100th Statistical Mechanics Meeting December 12-18, 2008

Short-Range Spin Glasses

Looking back, looking forward

Pierluigi Contucci Department of Mathematics University of Bologna

Consider:

configurations of Ising spins

$$\sigma = \{\sigma_i\}, \quad \tau = \{\tau_i\}, \quad \dots$$

Define:

the standard overlap among them

$$q_N(\sigma,\tau) = \frac{1}{N} \sum_{i=1}^N \sigma_i \tau_i$$

or, if the spins are sitting in a box Λ of a d-dimensional square lattice, the link-overlap

$$Q_{\Lambda}(\sigma, \tau) = \frac{1}{d|\Lambda|} \sum_{|i-j|=1} \sigma_i \sigma_j \tau_i \tau_j$$

Introduce:

for $\beta > 0$ the random probability measure

$$p_{\Lambda}(\sigma) = \frac{e^{-\beta H_{\Lambda}(\sigma)}}{\sum_{\sigma} e^{-\beta H_{\Lambda}(\sigma)}}$$

with $\{H_{\Lambda}(\sigma)\}$ a centered Gaussian family defined by the covariance

$$Av(H_{\Lambda}(\sigma)H_{\Lambda}(\tau)) = |\Lambda|Q_{\Lambda}(\sigma,\tau)$$

...that defines the Edwards-Anderson model

$$H_{\Lambda}(\sigma) = -\sum_{|i-j|=1} J_{i,j}\sigma_i\sigma_j$$

Quantities of interest:

pressure

$$P_{\Lambda}(\beta) = \text{Av} \log \sum_{\sigma} e^{-\beta H_{\Lambda}(\sigma)}$$

moments

$$\mathsf{Av}\left(\frac{\sum_{\sigma,\tau} Q_{\Lambda}(\sigma,\tau)e^{-\beta[H_{\Lambda}(\sigma)+H_{\Lambda}(\tau)]}}{\sum_{\sigma,\tau} e^{-\beta[H_{\Lambda}(\sigma)+H_{\Lambda}(\tau)]}}\right) =$$

$$:= \langle Q_{12} \rangle_{\Lambda} := \int Qp_{\Lambda}(Q)dQ$$

$$< Q_{12}Q_{23}>_{\Lambda} = \int Q_{12}Q_{23}p_{\Lambda}^{(12),(23)}(Q_{12},Q_{23})$$

 $< Q_{12}Q_{34}>_{\Lambda}, < Q_{1,2}Q_{2,3}Q_{3,1}>_{\Lambda} \text{ etc.}$

What do we know?

Inequality:

$$Av(J_X\omega_X) \geq 0$$

P.C., Sandro Graffi, Gaussian case, CMP 2004 P.C., Joel Lebowitz, general case, AHP 2007

- sub-additivity of the pressure, thermodynamical limit

$$p = \lim_{\Lambda \nearrow \mathbf{Z}^d} p_{\Lambda} , \quad p_{\Lambda} = \frac{1}{|\Lambda|} P_{\Lambda}$$

- upper and lower bounds for the surface pressure:

$$\tau_{\Lambda} = \frac{1}{|\partial \Lambda|} [P_{\Lambda} - p|\Lambda|]$$

- au depends on b.c.

How close (or far) is from mean field?

The Parisi Solution of the Sherrington-Kirkpatrick model is based on two assumptions

- Replica Equivalence

$$p^{(12),(23)}(q_{12},q_{23}) = \frac{1}{2}p(q_{12})\delta(q_{12}-q_{23}) + \frac{1}{2}p(q_{12})p(q_{23})$$
$$p^{(12),(34)}(q_{12},q_{34}) = \frac{1}{3}p(q_{12})\delta(q_{12}-q_{34}) + \frac{2}{3}p(q_{12})p(q_{34})$$

- Ultrametricity

$$p^{(12),(23),(31)}(q_{12},q_{23},q_{31}) =$$

$$\delta(q_{12} - q_{23})\delta(q_{23} - q_{31})p(q_{12}) \int_0^{q_{12}} dq p(q)$$

$$+ \theta(q_{12} - q_{23})\delta(q_{23} - q_{31})p(q_{12})p(q_{23})$$

+2 cyclic permutations

• Replica Equivalence and Ultrametricity allows to reconstruct the $p_N^{(\{kl\})}(\{q_{kl}\})$ starting from p(q)!

