Using sharp-threshold theorems in statistical mechanics

Geoffrey Grimmett

SMM100 17 December 2008

Influence

 X_1, X_2, \ldots, X_n independent coin tosses, density p Configurations ω lie in the sample space (poset) $\Omega = \{0,1\}^n$ Event $A \subseteq \Omega$ is increasing if: $\omega \in A$, $\omega \leq \omega' \Rightarrow \omega' \in A$ $\omega_i \equiv \omega$ with $\omega(i) = 1$, and $\omega^i \equiv \omega$ with $\omega(i) = 1$

Defn: The (absolute) influence of coin i on event A is

$$I_A(i) = \mu_p(1_A(\omega_i) \neq 1_A(\omega^i)).$$

- Voting: $I_A(i) = \mu_p (\text{voter } i \text{ can influence the occurrence of event } A)$
- Pivotality: If A is increasing,

$$I_A(i) = \mu_p(A \mid \omega(i) = 1) - \mu_p(A \mid \omega(i) = 0)$$

= $\mu_p(i \text{ pivotal for } A)$

Influence

 X_1, X_2, \ldots, X_n independent coin tosses, density p Configurations ω lie in the sample space (poset) $\Omega = \{0,1\}^n$ Event $A \subseteq \Omega$ is increasing if: $\omega \in A$, $\omega \leq \omega' \Rightarrow \omega' \in A$ $\omega_i \equiv \omega$ with $\omega(i) = 1$, and $\omega^i \equiv \omega$ with $\omega(i) = 1$

Defn: The (absolute) influence of coin *i* on event *A* is

$$I_A(i) = \mu_p(1_A(\omega_i) \neq 1_A(\omega^i)).$$

- Voting: $I_A(i) = \mu_p$ (voter i can influence the occurrence of event A)
- Pivotality: If A is increasing,

$$I_{\mathcal{A}}(i) = \mu_{\mathcal{P}}(A \mid \omega(i) = 1) - \mu_{\mathcal{P}}(A \mid \omega(i) = 0)$$

= $\mu_{\mathcal{P}}(i \text{ pivotal for } A)$

Main theorem for coin tosses

Theorem (Kahn-Kalai-Linial, Talagrand)

$$\sum_{i} I_{A}(i) \geq c \mu_{p}(A) \mu_{p}(\overline{A}) \log \left\{ \frac{1}{\max_{i} I_{A}(i)} \right\}$$

Corollary: $M = \max_i I_A(i)$ satisfies $nM \ge \cdots \log(1/M)$, so

$$M \ge c' \mu_p(a) \mu_p(\overline{A}) \frac{\log n}{n}.$$

Optimality of $n^{-1} \log n$: Israeli tribes example

Main theorem for coin tosses

Theorem (Kahn-Kalai-Linial, Talagrand)

$$\sum_{i} I_{A}(i) \geq c \mu_{p}(A) \mu_{p}(\overline{A}) \log \left\{ \frac{1}{\max_{i} I_{A}(i)} \right\}$$

Corollary: $M = \max_i I_A(i)$ satisfies $nM \ge \cdots \log(1/M)$, so

$$M \geq c' \mu_p(a) \mu_p(\overline{A}) \frac{\log n}{n}$$
.

Optimality of $n^{-1} \log n$: Israeli tribes example

Russo-Margulis $+\cdots$: For increasing A

$$\frac{d}{dp}\mu_p(A) = \sum_i I_A(i)$$

Theorem (Sharp threshold)

$$\frac{d}{dp}\mu_p(A) \ge c\mu_p(A)\mu_p(\overline{A})\log[1/M]$$

where $M = M_p = \max_i I_A(i)$

Corollary: If $M_p \leq K$, then $\mu_p(A)$ passes from ϵ to $1 - \epsilon$ on an interval of length $\leq C/\log[1/K]$

Find upper bound for M_p !

Russo-Margulis $+\cdots$: For increasing A

$$\frac{d}{dp}\mu_p(A) = \sum_i I_A(i)$$

Theorem (Sharp threshold)

$$\frac{d}{dp}\mu_p(A) \ge c\mu_p(A)\mu_p(\overline{A})\log[1/M]$$

where $M = M_p = \max_i I_A(i)$

Corollary: If $M_p \leq K$, then $\mu_p(A)$ passes from ϵ to $1 - \epsilon$ on an interval of length $\leq C/\log[1/K]$

Find upper bound for M_p !

