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0. Binary voter variable at each site i, σ =±1i
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identical on regular lattices, distinct on random graphs
Suchecki, Eguiluz & San Miguel (2005),  Castellano (2005),  Sood & SR (2005)
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3. System Size Dependence of Consensus Time
Liggett (1985),  Krapivsky (1992)

dimension consensus time

1 N2

2 N ln N

>2 N

∫ √

Dt

c(r, t)rd−1 dr = N
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high degree; few nodes   
     → changes rarely

low degree; many nodes 
    → changes often

“flow” from high degree to low degree
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Invasion Process on Heterogeneous Networks
 Antal, Sood, SR (2005, 06, 08)
Castellano (2005)

degree-weighted 
inverse moment

ω
−1 =

1

Nµ
−1

∑

x

k−1

x
η(x) conserved!

“flow” from low degree to high degree
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Voter Model Exit Probability on Complex Graphs

E(ω) = ω

Final state: all 1 with prob. 1/2!

ω =
1

Nµ1

∑
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kx η(x) =
1
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Extreme case: star graph
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Consensus Time Evolution Equation

p1

p2

p3

Ti = p1(Ti1 + 1) + p2(Ti2 + 1) + p3(Ti3 + 1)

−→ ∇2T = −NeffF (initial location)

consensus

current i

state 
space

backward Kolmogorov equation:
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
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N ν > 2,

N lnN ν = 2,

N2−ν ν < 2.
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Voter model/Invasion process on complex networks:
new conservation law
meandering route to consensus
fast consensus for voter model

Still to be done:  
empirical connections & predictions

see e.g., “Scaling & University in Proportional 
Elections”  Fortunato & Castellano, PRL (2007)

Extensions:
zealots, vacillation, strategic voting


