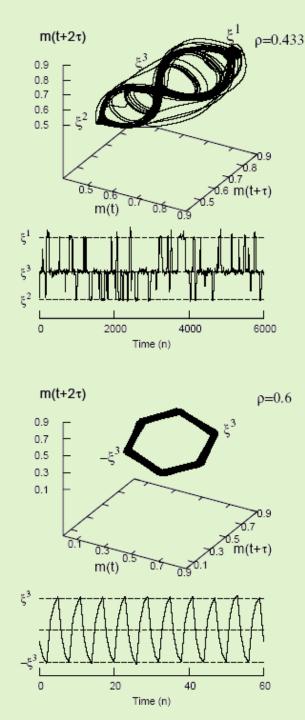
Distribution of times of permanence around a value of the local field h ($\Delta h = 0.1$)



Qualitatively similar behavior observed experimentally during heavy brain activity, e.g.,

- Eguiluz et al., Phys. Rev. Lett. <u>94</u>, 018102 (2005)
- Freemen et al., Clin. Neurophysiol. <u>117</u>, 1228 (2006)
- Magnasco et al., Phys, Rev. Lett. <u>102</u>, 258102 (2009)
- Petermann et al., PNAS <u>106</u>, 15921 (2009)





Chaotic switching among attractors

— simulates states of attention in the brain, and illustrates possible role of chaos in complex systems

number of attractors visited increases with ρ

 until activity settles down to a periodic jumping between one of the patterns and its anti-pattern.

mean firing rate

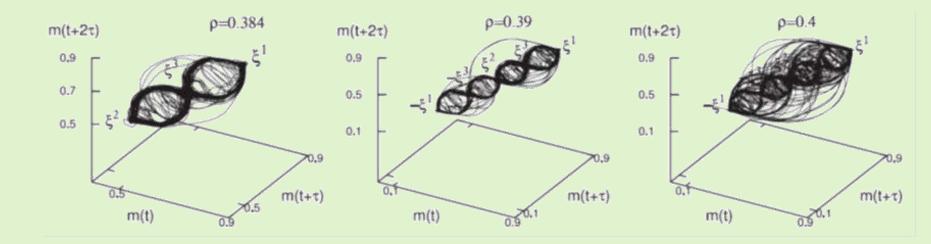
 $m = (2N)^{-1} \sum_{i} (1 + \sigma_i)$

versus time, and phase space trajectories

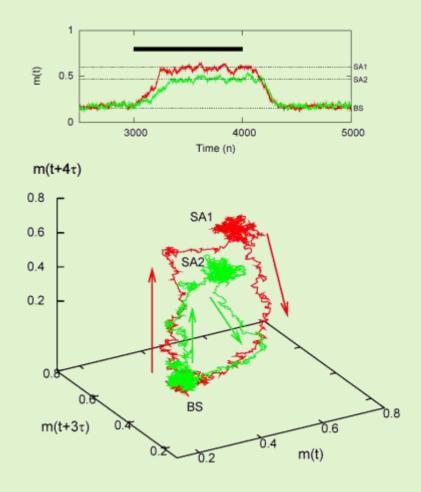
 $\Phi = \frac{1}{2}$, N = 1600, $\beta = 167$, $\rho_{\rm C} = 0.38$, and three patterns, namely, $\xi^{\mu} \ \mu = 1,2,3$.

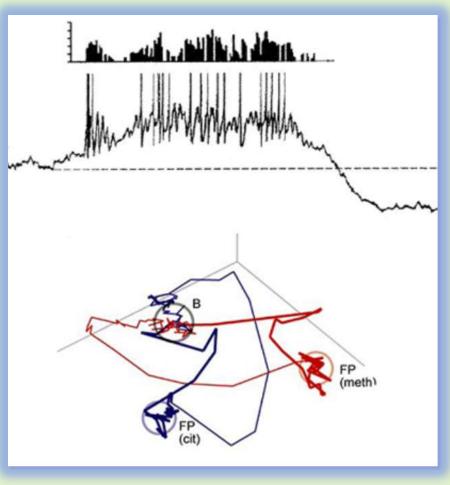
number of attractors visited increases with ρ

this shows phase space trajectories of mean firing rate : $M = (2N)^{-1} \sum_{i} (1 + \sigma_{i})$ (as in previous slide, for $\Phi = \frac{1}{2}$, N = 1600, $\beta = 167$, and three patterns).



