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Analyticity I: Landau Theory

I Landau free energy

F[M] =
∫ (

(∇M)2 + Tr(H ·M) + r0TrM2 + λ3TrM3 + · · · ) ddx

I all analytic terms allowed by symmetry
I δF/δM = 0 ⇒ critical points at special values of
{λj} = (H, r0, λ3, . . .)

I singular behavior from bifurcations
I critical exponents describing how M behaves close to

critical points are super-universal.



Analyticity II: Renormalization Group

Z[H] =
∫

|q|<Λ
[dM(x)] e−F[M]

dλj

d`
= −Λ

∂λj

∂Λ
= −βj({λ})

I fixed points βj({λ∗}) = 0
I βj({λ}) assumed to be analytic in neighborhood
I singular behavior from infinite iterations of an analytic

mapping
I critical exponents and other universal critical properties

given by derivatives of β-functions
I scaling fields 〈φj(r1)φj(r2)〉 ∼ |r1 − r2|−2xj

I the only evidence we have for this picture being precisely
correct for non-trivial cases is

I perturbative analysis about a trivial fixed point (e.g.
ε-expansion)

I integrable lattice models in d = 2
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Universality I: Renormalization Group

Figure: M E Fisher, Rev. Mod. Phys. 70 653 (1998) [and
http://terpconnect.umd.edu/∼xpectnil/]



Analyticity III: Conformal Field Theory

I at (isotropic) 2d RG fixed points there are special scaling
fields whose correlation functions are holomorphic
(analytic) functions of z = x + iy (or z̄ = x− iy):

I conserved currents corresponding to symmetries, e.g.
stress tensor

(
T(z), T(z̄)

)

I parafermionic fields ψσ(z) with 〈ψσ(z1)ψσ(z2)〉 ∼ (z1− z2)−2σ

I these are the building blocks of the CFT
I if they satisfy suitable boundary conditions on ∂D then the

whole scaling theory is conformally covariant in a strict
sense under mappings Φ : D → D′



Integrability I: Yang-Baxter Equations
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I transfer matrices t(u) for different u commute
I weights W(u) are analytic in spectral parameter u
I assuming this lifts to the analyticity of the eigenvalues Λ(u)

of t(u), Baxter and others were able to deduce many
consequences including the values of scaling dimensions

I these agree with the corresponding CFT



Analyticity IV: Discrete Holomorphicity
I G is a planar graph (e.g. square lattice) embedded in R2

I F(zjk) is a function defined on the mid-points zjk of the
edges (jk) of G

I F is discretely holomorphic if

1 2

34

F(z12)+ iF(z23)+ i2F(z34)+ i3F(z41) = 0 around each square

I discrete version of Cauchy’s theorem
I Warning there are only Nfaces linear equations for Nedges

unknowns – not enough to determine F(zjk) – additional
arguments are needed to assert that F becomes an
analytic function in the continuum limit
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Example: the Ising model

I many 2d lattice models possess a duality symmetry: order
s(r) ↔ disorder µ(R)

I for the nearest neighbor Ising model with
H({s}) = −∑

rr′ Jrr′s(r)s(r′), µ(R) corresponds to
Jrr′ → −Jrr′ on edges (rr′) which cross a ‘string’ attached
to R:
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�
�
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I define parafermion ψσ(rR) on the edge (rR):

ψσ(rR) = s(r) · µ(R) e−iσθ(rR)
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(
1 + (tanh Jy)s(r1)s(r2)

)
µ(R4) =

(
1− (tanh Jy)s(r1)s(r2)

)
µ(R3)

I multiply both sides by s(r1) and s(r2) and use s2 = 1:
I linear equations in neighboring ψσs ⇒ ψσ is discretely

holomorphic as long as:
I s = 1

2 (for the Ising model)
I we distort the square into a rhombus (whose angle

depends on Jy/Jx)
I these lie on the critical manifold sinh Jx sinh Jy = 1



Discrete Holomorphicity and Integrability

I it is also possible to define ψσ in terms of the loop
representation of the model (e.g. spin cluster boundaries)

I many (all?) lattice models with discrete states (even those
without a duality symmetry) have loop representations, for
which we can define parafermionic observables ψσ

I as long as these are defined suitably, these turn out, in all
known cases [Smirnov, (Riva,Rajabpour,Ikhlef)+JC] to be
discretely holomorphic, as long as:

I σ is chosen suitably
I the weights of the model are critical
I the weights are on the integrable manifold with spectral

parameter ∼ deformation angle of the local rhombus

discrete holomorphicity ⇒ integrable criticality



Discrete Holomorphicity and Integrability

I it is also possible to define ψσ in terms of the loop
representation of the model (e.g. spin cluster boundaries)

I many (all?) lattice models with discrete states (even those
without a duality symmetry) have loop representations, for
which we can define parafermionic observables ψσ

I as long as these are defined suitably, these turn out, in all
known cases [Smirnov, (Riva,Rajabpour,Ikhlef)+JC] to be
discretely holomorphic, as long as:

I σ is chosen suitably
I the weights of the model are critical
I the weights are on the integrable manifold with spectral

parameter ∼ deformation angle of the local rhombus

discrete holomorphicity ⇒ integrable criticality



Discrete Holomorphicity and Integrability

I it is also possible to define ψσ in terms of the loop
representation of the model (e.g. spin cluster boundaries)

I many (all?) lattice models with discrete states (even those
without a duality symmetry) have loop representations, for
which we can define parafermionic observables ψσ

I as long as these are defined suitably, these turn out, in all
known cases [Smirnov, (Riva,Rajabpour,Ikhlef)+JC] to be
discretely holomorphic, as long as:

I σ is chosen suitably
I the weights of the model are critical
I the weights are on the integrable manifold with spectral

parameter ∼ deformation angle of the local rhombus

discrete holomorphicity ⇒ integrable criticality



Universality, Integrability and Analyticity

Figure: E.g. (b) is an integrable critical model, and the RG flows
(b) → fixed point are special, preserving (discrete) analyticity



Can we learn anything from this (e.g.) in higher
dimensions?

I role of analyticity
I what should be analytic in what?

I role of integrability
I what kind of integrable structures?

I role of universality
I what models are special in each universality class?
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