Analyticity I: Landau Theory

- **Landau free energy**

\[F[M] = \int \left((\nabla M)^2 + \text{Tr}(H \cdot M) + r_0 \text{Tr}M^2 + \lambda_3 \text{Tr}M^3 + \cdots \right) d^d x \]

- **all analytic terms allowed by symmetry**

- \(\delta F/\delta M = 0 \Rightarrow \textit{critical points} \) at special values of \(\{\lambda_j\} = (H, r_0, \lambda_3, \ldots) \)

- **singular behavior from bifurcations**

- \(\textit{critical exponents} \) describing how \(M \) behaves close to critical points are \textit{super-universal}.\]
Analyticity II: Renormalization Group

\[Z[\mathbf{H}] = \int_{|q|<\Lambda} [d\mathbf{M}(x)] e^{-F[\mathbf{M}]} \]

\[\frac{d\lambda_j}{d\ell} = -\Lambda \frac{\partial \lambda_j}{\partial \Lambda} = -\beta_j(\{\lambda\}) \]

- **fixed points** \(\beta_j(\{\lambda^*\}) = 0 \)
- \(\beta_j(\{\lambda\}) \) assumed to be analytic in neighborhood
- singular behavior from infinite iterations of an analytic mapping
- critical exponents and other universal critical properties given by derivatives of \(\beta \)-functions
- scaling fields \(\langle \phi_j(r_1)\phi_j(r_2) \rangle \sim |r_1 - r_2|^{-2x_j} \)

The only evidence we have for this picture being precisely correct for non-trivial cases is

- perturbative analysis about a trivial fixed point (e.g. \(\epsilon \)-expansion)
- integrable lattice models in \(d = 2 \)
Analyticity II: Renormalization Group

\[Z[\mathbf{H}] = \int_{|\mathbf{q}|<\Lambda} [d\mathbf{M}(x)] e^{-F[\mathbf{M}]} \]

\[\frac{d\lambda_j}{d\ell} = -\Lambda \frac{\partial \lambda_j}{\partial \Lambda} = -\beta_j(\{\lambda\}) \]

- **fixed points** \(\beta_j(\{\lambda^*\}) = 0 \)
- \(\beta_j(\{\lambda\}) \) assumed to be analytic in neighborhood
- singular behavior from infinite iterations of an analytic mapping
- critical exponents and other universal critical properties given by derivatives of \(\beta \)-functions
- **scaling fields** \(\langle \phi_j(r_1)\phi_j(r_2) \rangle \sim |r_1 - r_2|^{-2\epsilon_j} \)
- the only evidence we have for this picture being precisely correct for non-trivial cases is
 - perturbative analysis about a trivial fixed point (e.g. \(\epsilon \)-expansion)
 - integrable lattice models in \(d = 2 \)
Universality I: Renormalization Group

Figure: M E Fisher, Rev. Mod. Phys. 70 653 (1998) [and http://terpconnect.umd.edu/~xpectnil/]
Analyticity III: Conformal Field Theory

- at (isotropic) $2d$ RG fixed points there are special scaling fields whose correlation functions are holomorphic (analytic) functions of $z = x + iy$ (or $\bar{z} = x - iy$):

- conserved currents corresponding to symmetries, e.g. stress tensor $(T(z), \bar{T}(\bar{z}))$

- parafermionic fields $\psi_\sigma(z)$ with $\langle \psi_\sigma(z_1)\psi_\sigma(z_2) \rangle \sim (z_1 - z_2)^{-2\sigma}$

- these are the building blocks of the CFT

- if they satisfy suitable boundary conditions on ∂D then the whole scaling theory is conformally covariant in a strict sense under mappings $\Phi : D \rightarrow D'$
Integrability I: Yang-Baxter Equations

\[u \rightarrow v = \frac{u}{u-v} \]

- transfer matrices \(t(u) \) for different \(u \) commute
- weights \(W(u) \) are analytic in spectral parameter \(u \)
- assuming this lifts to the analyticity of the eigenvalues \(\Lambda(u) \) of \(t(u) \), Baxter and others were able to deduce many consequences including the values of scaling dimensions
- these agree with the corresponding CFT
Analyticity IV: Discrete Holomorphicity

- G is a planar graph (e.g. square lattice) embedded in \mathbb{R}^2
- $F(z_{jk})$ is a function defined on the mid-points z_{jk} of the edges (jk) of G
- F is \textit{discretely holomorphic} if

\[
F(z_{12}) + iF(z_{23}) + i^2F(z_{34}) + i^3F(z_{41}) = 0
\]
around each square