Chaos, and roaming (induced by external stimuli) as an state of attention*

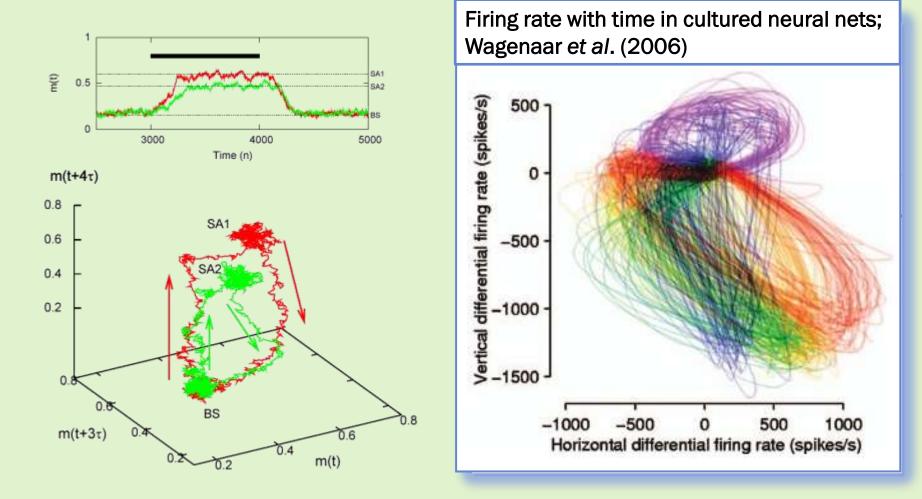




Mazor & Laurent, Neuron <u>48, 661 (2005)</u>

*Torres, Marro, Cortes & Wemmenhove, Neural Networks 21, 1272 (2008)

Chaos, and roaming (induced by external stimuli) as an state of attention*



*Torres, Marro, Cortes & Wemmenhove, Neural Networks 21, 1272 (2008)

What about network structure?

- <u>Linear</u> preferential attachment can probably explain almost ubiquitously observed scale-free degree k (# node neighbors) distributions
- ★ What if rule for a fixed-size network to evolve is <u>nonlinear</u>? → One has topological phase transitions and scale free solutions*

Model: prob. for attachment/detachment fact. in two parts:

+ local term (on node degree)

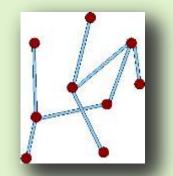
e.g., enhanced electric activity induces synaptic growth and arborization, and activity of a neuron depends on current from neighbors, higher the more, so that k is a proxy

+ global term (on mean network degree)

e.g., synaptic growth and death depend on concentration of various molecules diffusing through large areas of tissue

* Johnson, Marro & Torres, Phys. Rev. E 79, 050104R (2009); J. Stat. Mech. P03003 (2010) http://ergodic.ugr.es/jmarro/ jmarro@ugr.es

Evolution of network structure



× N nodes of degree $k_i = \sum_j a_{ij}$ (adjacency matrix), p(k,t=0) with mean $\kappa(t)$

 At every step, each node gains an edge (to a random node) and loses (a randomly chosen) edge with probabilities which factorize:

$$P_i^{\text{gain}} = u(\kappa) \ \pi(k_i)$$
 $P_i^{\text{lose}} = d(\kappa) \sigma(k_i)$

where $u, d = f(\kappa)$ as well as π, σ are arbitrary (but normalized).

It follows (approximately, large *N*) the master equation:

$$\frac{dp(k)}{dt} = u\pi(k-1)p(k-1) + d\sigma(k+1)p(k+1) - \left[u\pi(k) + d\sigma(k)\right]p(k)$$

 From this, one may systematically work out most details, including the ones of the stationary state...

http://ergodic.ugr.es/jmarro/

Evolution of network structure

Synaptic pruning (e.g., Chechik *et al.*): eliminating certain synapses improves brain energy consumption (¼ of humans at rest) while maintains optimal performance.

mean degree k = mean synaptic density, so that κ reflects energy consumption \rightarrow use model with simple choice for global probabilities, e.g.:

$$u(\kappa_{t}) = \frac{n}{N} \left(1 - \frac{\kappa_{t}}{\kappa_{\max}} \right), \qquad d(\kappa_{t}) = \frac{n}{N} \left(\frac{\kappa_{t}}{\kappa_{\max}} \right) \qquad n = \text{expected value of # add-deleted edges / time step} \\ \kappa_{\max} = \max. \text{ value the mean degree can have}$$

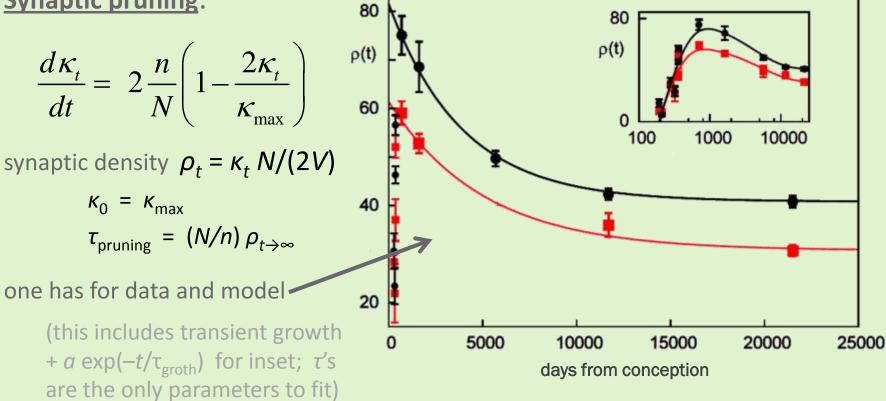
higher synaptic density \rightarrow less likely new synapses are to sprout / more likely existing ones are to atrophy, as expected e.g. for finite quantity of nutrients— and find (detailed bal.):

$$\frac{d\kappa_t}{dt} = 2\frac{n}{N} \left(1 - \frac{2\kappa_t}{\kappa_{\max}} \right): \text{ independ. of local probs.}$$

- 1. network then evolves towards heterogeneous (some times scale free) in quantitative agreement with synaptic pruning experiments; and
- 2. degree-degree correlations (*"disassortative nets"*) emerge naturally (as tends to be the case in biology); and
- 3. evolution leads to realistic small-world parameters.

