Consensus Formation on Simple and Complex Networks

T.Antal, V. Sood

Sid Redner (physics.bu.edu/~redner)

100th!!! Statistical Mechanics Meeting, Rutgers, December 2008

Consensus Formation on Simple and Complex Networks

T.Antal, V.Sood Sid Redner (physics.bu.edu/~redner)

100th!!! Statistical Mechanics Meeting, Rutgers, December 2008

The classic voter model & its cousins

Voting on complex networks

new conservation law two time-scale route to consensus short consensus time

Extensions

zealotry, vacillation, strategic voting (>2 states)

0. Binary voter variable at each site i, $\sigma_i = \pm I$

0. Binary voter variable at each site i, $\sigma_i = \pm 1$ 1. Pick a random voter

0. Binary voter variable at each site i, $\sigma_i = \pm I$ 1. Pick a random voter 2. Assume state of randomly-selected neighbor

0. Binary voter variable at each site i, $\sigma_i = \pm I$ 1. Pick a random voter 2. Assume state of randomly-selected neighbor

- 0. Binary voter variable at each site i, $\sigma_i = \pm 1$ 1. Pick a random voter
- 2. Assume state of randomly-selected neighbor

- 0. Binary voter variable at each site i, $\sigma_i = \pm 1$ 1. Pick a random voter
- 2. Assume state of randomly-selected neighbor individual has no self-confidence & adopts neighbor's state

- 0. Binary voter variable at each site i, $\sigma_i = \pm 1$
- I. Pick a random voter
- 2. Assume state of randomly-selected neighbor individual has no self-confidence & adopts neighbor's state
- 3. Repeat 1 & 2 until consensus necessarily occurs in a finite system

lemming

Voter Model: Tell me how to vote

Voter Model: Tell me how to vote

Invasion Process: I tell you how to vote

lemming

Voter Model: Tell me how to vote

Invasion Process: I tell you how to vote

Link Dynamics:

Pick two disagreeing agents and change one at random

Voter Model: Tell me how to vote

Invasion Process: I tell you how to vote

Link Dynamics:

Pick two disagreeing agents and change one at random

identical on regular lattices, distinct on random graphs Suchecki, Eguiluz & San Miguel (2005), Castellano (2005), Sood & SR (2005)

Voter Model on Lattices: 3 Basic PropertiesI. Final State (Exit) Probability $\mathcal{E}(\rho_0)$

Voter Model on Lattices: 3 Basic Properties I. Final State (Exit) Probability $\mathcal{E}(\rho_0)$ Evolution of a single active link:

Voter Model on Lattices: 3 Basic Properties I. Final State (Exit) Probability $\mathcal{E}(\rho_0)$ Evolution of a single active link:

average magnetization is conserved!

Voter Model on Lattices: 3 Basic Properties I. Final State (Exit) Probability $\mathcal{E}(\rho_0)$ Evolution of a single active link:

Voter Model on Lattices: 3 Basic Properties I. Final State (Exit) Probability $\mathcal{E}(\rho_0) = \rho_0$ Evolution of a single active link:

Voter Model on Lattices: 3 Basic Properties 2. Spatial Dependence of 2-Spin Correlations (infinite system)

$$\frac{\partial c_2(\mathbf{r},t)}{\partial t} = \nabla^2 c_2(\mathbf{r},t)$$

$$c_2(r=0,t) = 1$$

 $c_2(r>0,t=0) = 0$

$$\frac{\partial c_2(\mathbf{r},t)}{\partial t} = \nabla^2 c_2(\mathbf{r},t) \qquad \begin{array}{c} c_2 \\ c_2 \end{array}$$

$$c_2(r=0,t) = 1$$

 $c_2(r>0,t=0) = 0$

$$\frac{\partial c_2(\mathbf{r},t)}{\partial t} = \nabla^2 c_2(\mathbf{r},t) \qquad \begin{array}{l} c_2(r=0,t) = 1\\ c_2(r>0,t=0) = 0 \end{array}$$

$$\frac{\partial c_2(\mathbf{r},t)}{\partial t} = \nabla^2 c_2(\mathbf{r},t) \qquad \begin{array}{l} c_2(r=0,t) = 1\\ c_2(r>0,t=0) = 0 \end{array}$$

$$\frac{\partial c_2(\mathbf{r},t)}{\partial t} = \nabla^2 c_2(\mathbf{r},t) \qquad \begin{array}{l} c_2(r=0,t) = 1\\ c_2(r>0,t=0) = 0 \end{array}$$

$$\frac{\partial c_2(\mathbf{r},t)}{\partial t} = \nabla^2 c_2(\mathbf{r},t) \qquad \begin{array}{l} c_2(r=0,t) = 1\\ c_2(r>0,t=0) = 0 \end{array}$$

