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The classic voter model & its cousins

Voting on complex networks

new conservation law
two time-scale route to consensus
short consensus time

Extensions
zealotry, vacillation, strategic voting (>2 states)
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Example update:
3/4
. I 7T 1
1 broportional
p rule
S N
A

0. Binary voter variable at each site i, 0; =% |
|. Pick a random voter

2.Assume state of randomly-selected neighbor
individual has no self-confidence & adopts neighbor’s state

3. Repeat | & 2 until consensus necessarily occurs in
a finite system
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Voter Model & Cousins

Voter Model: Tell me how to vote

Invasion Process: | tell you how to vote

Link Dynamics: Pick two disagreeing
agents and change
one at random

identical on regular lattices, distinct on random graphs
Suchecki, Eguiluz & San Miguel (2005), Castellano (2005), Sood & SR (2005)
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|. Final State (Exit) Probability &(pp) /0()

Evolution of a single active link:

}f ? """ ¢
______ average magnetization
\ is conserved!
1/2 $ ______ i/
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1= po |
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2. Spatial Dependence of 2-Spin Correlations

, . (infinite system)
Equation of motion:

Oco(r,t) co(r=0,t) =1

L 2
Ot = VZca(r, 1) co(r>0,t=0)=0
c(r,t) d>2 c(r,t)
d-2
1—(a/r)
— late time
intermediate
- = early
T I

steady state coarsening
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3. System Size Dependence of Consensus Time
Liggett (1985), Krapivsky (1992)

VDt
/ c(r,t)r*tdr =N

dimension consensus time
| NZ
2 N iIn N
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high degree; few nodes
— changes rarely

_— : \
7SN

\ low degree; many nodes
“flow” from high degree to low degree

— changes often

. 1
degree-weighted ), = E ke n(x conserved!
| st moment: ! N uq - ()
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Invasion Process on Heterogeneous Networks
Castellano (2005)
Antal, Sood, SR (2005, 06, 08)

RNY/ZN
7N O

“flow” from low degree to high degree

. 1
degree-weighted W_1 = k. 177(213) conserved!
Inverse moment Np_q Za;
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Voter Model Exit Probability on Complex Graphs
E(w) =w

: r oraph N nodes: degree |
Extreme case: star grap | node: degree N

0

0 0
1 1
0 0 _ —
\\ // w—Nm;kmn(az) =

0 I 0
0 // \\ o Final state:all | with prob. |/2!
0 0
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Route to Consensus on Complex Networks

two-time-scale trajectory
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Molloy-Reed Scale-Free Network
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Consensus Time Evolution Equation

o -0 =9

. \ \\¢>.

) / state
current 7 Q D1 \ /f SPace
Ps\ ®

\/

backward Kolmogorov equation:

T =p1(L;, + 1)+ po(T5, + 1) + ps(T;, + 1)

— V?T = — Ng F (initial location)
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Consensus Time for Power-Law Degree
Distribution n, ~ k™"

Voter model:

N v > 3,
N/In N V=3,
Ty ~{ NE¥=8/v=1) 9~} 3
(In N)2 v = 2, fast
O(1) U< 9. consensus

Invasion process:

N v > 2,
Ty ~< NInN v =2,
N2~V v < 2.
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Summary & Outlook

Voter model:
paradigmatic, soluble, (but hopelessly naive)

Voter model/lnvasion process on complex networks:

new conservation law
meandering route to consensus
fast consensus for voter model

Extensions:
zealots, vacillation, strategic voting

Still to be done:

empirical connections & predictions

see e.g.,‘Scaling & University in Proportional
Elections” Fortunato & Castellano, PRL (2007)



