Consensus Formation on Simple and Complex Networks

T.Antal, V. Sood
Sid Redner (physics.bu.edu/~redner)

I00th!!! Statistical Mechanics Meeting, Rutgers, December 2008

Consensus Formation on Simple and Complex Networks
 T.Antal, V. Sood
 Sid Redner (physics.bu.edu/~redner)

I 00th!!! Statistical Mechanics Meeting, Rutgers, December 2008
The classic voter model \& its cousins
Voting on complex networks
new conservation law
two time-scale route to consensus
short consensus time
Extensions
zealotry, vacillation, strategic voting (>2 states)

Classic Voter Model Coliford \& Susubur(1975 T)

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

0 . Binary voter variable at each site $\mathrm{i}, \sigma_{\mathrm{i}}= \pm \mathrm{l}$

Classic Voter Model Clififord \& Sudury (1973) Holley \& Liggett (1975)

0 . Binary voter variable at each site $\mathrm{i}, \sigma_{\mathrm{i}}= \pm \mathrm{I}$
I. Pick a random voter

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

0 . Binary voter variable at each site $\mathrm{i}, \sigma_{\mathrm{i}}= \pm \mathrm{I}$
I. Pick a random voter
2. Assume state of randomly-selected neighbor

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

Example update:

0 . Binary voter variable at each site $\mathrm{i}, \sigma_{\mathrm{i}}= \pm \mathrm{l}$
I. Pick a random voter
2.Assume state of randomly-selected neighbor

Classic Voter Model Clifford \& Sudury (1973) Holley \& Liggett (1975)

Example update:

proportional rule

0 . Binary voter variable at each site $\mathrm{i}, \sigma_{\mathrm{i}}= \pm \mid$
I. Pick a random voter
2.Assume state of randomly-selected neighbor

Classic Voter Model Clifford \& Sudbury (1973) Holley \& Liggett (1975)

Example update:

I/4
proportional rule

0 . Binary voter variable at each site $\mathrm{i}, \sigma_{\mathrm{i}}= \pm \mathrm{l}$
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state

Classic Voter Model Clifford \& Subury (1973) Holley \& Liggett (1975)

Example update:

I/4
proportional rule

0 . Binary voter variable at each site $\mathrm{i}, \sigma_{\mathrm{i}}= \pm \mathrm{l}$
I. Pick a random voter
2.Assume state of randomly-selected neighbor individual has no self-confidence \& adopts neighbor's state
3. Repeat I \& 2 until consensus necessarily occurs in a finite system

Voter Model \& Cousins

Voter Model \& Cousins

lemming

Voter Model:

Tell me how to vote

Voter Model \& Cousins

lemming

Voter Model:
 Tell me how to vote

Invasion Process: | tell you how to vote

Voter Model \& Cousins

Voter Model:

Invasion Process:

Link Dynamics:

I tell you how to vote
Tell me how to vote

Pick two disagreeing agents and change one at random
lemming

Voter Model \& Cousins

lemming

Voter Model:

Invasion Process: | tell you how to vote

Tell me how to vote

Link Dynamics:

Pick two disagreeing agents and change one at random

identical on regular lattices, distinct on random graphs Suchecki, Eguiluz \& San Miguel (2005), Castellano (2005), Sood \& SR (2005)

Voter Model on Lattices: 3 Basic Properties
I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)$

Voter Model on Lattices: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)$

Evolution of a single active link:

Voter Model on Lattices: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)$

Evolution of a single active link:

Voter Model on Lattices: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)$

Evolution of a single active link:

Voter Model on Lattices: 3 Basic Properties

I. Final State (Exit) Probability $\mathcal{E}\left(\rho_{0}\right)=\rho_{0}$

Evolution of a single active link:

