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Analyticity I: Landau Theory

» Landau free energy

FM] = / ((VM)? + Tr(H - M) + roTeM? + \TeM? + -+ ) d%

» all analytic terms allowed by symmetry

» JF/0M = 0 = critical points at special values of
{)\j} = (H, 1o, )\3, ‘e )

» singular behavior from bifurcations

» critical exponents describing how M behaves close to
critical points are super-universal.



Analyticity Il: Renormalization Group

_ ) e—FM]
ZIH] Akymo1

d; O\
e ((PYY

v

fixed points B;({\*}) =0

Bi({A}) assumed to be analytic in neighborhood
singular behavior from infinite iterations of an analytic
mapping

critical exponents and other universal critical properties
given by derivatives of g-functions

scaling fields (¢;(r1)¢j(r2)) ~ |1 — ra| 729

vy

v

v



Analyticity Il: Renormalization Group
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fixed points B;({\*}) =0
Bi({A}) assumed to be analytic in neighborhood
singular behavior from infinite iterations of an analytic
mapping
critical exponents and other universal critical properties
given by derivatives of g-functions
Scaling fields <d)j(7'1)¢)j(l"2)> ~ \rl — }"2‘_2)9'
the only evidence we have for this picture being precisely
correct for non-trivial cases is

» perturbative analysis about a trivial fixed point (e.g.

e-expansion)
» integrable lattice modelsind =2
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Figure: M E Fisher, Rev. Mod. Phys. 70 653 (1998) [and
http://terpconnect.umd.edu/~xpectnil/]



Analyticity lll: Conformal Field Theory

» at (isotropic) 2d RG fixed points there are special scaling
fields whose correlation functions are holomorphic
(analytic) functions of z = x + iy (or z = x — iy):

» conserved currents corresponding to symmetries, e.g.
stress tensor (7(z),T(2))

» parafermionic fields 1, (z) With (4 (21)0s(22)) ~ (21 —22) 72

» these are the building blocks of the CFT

» if they satisfy suitable boundary conditions on 0D then the
whole scaling theory is conformally covariant in a strict
sense under mappings ® : D — D’



Integrability I: Yang-Baxter Equations

SO0
KL = o

» transfer matrices t(u) for different u commute
» weights W(u) are analytic in spectral parameter u

» assuming this lifts to the analyticity of the eigenvalues A(u)
of t(u), Baxter and others were able to deduce many
consequences including the values of scaling dimensions

» these agree with the corresponding CFT



Analyticity 1V: Discrete Holomorphicity

» G is a planar graph (e.g. square lattice) embedded in R?

» F(zj) is a function defined on the mid-points zj of the
edges (jk) of G

» Fis discretely holomorphic if

4 ° 3

1 . 2

F(z12) 4 iF (z23) + i*F(z34) +°F(z41) =0 around each square

» discrete version of Cauchy’s theorem
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» F(zj) is a function defined on the mid-points zj of the
edges (jk) of G

» Fis discretely holomorphic if

4 ° 3

1 . 2

F(z12) 4 iF (z23) + i*F(z34) + °F(z41) =0 around each square

» discrete version of Cauchy’s theorem

» Warning there are only Npaces linear equations for Negges
unknowns — not enough to determine F(z;) — additional
arguments are needed to assert that F becomes an
analytic function in the continuum limit



Example: the Ising model

» many 2d lattice models possess a duality symmetry: order
s(r) « disorder p(R)

» for the nearest neighbor Ising model with
H({s}) = =, Jws(r)s(r'), p(R) corresponds to
Jw — —J,» on edges (rr’) which cross a ‘string’ attached
to R:

» define parafermion v, (rR) on the edge (rR):
Uo(rR) = s(r) - p(R) e~



(1 + (tanh Jy)s(r1)s(r2)) p(Ra) = (1 — (tanhJy)s(r1)s(r2)) u(R3)

» multiply both sides by s(r;) and s(r») and use s> = 1:
» linear equations in neighboring #,s = v, is discretely
holomorphic as long as:
» s =1 (for the Ising model)
» we distort the square into a rhombus (whose angle
depends on J,/J;)
» these lie on the critical manifold sinh J, sinh J, = 1



Discrete Holomorphicity and Integrability

» it is also possible to define 1, in terms of the loop
representation of the model (e.g. spin cluster boundaries)

» many (all?) lattice models with discrete states (even those
without a duality symmetry) have loop representations, for
which we can define parafermionic observables ),

» as long as these are defined suitably, these turn out, in all
known cases [Smirnov, (Riva,Rajabpour,lkhlef)+JC] to be
discretely holomorphic, as long as:

» o is chosen suitably
» the weights of the model are critical



Discrete Holomorphicity and Integrability

» it is also possible to define 1, in terms of the loop
representation of the model (e.g. spin cluster boundaries)

» many (all?) lattice models with discrete states (even those
without a duality symmetry) have loop representations, for
which we can define parafermionic observables ),

» as long as these are defined suitably, these turn out, in all
known cases [Smirnov, (Riva,Rajabpour,lkhlef)+JC] to be
discretely holomorphic, as long as:

» o is chosen suitably

» the weights of the model are critical

» the weights are on the integrable manifold with spectral
parameter ~ deformation angle of the local rhombus



Discrete Holomorphicity and Integrability

» it is also possible to define 1, in terms of the loop
representation of the model (e.g. spin cluster boundaries)

» many (all?) lattice models with discrete states (even those
without a duality symmetry) have loop representations, for
which we can define parafermionic observables ),

» as long as these are defined suitably, these turn out, in all
known cases [Smirnov, (Riva,Rajabpour,lkhlef)+JC] to be
discretely holomorphic, as long as:

» o is chosen suitably

» the weights of the model are critical

» the weights are on the integrable manifold with spectral
parameter ~ deformation angle of the local rhombus

discrete holomorphicity = integrable criticality
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Figure: E.g. (b) is an integrable critical model, and the RG flows
(b) — fixed point are special, preserving (discrete) analyticity



Can we learn anything from this (e.g.) in higher
dimensions?

» role of analyticity
» what should be analytic in what?
» role of integrability
» what kind of integrable structures?
» role of universality
» what models are special in each universality class?



Congratulations on your
100th Statistical Mechanics Conference
Joel!l