Proof of KKL-T when $p = \frac{1}{2}$

Fourier space Ω

Orthonormal basis
$$u_F(\omega) = \prod_{i \in F} (-1)^{\omega(i)}$$

$$C = \{f : \Omega \to \mathbb{R}\}, \text{ Inner product } \langle fg \rangle = \mu_{\frac{1}{2}}(fg)$$

Fourier representation $f = \sum_{F} \hat{f}(F)u_{F}$

Influence:
$$I_A(i) = 4 \sum_{F \ni i} \widehat{1}_A(F)^2$$
, $\sum_i I_A(i) = 4 \sum_F |F| \widehat{1}_A(F)^2$

Hypercontractivity:
$$T_{\rho}g = \sum_{F} \rho^{|F|} \widehat{g}(F) u_{F} = E(g(\Psi))$$

where Ψ is obtained by re-sampling ω with local density $1-\rho$.

"Noise sensitivity"

Proof of KKL-T when $p = \frac{1}{2}$

Fourier space Ω

Orthonormal basis
$$u_F(\omega) = \prod_{i \in F} (-1)^{\omega(i)}$$

$$C = \{f : \Omega \to \mathbb{R}\}, \text{ Inner product } \langle fg \rangle = \mu_{\frac{1}{2}}(fg)$$

Fourier representation $f = \sum_{F} \widehat{f}(F) u_{F}$

Influence:
$$I_A(i) = 4 \sum_{F \ni i} \widehat{1}_A(F)^2$$
, $\sum_i I_A(i) = 4 \sum_F |F| \widehat{1}_A(F)^2$

Hypercontractivity:
$$T_{
ho}g=\sum_{F}
ho^{|F|}\widehat{g}(F)u_{F}=E(g(\Psi))$$

where Ψ is obtained by re-sampling ω with local density $1-\rho$.

"Noise sensitivity"

Dynamic(al) percolation

Critical site percolation on triangular lattice, $p = \frac{1}{2}$.

Refreshment of local states at rate 1

No percolation at $p_{\rm c}=rac{1}{2}$

Theorem (Garban-Pete-Schramm, arxiv:0803.3750)

Let T be the set of times when there exists an infinite black cluster. Almost surely:

$$\dim(T) = \frac{31}{36}, \quad \dim(T_{\mathbb{Z} \times \mathbb{Z}_+}) = \frac{5}{9},$$
$$\dim(T(\text{black and white})) \ge \frac{1}{9}.$$

Method: by estimating spectra

Monotone measures

Defn: The (positive) probability measure μ on Ω is monotone if:

$$\mu(X_i = 1 \mid X_j = \xi_j \text{ for } j \neq i)$$
 is increasing in ξ

The (conditional) influence of variable i on event A is

$$J_{A}(i) = \mu(A \mid \omega(i) = 1) - \mu(A \mid \omega(i) = 0)$$

FKG/Holley: μ is monotone iff it satisfies the Holley condition

$$\mu(\omega_1 \vee \omega_2)\mu(\omega_1 \wedge \omega_2) \geq \mu(\omega_1)\mu(\omega_2)$$

where $\omega_1 \vee \omega_2$ denotes pointwise maximum, and \wedge pointwise minimum.

- ightharpoonup product measure (independence), $\mu=\mu_{\frac{1}{2}}$
- ▶ random-cluster measure, $\mu(\omega) \propto q^{k(\omega)}$
- ▶ Ising measure, $\mu(\sigma) \propto e^{-\beta|+-|}$

Monotone measures

Defn: The (positive) probability measure μ on Ω is monotone if:

$$\mu(X_i = 1 \mid X_j = \xi_j \text{ for } j \neq i)$$
 is increasing in ξ

The (conditional) influence of variable i on event A is

$$J_A(i) = \mu(A \mid \omega(i) = 1) - \mu(A \mid \omega(i) = 0)$$

FKG/Holley: μ is monotone iff it satisfies the Holley condition

$$\mu(\omega_1 \vee \omega_2)\mu(\omega_1 \wedge \omega_2) \geq \mu(\omega_1)\mu(\omega_2)$$

where $\omega_1 \vee \omega_2$ denotes pointwise maximum, and \wedge pointwise minimum.

- product measure (independence), $\mu=\mu_{\frac{1}{2}}$
- random-cluster measure, $\mu(\omega) \propto q^{k(\omega)}$
- Ising measure, $\mu(\sigma) \propto e^{-\beta|+-|}$

Monotone with 'external field' μ monotone, $p \in [0, 1]$

$$\mu_{p}(\omega) = \frac{1}{Z}\mu(\omega) \prod_{i} \left\{ p^{\omega(i)} (1-p)^{1-\omega(i)} \right\}$$

$$= \frac{1}{Z} p^{|\omega|} (1-p)^{n-|\omega|} \mu(\omega), \qquad |\omega| := \sum_{i} \omega(i)$$

Examples:

- ightharpoonup product measure, μ_p
- ightharpoonup random-cluster measure, $\phi_{p,q}(\omega) \propto p^{|\omega|} (1-p)^{n-|\omega|} q^{k(\omega)}$
- ▶ Ising with external field, $\mu_h(\sigma) \propto e^{h|\sigma|} e^{-\beta|+-|}$

Theorem (Graham-G)

$$\sum_{i} J_{A}(i) \ge c\mu_{p}(A)\mu_{p}(\overline{A})\log\left\{\frac{1}{2\max_{i} J_{A}(i)}\right\}$$

BGK: For increasing A

$$\frac{d}{dp}\mu_p(A) = \frac{1}{p(1-p)} \operatorname{cov}_p(1_A, |\omega|)$$

Theorem (Sharp threshold)

$$\frac{d}{dp}\mu_p(A) \ge \frac{c\xi_p}{p(1-p)}\mu_p(A)\mu_p(\overline{A})\log[1/(2M)]$$

where $M=M_p=\max_i J_A(i)$ and $\xi_p=\min_i \{\mu_p(X_i)\mu_p(1-X_i)\}$

Theorem (Graham-G)

$$\sum_{i} J_{A}(i) \geq c\mu_{p}(A)\mu_{p}(\overline{A})\log\left\{\frac{1}{2\max_{i} J_{A}(i)}\right\}$$

BGK: For increasing A

$$\frac{d}{dp}\mu_p(A) = \frac{1}{p(1-p)} \operatorname{cov}_p(1_A, |\omega|)$$

Theorem (Sharp threshold)

$$\frac{d}{dp}\mu_p(A) \geq \frac{c\xi_p}{p(1-p)}\mu_p(A)\mu_p(\overline{A})\log[1/(2M)]$$

where $M=M_p=\max_i J_A(i)$ and $\xi_p=\min_i \{\mu_p(X_i)\mu_p(1-X_i)\}$

Further extensions

Similar influence theorems hold for:

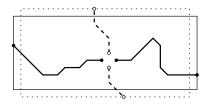
- ▶ [BKKKL] a family of Uniform[0,1] random variables
- ▶ [BKKKL, G] a family of *n* iid random variables on a probability space satisfying: the associated measure ring of the non-atomic part is separable
- ▶ a family of Bernoulli (p) variables
- monotone and non-monotone events

Notes (on this and more):

```
www.statslab.cam.ac.uk/~grg/books/pgs.html
```

Percolation on \mathbb{Z}^2

Bond percolation on \mathbb{Z}^2 , box $B_n = [0, n+1] \times [0, n]$



$$A = \{ \text{left-right crossing of } B_n \}$$

$$I_{A}(e) = \mu_{p}(e ext{ pivotal})$$

 $\leq \mu_{rac{1}{2}}(0 \leftrightarrow \partial B_{n/2}) \to 0 ext{ as } n \to \infty$

By sharp-threshold theorem,

$$\frac{d}{dp}\mu_p(A) \ge c\mu_p(A)\mu_p(\overline{A})\log\left\{\frac{1}{\mu_{\frac{1}{2}}(0\leftrightarrow\partial B_{n/2})}\right\}$$

Duality: $\mu_{\frac{1}{2}}(A)=\frac{1}{2}$, therefore, for $p>\frac{1}{2}$, $\mu_p(A)\to 1$ as $n\to\infty$ Variety of consequences using box-crossing arguments (RSW): $p_{\rm c}=\frac{1}{2}$, exponential decay, etc

K BR S Z

Random-cluster model on \mathbb{Z}^2

Graph G = (V, E), edges are open/closed

$$\phi_{p,q}(\omega) = rac{1}{Z} p^{|\omega|} (1-p)^{|E|-|\omega|} q^{k(\omega)}, \quad \omega \in \Omega = \{0,1\}^E$$

 $|\omega| =$ number of open edges, $k(\omega) =$ number of open clusters

Self-dual point on
$$\mathbb{Z}^2$$
: $p_{\mathrm{sd}}(q) = \frac{\sqrt{q}}{1+\sqrt{q}}$

Conjecture

$$p_{\rm c}(q) = p_{\rm sd}(q)$$
 for $q \ge 1$.

Known: q = 1 (Kesten), q = 2 ('Onsager'), $q \ge 25.72$

Random-cluster model on \mathbb{Z}^2

Graph G = (V, E), edges are open/closed

$$\phi_{p,q}(\omega) = rac{1}{Z} p^{|\omega|} (1-p)^{|E|-|\omega|} q^{k(\omega)}, \quad \omega \in \Omega = \{0,1\}^E$$

 $|\omega| =$ number of open edges, $k(\omega) =$ number of open clusters

Self-dual point on
$$\mathbb{Z}^2$$
: $p_{\mathrm{sd}}(q) = \frac{\sqrt{q}}{1+\sqrt{q}}$

Conjecture

$$p_{\rm c}(q)=p_{\rm sd}(q)$$
 for $q\geq 1$.

