An inverse problem for 1d periodic differential operator of high order Vadim Tkachenko, Ben-Gurion University of the Negev

An operator from the title is of the form

$$
\begin{equation*}
L=\frac{d^{2 n}}{d x^{2 n}}+\sum_{k=0}^{n-1} \frac{d^{k}}{d x^{k}} p_{k}(x) \frac{d^{k}}{d x^{k}}, \quad x \in R, \tag{1}
\end{equation*}
$$

with real-valued T-periodic functions $p_{k} \in R$ such that $p^{(k)}(x) \in \mathcal{L} 2[0, T], k=$ $0, \ldots, n-1$.

We found that if the characteristic polynomial of L coincides with that of the trivial operator

$$
\begin{equation*}
L_{0}=\frac{d^{2 n}}{d x^{2 n}} \tag{2}
\end{equation*}
$$

then $L=L_{0}$.
This statement extends to arbitrary $n \geq 1$ the pioneering result by V. Ambartsumyan [1] dated back to 1929 and the result for $n=2$ reported in [2].

References

1. V. Ambartsumyan, Zeitschrift für Physik, 1929, Bd.53, 690-695.
2. V. Tkachenko, Abstracts of the 102th Statistical Mechanics Conference, Rutgers University, 2009.