Replica Equivalence:

1995 F.Guerra,1997 M.Aizenman and P.C.,1998 S.Ghirlanda and F.Guerra

Questions:

- What happens in finite dimensional models (in \mathbb{Z}^d)?
- Does the same factorization structure apply?
- Replica equivalence? Ultrametricity?

Result:

- Edwards-Anderson fulfills Replica Equivalence in terms of the link-overlap.

P.C., Cristian Giardinà, AHP 2005, JSP 2007

Remarks:

- mean field feature
- compatible with different low temperature pictures

Theorem:

Let h be the Hamiltonian per particle. For every smooth bounded function $\mathcal O$ and for all intervals β_1,β_2

$$\int_{\beta_1}^{\beta_2} d\beta (\langle h\mathcal{O} \rangle - \langle h \rangle \langle \mathcal{O} \rangle) \to 0$$

The Replica Equivalence identities follow integrating by parts.

Proof ideas:

- control of energy fluctuation in the thermodynamical limit
- energy per particle tends a.e. to a constant with respect to the equilibrium measure for large volumes (a part of isolated singularities)

$$< h^2 > - < h >^2 \rightarrow 0$$

Proved by Stochastic Stability,

$$\int_{\beta_1}^{\beta_2} d\beta \operatorname{Av}[\Omega(h^2)] - \operatorname{Av}[\Omega(h)^2] \to 0$$

and Self Averaging:

$$\int_{\beta_1}^{\beta_2} d\beta \operatorname{Av}[\Omega(h)^2] - \operatorname{Av}[\Omega(h)]^2 \to 0$$

Interaction Flip Identities.

P.C., Cristian Giardina, Claudio Giberti (arXiv:0811.2472)

Symmetry of the distribution:

$$J_{i,j} \rightarrow -J_{i,j}$$

Stationary Interpolation

$$H_{\Lambda}(\sigma)_t = \cos(t)H_{\Lambda}(\sigma) + \sin(t)\tilde{H}_{\Lambda}(\sigma)$$

$$\mathcal{P}_{\Lambda}(t) = \log \sum_{\sigma} e^{-H_{\Lambda}(\sigma)_t}$$

$$\mathcal{X}_{\Lambda}(a,b) = \mathcal{P}_{\Lambda}(b) - \mathcal{P}_{\Lambda}(a)$$

$$Av\mathcal{X}_{\Lambda}(a,b) = 0$$
.

Bound on fluctuations:

$$Av\mathcal{X}^2_{\Lambda}(a,b) \leq c|\Lambda|$$

Theorem:

The (s,t) integral on all $[a,b]^2$ with the positive kernel $\sin^2(t-s)$ of the quantity

$$< C_{1,2}^2 >_{t,s} -2 < C_{1,2}C_{2,3} >_{s,t,s} + < C_{1,2}C_{3,4} >_{t,s,s,t}$$

vanishes for large volumes.

NUMERICAL RESULTS, parallel tempering, up to linear sizes L=20, for both Gaussian or Bernoulli distribution.

 Overlap Equivalence:
 (P.C., C.Giardinà, C.Giberti, C.Vernia, PRL 2006)

Consider q and Q in d = 3

- They are uncorrelated at high temperatures $(T > T_c)$
- Below T_C , $Var_L(Q|q^2)$ scales like $L^{-\alpha}$
- Q is a monotonic increasing function of q^2 : $< Q|q^2>$

Contradicts the T.N.T. picture: non-trivial standard overlap distribution, trivial link-overlap distribution. 2) Ultrametricity:

(P.C., C.Giardinà, C.Giberti, G.Parisi, C.Vernia, PRL 2007)

Consider the overlap triangle of sides $Q_{1,2}$, $Q_{2,3}$, $Q_{3,1}$, introduce the random variables

$$Q_{max} = max(Q_{1,2}, Q_{2,3}, Q_{3,1})$$

$$Q_{med} = med(Q_{1,2}, Q_{2,3}, Q_{3,1})$$

$$Q_{min} = min(Q_{1,2}, Q_{2,3}, Q_{3,1})$$

study the distributions of

$$X = Q_{med} - Q_{min}$$

$$Y = Q_{max} - Q_{med}$$

- Variance of X converges to zero by a scaling law of $N^{-\gamma}$ (no scalene triangles!)
- Variance of Y doesn't (isosceles triangles!)