- discrete version of Cauchy’s theorem
Analyticity IV: Discrete Holomorphicity

- \mathcal{G} is a planar graph (e.g. square lattice) embedded in \mathbb{R}^2
- $F(z_{jk})$ is a function defined on the mid-points z_{jk} of the edges (jk) of \mathcal{G}
- F is \textit{discretely holomorphic} if

\[
F(z_{12}) + iF(z_{23}) + i^2F(z_{34}) + i^3F(z_{41}) = 0
\]

around each square

- discrete version of Cauchy’s theorem
- \textbf{Warning} there are only N_{faces} linear equations for N_{edges} unknowns – not enough to determine $F(z_{jk})$ – additional arguments are needed to assert that F becomes an analytic function in the continuum limit
Example: the Ising model

- many 2d lattice models possess a duality symmetry: order $s(r) \leftrightarrow$ disorder $\mu(R)$

- for the nearest neighbor Ising model with
 $\mathcal{H}(\{s\}) = -\sum_{rr'} J_{rr'} s(r) s(r')$, $\mu(R)$ corresponds to
 $J_{rr'} \rightarrow -J_{rr'}$ on edges (rr') which cross a ‘string’ attached to R:

- define parafermion $\psi_\sigma(rR)$ on the edge (rR):
 $$\psi_\sigma(rR) = s(r) \cdot \mu(R) e^{-i\sigma \theta(rR)}$$
\[
(1 + (\tanh J_y)s(r_1)s(r_2)) \mu(R_4) = (1 - (\tanh J_y)s(r_1)s(r_2)) \mu(R_3)
\]

- multiply both sides by \(s(r_1) \) and \(s(r_2) \) and use \(s^2 = 1 \):
- linear equations in neighboring \(\psi_\sigma s \Rightarrow \psi_\sigma \) is discretely holomorphic as long as:
 - \(s = \frac{1}{2} \) (for the Ising model)
 - we distort the square into a rhombus (whose angle depends on \(J_y/J_x \))
 - these lie on the critical manifold \(\sinh J_x \sinh J_y = 1 \)
it is also possible to define ψ_σ in terms of the loop representation of the model (e.g. spin cluster boundaries)

many (all?) lattice models with discrete states (even those without a duality symmetry) have loop representations, for which we can define *parafermionic observables* ψ_σ

as long as these are defined suitably, these turn out, in all known cases [Smirnov, (Riva, Rajabpour, Ikhlef)+JC] to be discretely holomorphic, as long as:

- σ is chosen suitably
- the weights of the model are critical
it is also possible to define \(\psi_\sigma \) in terms of the *loop representation* of the model (e.g. spin cluster boundaries)

many (all?) lattice models with discrete states (even those without a duality symmetry) have loop representations, for which we can define *parafermionic observables* \(\psi_\sigma \)

as long as these are defined suitably, these turn out, in all known cases [Smirnov, (Riva,Rajabpour,Ikhlef)+JC] to be discretely holomorphic, as long as:

- \(\sigma \) is chosen suitably
- the weights of the model are critical
- the weights are on the integrable manifold with spectral parameter \(\sim \) deformation angle of the local rhombus
it is also possible to define ψ_σ in terms of the \textit{loop representation} of the model (\textit{e.g.} spin cluster boundaries)

many (all?) lattice models with discrete states (even those without a duality symmetry) have loop representations, for which we can define \textit{parafermionic observables} ψ_σ

as long as these are defined suitably, these turn out, in all known cases [Smirnov, (Riva,Rajabpour,Ikhlef)+JC] to be discretely holomorphic, as long as:

- σ is chosen suitably
- the weights of the model are critical
- the weights are on the integrable manifold with spectral parameter \sim deformation angle of the local rhombus

\begin{align*}
\text{discrete holomorphicity} & \Rightarrow \text{integrable criticality}
\end{align*}
Universality, Integrability and Analyticity

Figure: E.g. (b) is an integrable critical model, and the RG flows \((b) \rightarrow \text{fixed point}\) are special, preserving (discrete) analyticity.
Can we learn anything from this (e.g.) in higher dimensions?

- role of analyticity
 - what should be analytic in what?
- role of integrability
 - what kind of integrable structures?
- role of universality
 - what models are special in each universality class?
Congratulations on your 100th Statistical Mechanics Conference Joel!!