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Foreword

Joel wanted a review of 50 years of statistical mechanics for the benefit of young

people entering the field. Sort of like Bellamy’s ”looking backwards” but only a third as

far. Like Bellamy, it will seem that what is known today looked impossibly difficult years

ago. My message for the beginners is that progress does occur, and some of the difficult

problems now being addressed in our field might actually get solved in your lifetime.

The Bose gas is a good topic because exactly 50 years ago I became a postdoc of

Bethe and he asked me to look at the Lee-Huang-Yang 1957 paper. At that time, in

order to understand the behavior of liquid helium, starting from Schrödinger’s equation,

theorists studied the low density gas. They still do.
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far. Like Bellamy, it will seem that what is known today looked impossibly difficult years

ago. My message for the beginners is that progress does occur, and some of the difficult

problems now being addressed in our field might actually get solved in your lifetime.

The Bose gas is a good topic because exactly 50 years ago I became a postdoc of

Bethe and he asked me to look at the Lee-Huang-Yang 1957 paper. At that time, in

order to understand the behavior of liquid helium, starting from Schrödinger’s equation,

theorists studied the low density gas. They still do.

No one then ever thought they would see BEC for weakly interacting particles. The

only system that was known was liquid helium. The modern discovery of BEC in cold

gases was regarded, at first (by at least one very important physicist of my acquaintance),

as a ”ho-hum so what’s new” result. It was hard, and it is still hard, to see all the

repercussions of this experimental discovery. What we do know is that this ancient

problem led us to tons of new physics.
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Hamiltonian of an interacting gas

H = −µ
N∑

j=1

∇2
j +

∑

1≤i<j≤N

v(xi − xj) with µ = ~2/2m . (1)

• Lenz, (1929): For low density, ρ,

E0 = 4πµNρa with a = 2 body scattering length of v. False in 2D. (2)
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v(xi − xj) with µ = ~2/2m . (3)

• Lenz, (1929): For low density, ρ,

E0 = 4πµNρa with a = 2 body scattering length of v. False in 2D. (4)

• Bogolubov (1947) established the basic theory. He got it right, except for some
problems of consistency. His formula showed that the ground state energy is

E0 =
1
2
Nρ

∫
v(x)dx, (5)

which is nonsense — but correct (if you see what I mean). He decided it should really
be (4) because

∫
v is the first Born approximation to 8πµa

a depends on µ, which implies that no naive perturbation theory is going to work!
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• LHY (1957) got the next term, (which was implicit in Bogolubov):

E0 = 4πµNρa

(
1 +

128
15
√

π

√
ρa3

)
. (6)

What do these two terms represent? Why is it so difficult to derive them in a

straightforward manner?
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E0 = 4πµNρa

(
1 +

128
15
√

π

√
ρa3

)
. (7)

What do these two terms represent? Why is it so difficult to derive them in a

straightforward manner?

Answers: (1.) It is impossible to think of individual particles because the “uncertainty

principle” length, (ρa)−1/2 >> ρ−1/3 = “average particle spacing”. The first term is

the energy needed to make an infinitesimally tiny hole in the fluid.

(2.) The tiny pebble of size a thrown into the gas produces a “splash” of

size (ρa)−1/2 >> ρ−1/3 and energy of order ρa
√

ρa3.

Moral; There are 3 length scales: a << ρ−1/3 << (ρa)−1/2 and they are

connected!. This is quantum mechanics at its best (worst?).
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• Dyson (1957) had the crucial idea of how to transmute a hard core potential into a

soft potential for a lower bound to the energy. Upper bounds are also very difficult to

obtain, but he showed the way on this issue, too, and showed that

E0 < 4πµρa
{

1 + C(ρa3)1/3
}

.

• L, Yngvason (1998), using ideas of Dyson, showed that (for v ≥ 0)

E0 > 4πµρa
{

1 − C (ρa3)1/17
}

(8)

This ends Chapter 1 (1947-1998), namely, understanding the first term in E0.
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What about the second Bogolubov term?

First answer : Let’s look at a completely different problem – the charged Bose gas.

In this case there is no first term because of charge neutrality. Everything is correlation.

• Foldy (1961) calculated the energy of Jellium using Bogolubov’s procedure.

• L, Solovej (2002) proved this result is exact to leading order.

So Bogolubov is on the right track!
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First answer : Let’s look at a completely different problem – the charged Bose gas.

In this case there is no first term because of charge neutrality. Everything is correlation.

• Foldy (1961) calculated the energy of Jellium using Bogolubov’s procedure.

• L, Solovej (2002) proved this result is exact to leading order.

So Bogolubov is on the right track!

Second answer :

• Giuliani, Seiringer(2008). Let v scale as v(x) → λ3v(λx) ,which preserves
∫

v.

Take λ = ρε+1/3, with ε > 0. Each particle overlaps with many others. Then the second

Bogolubov energy is exact!

•L, Solovej (unpublished). Take λ = ρ−ε+1/3. Each particle overlaps with only one

other. Then the second Bogolubov energy is exact!

Hope: Someday, maybe we can prove this with λ = 1.
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What about Bose-Einstein condensation

in the ground state?

Nobody is close to a proof for the thermodynamic limit .

Note that none of the foregoing proofs about E0 need or imply condensation, even

though Bogolubov used BEC in an important way in his calculation.

What has been proved so far is a partial result:
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What about Bose-Einstein condensation

in the ground state?

Nobody is close to a proof for the thermodynamic limit .

Note that none of the foregoing proofs about E0 need or imply condensation, even

though Bogolubov used BEC in an important way in his calculation.

What has been proved so far is a partial result:

• L, Seiringer (2002). There is one hundred percent BE condensation (and superflu-

idity, too,) in traps in the Gross-Pitaevski limit N →∞ a → 0 with both Na and the

trap potential V fixed.

– Bose gas – Nr. 7



Gross-Pitaevskii equation

In a trapping potential V (x) for the low density gas, the density ρ(x) = |Φ(x)|2 satisfies

{−µ∇2 + V (x) + 8πµa|Φ(x)|2} Φ(x) = γΦ(x). (9)

• L, Seiringer, Yngvason (2000) proved this in the GP limit:
N →∞ a → 0 with Na fixed.

It made Pitaevskii happy. What made him even happier was:
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• L, Seiringer (2005) The GP equation also holds for a rapidly rotating gas. This
is not obvious since the Bose ground state might not be the absolute ground state.
In rotating coordinates, with rotation frequency ~Ω,

{
−µ∇2 − Ω̃ · L̃ + V (x) + 8πµa|Φ(x)|2

}
Φ(x) = γΦ(x). (11)

An outstanding, recent development is

• Erdös, Schlein, Yau For suitable initial many-body data, the time-dependent

GP equation is correct:
{−µ∇2 + V (x) + 8πµa|Φ(x)|2} Φ(x) = iΦ̇(x).
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Other things I could mention, but don’t have time for

One-D

Two-D

Optical lattices
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