3. System Size Dependence of Consensus Time Liggett (1985), Krapivsky (1992)

3. System Size Dependence of Consensus Time Liggett (1985), Krapivsky (1992)

 $\int c(r,t)r^{d-1} dr = N$

dimension	consensus time
Ι	N ²
2	N In N
>2	N

Suchecki, Eguiluz & San Miguel (2005) Antal, Sood, SR (2005, 06, 08)

Suchecki, Eguiluz & San Miguel (2005) Antal, Sood, SR (2005, 06, 08)

Suchecki, Eguiluz & San Miguel (2005) Antal, Sood, SR (2005, 06, 08)

Suchecki, Eguiluz & San Miguel (2005) Antal, Sood, SR (2005, 06, 08)

"flow" from high degree to low degree

Suchecki, Eguiluz & San Miguel (2005) Antal, Sood, SR (2005, 06, 08)

"flow" from high degree to low degree

degree-weighted Ist moment:

$$\omega_1 = \frac{1}{N\mu_1} \sum_x k_x \,\eta(x)$$

conserved!

Invasion Process on Heterogeneous Networks

Castellano (2005) Antal, Sood, SR (2005, 06, 08)

Invasion Process on Heterogeneous Networks

Castellano (2005) Antal, Sood, SR (2005, 06, 08)

"flow" from low degree to high degree

Invasion Process on Heterogeneous Networks

Castellano (2005) Antal, Sood, SR (2005, 06, 08)

"flow" from low degree to high degree

degree-weighted inverse moment

$$\omega_{-1} = \frac{1}{N\mu_{-1}} \sum_{x} k_x^{-1} \eta(x) \text{ conserved!}$$

Voter Model Exit Probability on Complex Graphs

Voter Model Exit Probability on Complex Graphs $\mathcal{E}(\omega) = \omega$

Voter Model Exit Probability on Complex Graphs $\mathcal{E}(\omega) = \omega$

Voter Model Exit Probability on Complex Graphs $\mathcal{E}(\omega) = \omega$

Route to Consensus on Complex Networks two-time-scale trajectory

Route to Consensus on Complex Networks two-time-scale trajectory

Molloy-Reed Scale-Free Network

Consensus Time Evolution Equation

backward Kolmogorov equation:

Consensus Time Evolution Equation

backward Kolmogorov equation:

 $T_i = p_1(T_{i_1} + 1) + p_2(T_{i_2} + 1) + p_3(T_{i_3} + 1)$

Consensus Time Evolution Equation

backward Kolmogorov equation:

 $T_i = p_1(T_{i_1} + 1) + p_2(T_{i_2} + 1) + p_3(T_{i_3} + 1)$

 $\longrightarrow \nabla^2 T = -N_{\text{eff}} F(\text{initial location})$

Voter model:

$$T_N \sim \begin{cases} N & \nu > 3, \\ N/\ln N & \nu = 3, \\ N^{(2\nu - 4)/(\nu - 1)} & 2 < \nu < 3, \\ (\ln N)^2 & \nu = 2, \\ \mathcal{O}(1) & \nu < 2. \end{cases}$$

Voter model:

$$T_N \sim \begin{cases} N & \nu > 3, \\ N/\ln N & \nu = 3, \\ N^{(2\nu-4)/(\nu-1)} & 2 < \nu < 3, \\ (\ln N)^2 & \nu = 2, \\ \mathcal{O}(1) & \nu < 2. \end{cases}$$
fast consensus

Voter model:

$$T_N \sim \begin{cases} N & \nu > 3, \\ N/\ln N & \nu = 3, \\ N^{(2\nu-4)/(\nu-1)} & 2 < \nu < 3, \\ (\ln N)^2 & \nu = 2, \\ \mathcal{O}(1) & \nu < 2. \end{cases}$$
 fast consensus

Invasion process:

$$T_N \sim \begin{cases} N & \nu > 2, \\ N \ln N & \nu = 2, \\ N^{2-\nu} & \nu < 2. \end{cases}$$

Voter model:

paradigmatic, soluble, (but hopelessly naive)

Voter model:

paradigmatic, soluble, (but hopelessly naive)

Voter model/Invasion process on complex networks:

new conservation law meandering route to consensus fast consensus for voter model

Voter model:

paradigmatic, soluble, (but hopelessly naive)

Voter model/Invasion process on complex networks:

new conservation law meandering route to consensus fast consensus for voter model

Extensions:

zealots, vacillation, strategic voting

Voter model:

paradigmatic, soluble, (but hopelessly naive)

Voter model/Invasion process on complex networks:

new conservation law meandering route to consensus fast consensus for voter model

Extensions:

zealots, vacillation, strategic voting

Still to be done:

empirical connections & predictions

see e.g., "Scaling & University in Proportional Elections" Fortunato & Castellano, PRL (2007)