Known: q = 1 (Kesten), q = 2 ('Onsager'), $q \ge 25.72$

Theorem (G-G)

Let $q \ge 1$. The probability of a box-crossing of B_n increases steeply from ~ 0 to ~ 1 as p passes through $p_{\rm sd}(q)$.

Proof: Use coupling to bound the conditional influences

$$J_A(e) = \phi_{p,q}(A \mid e \text{ open}) - \phi_{p,q}(A \mid e \text{ closed})$$

 $\leq \phi_{p,q}(B_p \text{ crossed within } C_e \mid e \text{ open})$

where C_e is the open cluster at e.

Input: Absence of percolation when $p = p_{sd}(q)$, (Zhang)

Theorem (G-G)

Let $q \ge 1$. The probability of a box-crossing of B_n increases steeply from ~ 0 to ~ 1 as p passes through $p_{\rm sd}(q)$.

Proof: Use coupling to bound the conditional influences

$$J_A(e) = \phi_{p,q}(A \mid e \text{ open}) - \phi_{p,q}(A \mid e \text{ closed})$$

 $\leq \phi_{p,q}(B_n \text{ crossed within } C_e \mid e \text{ open})$

where C_e is the open cluster at e.

Input: Absence of percolation when $p = p_{sd}(q)$, (Zhang)

What's missing?

Answer: RSW for RCM.

Given square-crossings, how to build rectangle-crossings?

FKG, but no estimate of correlation-decay

Ising model with external field

Ising model on \mathbb{Z}^2 , inverse-temperature β , external field h

Qn: When are there infinite + clusters?

Answer: (Higuchi) Iff $h > h_c(\beta)$ where

$$h_{\rm c}(\beta)$$
 $\begin{cases} > 0 & \text{if } \beta > \beta_{\rm c}, \\ = 0 & \text{if } \beta < \beta_{\rm c}. \end{cases}$

Method: Sharp-threshold plus RSW (using exponential decay of correlations)

Ising model with external field

Ising model on \mathbb{Z}^2 , inverse-temperature β , external field h

Qn: When are there infinite + clusters?

Answer: (Higuchi) Iff $h > h_c(\beta)$ where

$$h_{\rm c}(\beta) \begin{cases} > 0 & \text{if } \beta > \beta_{\rm c}, \\ = 0 & \text{if } \beta < \beta_{\rm c}. \end{cases}$$

Method: Sharp-threshold plus RSW (using exponential decay of correlations)

Sharp-threshold theorem applies, as for RCM.

Input: No infinite + cluster when
$$h = h_c(\beta)$$
, (Zhang)

vdB

Note: Simple proof (Werner) of continuity of magnetization in h=0 Ising model at $\beta=\beta_c$.

Sharp-threshold theorem applies, as for RCM.

Input: No infinite + cluster when
$$h = h_c(\beta)$$
, (Zhang)

vdB

Note: Simple proof (Werner) of continuity of magnetization in h=0 Ising model at $\beta=\beta_{\rm c}$.

Box-crossings in other systems

I. Coloured random-cluster model

Sample from $\phi_{p,q}$

Colour each cluster black (+1) with probability α , otherwise white (-1)

Spin-measure $\mu_{p,q,\alpha}$, with $q\alpha, q(1-\alpha) \geq 1$

Measure: Add external field on black vertices

$$\mu_h(\sigma) \propto e^{h|\sigma|} \mu_{p,q,\alpha}(\sigma), \qquad |\sigma| := \#\{\text{black sites}\}$$

Look at black crossings of large boxes

II. Massively coloured random-cluster model

Condition $\phi_{p,q} \times \mu_{\alpha}$ on {colours are constant on clusters}

$$\psi_{oldsymbol{p},oldsymbol{q},lpha}(\sigma) \propto \left(rac{lpha}{1-lpha}
ight)^{|\sigma|} (1-oldsymbol{p})^{|+-|} Z_{oldsymbol{p},oldsymbol{q},+} Z_{oldsymbol{p},oldsymbol{q},-}$$

Both I and II contain Ising model when $\alpha=\frac{1}{2}$

Finally ...

Influence and sharp-threshold:

- ▶ a beautiful theory with the capacity to solve problems
- a robust method for proving steepness
- ▶ a method in search of applications

References

- ► (Graham–G) Annals of Probability 34 (2006) 2006.
- ► (Graham–G) Sharp thresholds for the random-cluster and Ising models, preprint, 2008
- ▶ Probability on Graphs, www.statslab.cam.ac.uk/~grg/books/pgs.html