Voter Model on Lattices: 3 Basic Properties

2. Spatial Dependence of 2-Spin Correlations
 (infinite system)

Voter Model on Lattices: 3 Basic Properties

2. Spatial Dependence of 2-Spin Correlations

 Equation of motion:(infinite system)

$$
\frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t)
$$

$$
\begin{aligned}
& c_{2}(r=0, t)=1 \\
& c_{2}(r>0, t=0)=0
\end{aligned}
$$

Voter Model on Lattices: 3 Basic Properties

2. Spatial Dependence of 2-Spin Correlations

 Equation of motion:(infinite system)

$$
\frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t)
$$

$$
\begin{aligned}
& c_{2}(r=0, t)=1 \\
& c_{2}(r>0, t=0)=0
\end{aligned}
$$

Voter Model on Lattices: 3 Basic Properties

2. Spatial Dependence of 2-Spin Correlations Equation of motion:
(infinite system)

$$
\frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \quad \begin{aligned}
& c_{2}(r=0, t)=1 \\
& c_{2}(r>0, t=0)=0
\end{aligned}
$$

Voter Model on Lattices: 3 Basic Properties

2. Spatial Dependence of 2-Spin Correlations

 Equation of motion:(infinite system)

$$
\frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \quad \begin{aligned}
& c_{2}(r=0, t)=1 \\
& c_{2}(r>0, t=0)=0
\end{aligned}
$$

Voter Model on Lattices: 3 Basic Properties

2. Spatial Dependence of 2-Spin Correlations

 Equation of motion:(infinite system)

$$
\frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \quad \begin{aligned}
& c_{2}(r=0, t)=1 \\
& c_{2}(r>0, t=0)=0
\end{aligned}
$$

Voter Model on Lattices: 3 Basic Properties

2. Spatial Dependence of 2-Spin Correlations

 Equation of motion:(infinite system)

$$
\frac{\partial c_{2}(\mathbf{r}, t)}{\partial t}=\nabla^{2} c_{2}(\mathbf{r}, t) \quad \begin{aligned}
& c_{2}(r=0, t)=1 \\
& c_{2}(r>0, t=0)=0
\end{aligned}
$$

steady state

coarsening

Voter Model on Lattices: 3 Basic Properties

3. System Size Dependence of Consensus Time
 Liggett (I985), Krapivsky (I992)

Voter Model on Lattices: 3 Basic Properties

3. System Size Dependence of Consensus Time Liggett (I985), Krapivsky (I992)

$$
\int^{\sqrt{D t}} c(r, t) r^{d-1} d r=N
$$

dimension	consensus time
1	$\mathrm{~N}^{2}$
2	$\mathrm{~N} \ln \mathrm{~N}$
>2	N

Voter Model on Complex Networks

Suchecki, Eguiluz \& San Miguel (2005)
Antal, Sood, SR $(2005,06,08)$

Voter Model on Complex Networks

Suchecki, Eguiluz \& San Miguel (2005)
Antal, Sood, SR $(2005,06,08)$

Voter Model on Complex Networks

Suchecki, Eguiluz \& San Miguel (2005)
Antal, Sood, SR $(2005,06,08)$

Voter Model on Complex Networks

Suchecki, Eguiluz \& San Miguel (2005)
Antal, Sood, SR $(2005,06,08)$

"flow" from high degree to Iow degree

Voter Model on Complex Networks

Suchecki, Eguiluz \& San Miguel (2005)
Antal, Sood, SR $(2005,06,08)$

"flow" from high degree to Iow degree
degree-weighted $\quad \omega_{1}=\frac{1}{N \mu_{1}} \sum_{x} k_{x} \eta(x) \quad$ conserved!
Ist moment:

Invasion Process on Heterogeneous Networks
Castellano (2005)
Antal, Sood, SR (2005, 06, 08)

Invasion Process on Heterogeneous Networks Castellano (2005)
Antal, Sood, SR (2005, 06, 08)

"flow" from Iow degree to high degree

Invasion Process on Heterogeneous Networks Castellano (2005)
Antal, Sood, SR (2005, 06, 08)

"flow" from Iow degree to high degree
$\begin{gathered}\text { degree-weighted } \\ \text { inverse moment }\end{gathered} \quad \omega_{-1}=\frac{1}{N \mu_{-1}} \sum_{x} k_{x}^{-1} \eta(x)$ conserved!