Evolution of network structure

Synaptic pruning:



- Data corresponding to layers 1 (red) and 2 (black) of human auditory cortex, from autopsies: Huttenlocher & Dabholkar, J. Comparative Neurology 387, 167 (1997)
- Model: Johnson, Marro & Torres, J. Statistical Mechanics: Theor. & Exper. P03003 (2010)

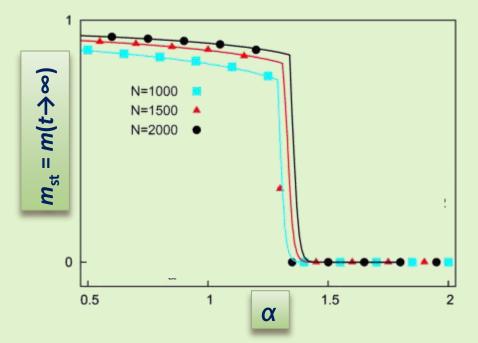
Network structure

Local probabilities: <u>no effect on pruning but on diffusive behavior</u>, which leads either to homogeneous or to heterogeneous states.

Let a <u>degree distribution</u> of mean κ and variance γ^2

Define $m \equiv \exp(-\gamma^2/\kappa^2)$: $m(t) \rightarrow 1$ for regular network;

 $m(t) \rightarrow 0$ for highly heterogeneous



$$\sigma(k) = k$$
$$\pi(k) = k^{\alpha}$$

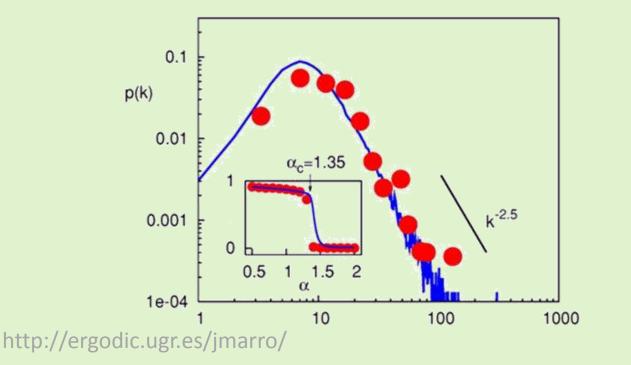
Network structure (applications)

Model also allows studying *mean minimum path, degree-degree correlations, clustering, synchronizability,...,* and makes contact with other experiments:

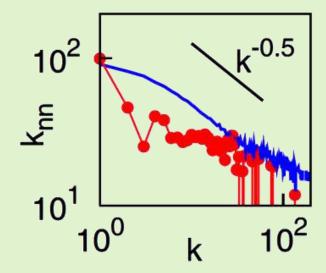
¿Can the neural network of worm C. Elegans

arise via stochastic rules as in our model?

For above global and local probs., $\sigma = k$ and $\pi = k^{\alpha}$, remarkable similarities:



Mean nearest-neighbor degree function for worm (red) and model (blue):



Comparison of parameter in both cases: C = clustering; ℓ = mean shortest path length; r = Pearson's correlation coefficient («Theory», from other models in the literature)

	Experiment	Simulation	Theory
C	0.28	0.28	0.23
l	2.46	2.19	1.86
r	-0.163	-0.207	-0.305

http://ergodic.ugr.es/jmarro/

Summing up...

- A few versions of a network model with well defined familiar limits was worked out both analytically and computationally.
- Full connected case with rapid fluctuating (depressing/enhancing) edges and silent units (molecules, agents, neurons,...): equilibrium (disordered, memory and mixture) and nonequilibrium phases, one showing irregular roaming dynamics and 1/f noise as observed for some brain functions.
- Assuming evolving topologies with general local and global microscopic rules leads to a simple scenario producing either homogeneous, scale-free (at the critical point) or highly heterogeneous structures.
- ► This almost perfectly fits data from two experiments on nervous systems:
 - Synaptic pruning in humans: nonlinear global probs. reproduce initial increase and subsequent depletion (only two parameters for whole set)
 - Structure of *C. Elegans* neural net: assuming random deletion of edges and powerlaw prob. of growth, model reproduces at critical point worm's non-trivial features (small-world parameters, degree distribution, and even level of disassortativity).
- We also explain microscopic causes of stochastic multi-resonance, i.e., signal enhancement during transmission trough different levels of noise.

¡Gracias!

Questions and comments: jmarro@ugr.es