Voter Model Exit Probability on Complex Graphs

Voter Model Exit Probability on Complex Graphs

$$
\mathcal{E}(\omega)=\omega
$$

Voter Model Exit Probability on Complex Graphs

$$
\mathcal{E}(\omega)=\omega
$$

Extreme case: star graph N nodes: degree I I node: degree N

Voter Model Exit Probability on Complex Graphs

$$
\mathcal{E}(\omega)=\omega
$$

Extreme case: star graph

N nodes: degree I I node: degree N

$$
\omega=\frac{1}{N \mu_{1}} \sum_{x} k_{x} \eta(x)=\frac{1}{2}
$$

Final state: all I with prob. I/2!

Route to Consensus on Complex Networks two-time-scale trajectory

complete bipartite graph

Route to Consensus on Complex Networks two-time-scale trajectory

two-clique graph

$\mathrm{N}=10000, \mathrm{C}$ links/node

Molloy-Reed Scale-Free Network

Consensus Time Evolution Equation

backward Kolmogorov equation:

Consensus Time Evolution Equation

backward Kolmogorov equation:

$$
T_{i}=p_{1}\left(T_{i_{1}}+1\right)+p_{2}\left(T_{i_{2}}+1\right)+p_{3}\left(T_{i_{3}}+1\right)
$$

Consensus Time Evolution Equation

backward Kolmogorov equation:

$$
\begin{aligned}
T_{i} & =p_{1}\left(T_{i_{1}}+1\right)+p_{2}\left(T_{i_{2}}+1\right)+p_{3}\left(T_{i_{3}}+1\right) \\
& \longrightarrow \nabla^{2} T=-N_{\mathrm{eff}} F(\text { initial location })
\end{aligned}
$$

Consensus Time for Power-Law Degree
 Distribution $n_{k} \sim k^{-\nu}$

Consensus Time for Power-Law Degree

Distribution $n_{k} \sim k^{-\nu}$
Voter model:

$$
T_{N} \sim \begin{cases}N & \nu>3, \\ N / \ln N & \nu=3, \\ N^{(2 \nu-4) /(\nu-1)} & 2<\nu<3, \\ (\ln N)^{2} & \nu=2, \\ \mathcal{O}(1) & \nu<2 .\end{cases}
$$

Consensus Time for Power-Law Degree
 Distribution $n_{k} \sim k^{-\nu}$

Voter model:

$$
T_{N} \sim\left\{\begin{array}{ll}
N & \nu>3, \\
N / \ln N & \nu=3, \\
N^{(2 \nu-4) /(\nu-1)} & 2<\nu<3, \\
(\ln N)^{2} & \nu=2, \\
\mathcal{O}(1) & \nu<2 .
\end{array}\right] \text { fast } \begin{aligned}
& \text { consensus }
\end{aligned}
$$

Consensus Time for Power-Law Degree

Distribution $n_{k} \sim k^{-\nu}$
Voter model:

$$
T_{N} \sim \begin{cases}N & \nu>3 \\ N / \ln N & \nu=3 \\ N^{(2 \nu-4) /(\nu-1)} & 2<\nu<3 \\ (\ln N)^{2} & \nu=2 \\ \mathcal{O}(1) & \nu<2\end{cases}
$$

fast
consensus

Invasion process:

$$
T_{N} \sim \begin{cases}N & \nu>2 \\ N \ln N & \nu=2 \\ N^{2-\nu} & \nu<2\end{cases}
$$

Summary \& Outlook

Voter model:
paradigmatic, soluble, (but hopelessly naive)

Summary \& Outlook

Voter model:
paradigmatic, soluble, (but hopelessly naive)
Voter model/Invasion process on complex networks: new conservation law meandering route to consensus fast consensus for voter model

Summary \& Outlook

Voter model:
paradigmatic, soluble, (but hopelessly naive)
Voter model/Invasion process on complex networks:
new conservation law
meandering route to consensus
fast consensus for voter model
Extensions:
zealots, vacillation, strategic voting

Summary \& Outlook

Voter model:
paradigmatic, soluble, (but hopelessly naive)
Voter model/Invasion process on complex networks:
new conservation law
meandering route to consensus
fast consensus for voter model
Extensions:
zealots, vacillation, strategic voting
Still to be done:
empirical connections \& predictions
see e.g.,"Scaling \& University in Proportional Elections" Fortunato \& Castellano, PRL (2007)

